Important

You are viewing the NeMo 2.0 documentation. This release introduces significant changes to the API and a new library, NeMo Run. We are currently porting all features from NeMo 1.0 to 2.0. For documentation on previous versions or features not yet available in 2.0, please refer to the NeMo 24.07 documentation.

Important

Before starting this tutorial, be sure to review the introduction for tips on setting up your NeMo-Aligner environment.

If you run into any problems, refer to NeMo’s Known Issues page. The page enumerates known issues and provides suggested workarounds where appropriate.

Model Alignment by Rejection Sampling#

In this tutorial, we will guide you through the process of aligning a NeMo Framework model using rejection sampling. This method can be applied to various models, including LLaMa and Mistral, with our scripts functioning consistently across different models.

Rejection Sampling is usually preceded by a Supervised Fine-Tuning (SFT). We should first follow the Prerequisite guide and the SFT guide. After obtaining the SFT model, we will also need to train a reward model as in PPO guide. We will use the rejection sampling algorithm on the Anthropic-HH-RLHF dataset.

Rejection Sampling Training#

After you have fine-tuned a GPT model using SFT and trained a reward model as explained in the preceding section, you can start aligning the policy using rejection sampling.

During rejection sampling training, we have two models interacting with each other, which NeMo-Aligner runs in separate jobs:

  1. The Policy Network: This is the model we are training and it should start from an SFT model.

  2. The Reward Model (RM): This model accepts a prompt combined with a response as input and produces a single scalar value, known as the reward. The rejection sampling algorithm aims to maximize this reward.

The next section discusses how to launch each of these two jobs.

Launch the Reward Model and Critic Server#

To launch the server:

#!/bin/bash
CHECKPOINT_NEMO_FILE="/path/to/trained_rm.nemo"
GPFS="/path/to/nemo-aligner-repo"

RESULTS_DIR="critic_results_dir"

export PYTHONPATH="${GPFS}:${PYTHONPATH}" \
&& export HYDRA_FULL_ERROR=1 \
&& python -u examples/nlp/gpt/serve_reward_model.py \
   trainer.num_nodes=1 \
   trainer.devices=8 \
   ++model.tensor_model_parallel_size=4 \
   rm_model_file=${RM_NEMO_FILE}

The above example launches the reward model server on 8 GPUs and 1 node. Please make sure to change trainer.devices and trainer.num_nodes depending on your model size and scale. NeMo-Aligner will work on any scale. Also, make sure to tune the trainer.rs.inference_micro_batch_size argument. This argument sets the size of the batch the RS actor is allowed to send to the critic per DP rank.

Launch the Initial Policy and RS Actor Training#

The RS actor training job contains the master controller that makes the HTTP calls to all servers when needed. To launch the RS actor and initial policy server:

GPFS="/path/to/nemo-aligner-repo"
TRAIN_DATA_PATH="/path/to/train_prompts.jsonl"
VALID_DATA_PATH="/path/to/test_prompts.jsonl"

PRETRAINED_ACTOR_NEMO_FILE="/path/to/sft_checkpoint.nemo"
RESULTS_DIR="/path/to/actor_results_dir"

ACTOR_LR=1e-6
NUM_ROLLOUTS=32
ACTOR_GBS=32
CRITIC_PORT=5555
host_critic="$(scontrol show hostnames=$SLURM_JOB_NODELIST_HET_GROUP_0 | head -n1)"

