Parameter Efficient Fine-Tuning (PEFT)

To run PEFT update conf/config.yaml:

Copy
Copied!
            

defaults: - peft: Mistral/squad stages: - peft

Execute launcher pipeline: python3 main.py

Configuration

Default configurations for PEFT with squad can be found in conf/peft/mistral/squad.yaml. Fine-tuning configuration is divided into four sections run, trainer, exp_manger and model.

Copy
Copied!
            

run: name: peft_mistral_7b time_limit: "04:00:00" dependency: "singleton" convert_name: convert_nemo model_train_name: Mistral_7b convert_dir: ${base_results_dir}/${peft.run.model_train_name}/${peft.run.convert_name} task_name: "squad" results_dir: ${base_results_dir}/${.model_train_name}/peft_${.task_name}

Set the number of nodes and devices for fine-tuning:

Copy
Copied!
            

trainer: num_nodes: 1 devices: 8

Copy
Copied!
            

model: restore_from_path: ${peft.run.convert_dir}/results/megatron_mistral.nemo

restore_from_path sets the path to the .nemo checkpoint to run fine-tuning.

peft_scheme sets the fine-tuning scheme to be used. Supported schemes include: lora, adapter, ia3, ptuning.

Gated Model assets

Mistral’s tokenizer is hosted on Huggingface.com which requires login. In order to access the tokenizer assets, users are advised to prepend the HF_TOKEN=<token> environment variable to the nemo launcher invocation command.

In NeMo Laucher this can be achieved by appending “++env_vars.HF_TOKEN=<user-token” to the argument list.

Previous Model Evaluation
Next Model Export to TensorRT-LLM
© Copyright 2023-2024, NVIDIA. Last updated on May 17, 2024.