NeMo Framework SFT with Llama 2

Project Description

Learning Goals

Often we want to adapt or customize foundation models to be more performant on our specific task. Fine-tuning refers to how we can modify the weights of a pre-trained foundation model with additional custom data. Supervised fine-tuning (SFT) refers to unfreezing all the weights and layers in our model and training on a newly labeled set of examples. We can fine-tune to incorporate new, domain-specific knowledge, or teach the foundation model what type of response to provide. One specific type of SFT is also referred to as “instruction tuning” where we use SFT to teach a model to follow instructions better.

In this project, you’ll test out the supervised fine-tuning method on the Llama 2 model using an instructive dataset.

NeMo Tools and Resources

Software Requirements

  • Use the latest NeMo Framework Training container

  • This playbook has been tested on: nvcr.io/nvidia/nemo:24.05. It is expected to work similarly on other environments.

Hardware Requirements

  • Minimum 8xA100 80G (1 node) for SFT on 7B and 13B

  • SFT can be run on all (7B/13B/70B) model sizes on multiple nodes

Data

Databricks-dolly-15k is an open-source dataset created by the collaborative efforts of Databricks employees. It consists of high-quality human-generated prompt/response pairs specifically designed for instruction tuning LLMs. These pairs cover a diverse range of behaviors, from brainstorming and content generation to information extraction and summarization.

For more information, refer to databricks-dolly-15k | Hugging Face.

Convert Llama 2 from Hugging Face format to NeMo format

If you already have a .nemo file for Llama models, you can skip this step.

Step 1: Download Llama 2 in Hugging Face format

Request download permission and create the destination directory. Two options are available.

To download using the CLI tool:

mkdir llama2-7b-hf
huggingface-cli login

To download using your Hugging Face API token, run the following Python code and replace the value for the token with your Hugging Face token:

from huggingface_hub import snapshot_download

snapshot_download(repo_id="meta-llama/Llama-2-7b-hf",
      local_dir="llama2-7b-hf",
      local_dir_use_symlinks=False,
      token=<YOUR HF TOKEN>)

In this example, the Llama 2 Hugging Face model will be downloaded to ./llama2-7b-hf.

Step 2: Convert to .nemo

Run the container using the following command:

docker run --gpus device=1 --shm-size=2g --net=host --ulimit memlock=-1 --rm -it -v ${PWD}:/workspace -w /workspace -v ${PWD}/results:/results nvcr.io/nvidia/nemo:24.05 bash

Convert the Hugging Face model to .nemo model:

python /opt/NeMo/scripts/checkpoint_converters/convert_llama_hf_to_nemo.py --input_name_or_path=./llama2-7b-hf/ --output_path=llama2-7b.nemo

The generated llama2-7b.nemo file uses distributed checkpointing. It can be loaded with any Tensor Parallel (TP) or Pipeline Parallel (PP) combination without reshaping or splitting.

Prepare data

Step 1: Download dataset

Download the databricks-dolly-15k dataset from Hugging Face:

git clone https://huggingface.co/datasets/databricks/databricks-dolly-15k

Once downloaded, check the size of the file (databricks-dolly-15k.jsonl):

du -sh databricks-dolly-15k/databricks-dolly-15k.jsonl
13M     databricks-dolly-15k/databricks-dolly-15k.jsonl

If the file sizes do not match, delete the old file, manually copy the download link address, and directly wget the file:

wget https://huggingface.co/datasets/databricks/databricks-dolly-15k/resolve/main/databricks-dolly-15k.jsonl

Step 2: Data preprocessing

Next, you need to preprocess the data to ensure it’s in the correct format. The expected format is a JSONL file with {‘input’: ‘xxx’, ‘output’: ‘yyy’} pairs.

To run the preprocessing, use the script that has already been prepared for you. Run this script and pass your jsonl file as –input. To run the script, you need to launch the container.

If the container is not already running, use the following command:

docker run --gpus device=1 --shm-size=2g --net=host --ulimit memlock=-1 --rm -it -v ${PWD}:/workspace -w /workspace -v ${PWD}/results:/results nvcr.io/nvidia/nemo:24.05 bash

Then, run the following data preprocess script:

python3 /opt/NeMo-Framework-Launcher/launcher_scripts/nemo_launcher/collections/dataprep_scripts/dolly_dataprep/preprocess.py --input databricks-dolly-15k/databricks-dolly-15k.jsonl

The following shows an example output:

Preprocessing data to jsonl format...
Data was successfully preprocessed and saved by databricks-dolly-15k/databricks-dolly-15k-output.jsonl.