export PYTHONPATH="${GPFS}:${PYTHONPATH}" \
&& export HYDRA_FULL_ERROR=1 \
&& python -u examples/nlp/gpt/train_gpt_rs_actor.py \
   "model.data.data_prefix={train: [${TRAIN_DATA_PATH}], validation: [${VALID_DATA_PATH}], test: [${VALID_DATA_PATH}]}" \
   pretrained_checkpoint.restore_from_path=\"${PRETRAINED_ACTOR_NEMO_FILE}\" \
   exp_manager.checkpoint_callback_params.save_top_k=1 \
   exp_manager.explicit_log_dir=\"${RESULTS_DIR}\" \
   trainer.rs.max_epochs=1 \
   trainer.rs.max_steps=313 \
   trainer.rs.val_check_interval=4 \
   trainer.num_nodes=1 \
   trainer.devices=8 \
   ++model.tensor_model_parallel_size=4 \
   model.global_batch_size=${ACTOR_GBS} \
   model.micro_batch_size=1 \
   model.optim.lr=\"\\\$\{multiply:${ACTOR_LR},1.001\}\" \
   model.optim.sched.warmup_steps=0 \
   model.optim.sched.constant_steps=312 \
   model.optim.sched.min_lr=${ACTOR_LR} \
   model.optim.weight_decay=0.01 \
   model.rs.num_rollout_samples=${NUM_ROLLOUTS} \
   model.rs.rollout_micro_batch_size=16 \
   model.rs.forward_micro_batch_size=16 \
   model.rs.val_rollout_micro_batch_size=8 \
   model.data.data_impl=jsonl \
   remote_rm.reward_model.ip=${host_critic} \
   remote_rm.reward_model.port=${CRITIC_PORT} \
   model.rs.num_rollouts_per_prompt=8 \
   model.rs.top_n_rollouts=1

The above command launches the RS actor and initial policy server on 1 node with 8 GPUs.

Launch Both Servers for Rejection Sampling Training#

You can use Slurm to launch the two jobs and get them to coordinate together in a full rejection sampling job via the following:

#!/bin/bash
#SBATCH -N 1 --ntasks-per-node 8 -A <<ACCOUNT>> -p <<PARTITION>> --job-name <<JOBNAME>> -t 4:00:00 --exclusive
#SBATCH hetjob
#SBATCH -N 1 --ntasks-per-node 8 -A <<ACCOUNT>> -p <<PARTITION>> --job-name <<JOBNAME>> -t 4:00:00 --exclusive

NAME="2p_rs"

# PARAMETERS
RM_NEMO_FILE="/path/to/trained_rm.nemo"

ACTOR_NEMO_FILE="/path/to/sft_model.nemo"

TRAIN_DATA_PATH="/path/to/train_prompts.jsonl"
VALID_DATA_PATH="/path/to/test_prompts.jsonl"

RESULTS_DIR="/path/to/results_dir"
mkdir -p $RESULTS_DIR

GPFS="/path/to/nemo-aligner-repo"
MOUNTS="--container-mounts=MOUNTS" # mounts

CONTAINER=<<<CONTAINER>>> # use the latest NeMo Training container, Aligner will work there

PROJECT=rs_run

CRITIC_LOG_DIR="${RESULTS_DIR}/critic_results"
CRITIC_OUTFILE="${CRITIC_LOG_DIR}/critic_output_%j_%t.log"
CRITIC_ERRFILE="${CRITIC_LOG_DIR}/critic_error_%j_%t.err"
CRITIC_PORT=5567
CRITIC_CONFIG_PATH="${GPFS}/examples/nlp/gpt/conf"
CRITIC_CONFIG_NAME="inference_rm"

CONF_DIR="${GPFS}/examples/nlp/gpt/conf"
CONFIG_NAME="gpt_rs_actor"

mkdir -p $CRITIC_LOG_DIR

CRITIC_NAME="${NAME}_critic"

read -r -d '' cmd_critic_inference <<EOF
cd ${GPFS} \
&& export PYTHONPATH="${GPFS}:${PYTHONPATH}" \
&& export HYDRA_FULL_ERROR=1 \
&& python -u examples/nlp/gpt/serve_reward_model.py \
   --config-path=${CRITIC_CONFIG_PATH} \
   --config-name=${CRITIC_CONFIG_NAME} \
   trainer.num_nodes=1 \
   trainer.devices=8 \
   ++model.tensor_model_parallel_size=4 \
   rm_model_file=${RM_NEMO_FILE} \
   inference.port=${CRITIC_PORT}
EOF

srun --no-container-mount-home --het-group=0 -o $CRITIC_OUTFILE -e $CRITIC_ERRFILE --container-image=${CONTAINER} $MOUNTS bash -c "${cmd_critic_inference}" &

sleep 30

ACTOR_LOG_DIR="${RESULTS_DIR}/actor_results"
CHECKPOINT_DIR="${ACTOR_LOG_DIR}/checkpoints"
TENSOBOARD_DIR="${ACTOR_LOG_DIR}/tensorboard"

NUM_ROLLOUTS=16
NORMALIZE="True"
ACTOR_LR="1e-6"
ACTOR_GBS=16

mkdir -p $ACTOR_LOG_DIR
mkdir -p $TENSOBOARD_DIR
mkdir -p $CHECKPOINT_DIR

ACTOR_NAME="${NAME}_actor"

host_critic="$(scontrol show hostnames=$SLURM_JOB_NODELIST_HET_GROUP_0 | head -n1)"

read -r -d '' cmd_rs <<EOF
cd ${GPFS} \
&& export PYTHONPATH="${GPFS}:${PYTHONPATH}" \
&& export HYDRA_FULL_ERROR=1 \
&& python -u examples/nlp/gpt/train_gpt_rs_actor.py \
   --config-path=${CONF_DIR} \
   --config-name=${CONFIG_NAME} \
   "model.data.data_prefix={train: [${TRAIN_DATA_PATH}], validation: [${VALID_DATA_PATH}], test: [${VALID_DATA_PATH}]}" \
   pretrained_checkpoint.restore_from_path=\"${ACTOR_NEMO_FILE}\" \
   exp_manager.checkpoint_callback_params.save_top_k=1 \
   exp_manager.explicit_log_dir=\"${ACTOR_LOG_DIR}\" \
   trainer.rs.max_epochs=1 \
   trainer.rs.max_steps=313 \
   trainer.rs.val_check_interval=4 \
   trainer.num_nodes=1 \
   trainer.devices=8 \
   ++model.tensor_model_parallel_size=4 \
   model.global_batch_size=${ACTOR_GBS} \
   model.micro_batch_size=1 \
   model.optim.lr=\"\\\$\{multiply:${ACTOR_LR},1.001\}\" \
   model.optim.sched.warmup_steps=0 \
   model.optim.sched.constant_steps=312 \
   model.optim.sched.min_lr=${ACTOR_LR} \
   model.optim.weight_decay=0.01 \
   model.rs.num_rollout_samples=${NUM_ROLLOUTS} \
   model.rs.rollout_micro_batch_size=2 \
   model.rs.forward_micro_batch_size=2 \
   model.rs.val_rollout_micro_batch_size=2 \
   model.data.data_impl=jsonl \
   remote_rm.reward_model.ip=${host_critic} \
   remote_rm.reward_model.port=${CRITIC_PORT} \
   model.rs.num_rollouts_per_prompt=8 \
   model.rs.top_n_rollouts=1
EOF

srun --no-container-mount-home --het-group=1 -o $PPO_OUTFILE -e $PPO_ERRFILE --container-image=${CONTAINER} $MOUNTS bash -c "${cmd_rs}" &

wait

The above script runs the reward model server on 1 node and the RS actor on 1 node.

It is important to launch all jobs with & after the srun command, to ensure they do not block each other.

Note

Make sure to change the reward model arg trainer.rs.inference_micro_batch_size such that trainer.rs.inference_micro_batch_size * DP size <= model.rs.rollout_micro_batch_size.

Rejection Sampling Results#

Once you’ve completed rejection sampling training, you can serve your model using the megatron_gpt_eval.py script from the NeMo codebase to run more rigorous evaluation of your trained model.