Check that the output jsonl files exist:

ls databricks-dolly-15k/
.git/
.gitattributes
README.md
databricks-dolly-15k-output.jsonl
databricks-dolly-15k.jsonl

Check the first example in the output jsonl file:

head -n 1 databricks-dolly-15k/databricks-dolly-15k-output.jsonl
{"input": "Virgin Australia, the trading name of Virgin Australia Airlines Pty Ltd, is an Australian-based airline. It is the largest airline by fleet size to use the Virgin brand. It commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route. It suddenly found itself as a major airline in Australia's domestic market after the collapse of Ansett Australia in September 2001. The airline has since grown to directly serve 32 cities in Australia, from hubs in Brisbane, Melbourne and Sydney.\n\nWhen did Virgin Australia start operating?", "output": "Virgin Australia commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route.", "category": "closed_qa"}

Step 3: Split the data into train, validation, and test

To create the train, test, and validation splits, you have two options. You can use your own script or create a new script. To create a new script, incorporate the provided sample split_train_val.py by copying it over in the databricks-dolly-15k directory:

import json
import random

input_file = "databricks-dolly-15k-output.jsonl"
training_output_file = "training.jsonl"
validation_output_file = "validation.jsonl"
test_output_file = "test.jsonl"

# Specify the proportion of data for training and validation
train_proportion = 0.80
validation_proportion = 0.15
test_proportion = 0.05

# Read the JSONL file and shuffle the JSON objects
with open(input_file, "r") as f:
    lines = f.readlines()
    random.shuffle(lines)

# Calculate split indices
total_lines = len(lines)
train_index = int(total_lines * train_proportion)
val_index = int(total_lines * validation_proportion)

# Distribute JSON objects into training and validation sets
train_data = lines[:train_index]
validation_data = lines[train_index:train_index+val_index]
test_data = lines[train_index+val_index:]

# Write JSON objects to training file
with open(training_output_file, "w") as f:
    for line in train_data:
        f.write(line.strip() + "\n")

# Write JSON objects to validation file
with open(validation_output_file, "w") as f:
    for line in validation_data:
        f.write(line.strip() + "\n")

# Write JSON objects to training file
with open(test_output_file, "w") as f:
    for line in test_data:
        f.write(line.strip() + "\n")

Then, go to the databricks-dolly-15k directory and generate the splits:

python3 split_train_val.py

Check for the train, test, and validation jsonl files:

ls
README.md
databricks-dolly-15k.jsonl
databricks-dolly-15k-output.jsonl
split_train_val.py
training.jsonl
validation.jsonl
test.jsonl

Step 4: Run the SFT fine-tuning script

Set the environment variables and then pass the paths to your train, test, and validation data files:

MODEL="YOUR PATH TO llama2-7b.nemo"
TRAIN_DS="[YOUR PATH TO databricks-dolly-15k/training.jsonl]"
VALID_DS="[YOUR PATH TO databricks-dolly-15k/validation.jsonl]"
TEST_DS="[YOUR PATH TO databricks-dolly-15k/test.jsonl]"
VALID_NAMES="[databricks-dolly-15k]"

Set the concat sampling probability. This depends on the number of files passed in the train set and the percentage of the fine-tuning data would you like to use from each file.

The sum of the concat sampling probabilities should be 1.0.

The following example shows how to set the concat sampling probability for a train set with two jsonl files:

TRAIN_DS="[/path/to/dataset_1.jsonl,/path/to/dataset_2.jsonl]"
CONCAT_SAMPLING_PROBS="[0.3,0.7]"

In our example, we are using one train file, so CONCAT_SAMPLING_PROBS="[1.0]". Set the TP and PP values based on the model you are using:

CONCAT_SAMPLING_PROBS="[1]"
TP_SIZE=2
PP_SIZE=1

Run the SFT command and set the values for the parameters, including the number of steps, model checkpoint path, batch sizes, etc. For a full reference of parameter settings, refer to the config file.

torchrun --nproc_per_node=8 \
/opt/NeMo/examples/nlp/language_modeling/tuning/megatron_gpt_finetuning.py \
   trainer.precision=bf16 \
   trainer.devices=8 \
   trainer.num_nodes=1 \
   trainer.val_check_interval=0.1 \
   trainer.max_steps=50 \
   model.restore_from_path=${MODEL} \
   model.micro_batch_size=1 \
   model.global_batch_size=128 \
   model.tensor_model_parallel_size=${TP_SIZE} \
   model.pipeline_model_parallel_size=${PP_SIZE} \
   model.megatron_amp_O2=True \
   model.sequence_parallel=True \
   model.activations_checkpoint_granularity=selective \
   model.activations_checkpoint_method=uniform \
   model.optim.name=distributed_fused_adam \
   model.optim.lr=5e-6 \
   model.answer_only_loss=True \
   model.peft.peft_scheme=none \
   model.data.train_ds.file_names=${TRAIN_DS} \
   model.data.validation_ds.file_names=${VALID_DS} \
   model.data.test_ds.file_names=${TEST_DS} \
   model.data.train_ds.concat_sampling_probabilities=${CONCAT_SAMPLING_PROBS} \
   model.data.train_ds.max_seq_length=2048 \
   model.data.validation_ds.max_seq_length=2048 \
   model.data.train_ds.micro_batch_size=1 \
   model.data.train_ds.global_batch_size=128 \
   model.data.validation_ds.micro_batch_size=1 \
   model.data.validation_ds.global_batch_size=128 \
   model.data.test_ds.micro_batch_size=1 \
   model.data.test_ds.global_batch_size=256 \
   model.data.train_ds.num_workers=0 \
   model.data.validation_ds.num_workers=0 \
   model.data.test_ds.num_workers=0 \
   model.data.validation_ds.metric.name=loss \
   model.data.test_ds.metric.name=loss \
   exp_manager.create_wandb_logger=False \
   exp_manager.explicit_log_dir=/results \
   exp_manager.resume_if_exists=True \
   exp_manager.resume_ignore_no_checkpoint=True \
   exp_manager.create_checkpoint_callback=True \
   exp_manager.checkpoint_callback_params.monitor=validation_loss \
   exp_manager.checkpoint_callback_params.save_best_model=False \
   exp_manager.checkpoint_callback_params.save_nemo_on_train_end=True \
   ++cluster_type=BCP

Change the following settings for Llama 13b SFT:

model.tensor_model_parallel_size=4
model.pipeline_model_parallel_size=1

Change the following settings for Llama 70b SFT and use four nodes for 70b SFT:

model.tensor_model_parallel_size=8
model.pipeline_model_parallel_size=4

Note: To run SFT on multiple nodes (for example, 70B model) on a Slurm cluster, replace the torchrun --nproc_per_node=8 with python.

After completion of SFT, you should get an output similar to the following. If you want to get the wandb output, make sure to set exp_manager.create_wandb_logger=True and sign up for W&B to get the API key. You can follow the steps on the terminal to accomplish this task.

wandb: Waiting for W&B process to finish... (success).
wandb:
wandb: Run history:
wandb:                     consumed_samples ▁▃▅▆█
wandb:                                epoch ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb:                          global_step ▁▃▅▆█
wandb:                            grad_norm █▃▄▃▁
wandb:                                   lr ▁▁▁▁▁
wandb:                   reduced_train_loss █▅▇▆▁
wandb:                train_backward_timing ▇█▅▁▇
wandb:                    train_step_timing ▃▁█▆▂
wandb:                  trainer/global_step ▁▁▁▂▂▂▂▂▂▃▃▃▃▃▃▄▄▄▄▄▅▅▅▅▅▅▆▆▆▆▆▇▇▇▇▇▇███
wandb:                             val_loss █▅▄▃▂▂▂▁▁▁
wandb:                      validation_loss █▅▄▃▂▂▂▁▁▁
wandb: validation_loss_databricks-dolly-15k █▅▄▃▂▂▂▁▁▁
wandb:               validation_step_timing ▂██▂▂▆▃█▂██▂▂▆▇█▂██▂█▆▇█▂█▁▃█▆▇█▂▂▁▃█▆▇▇
wandb:
wandb: Run summary:
wandb:                     consumed_samples 6272.0
wandb:                                epoch 0
wandb:                          global_step 49.0
wandb:                            grad_norm 10.05424
wandb:                                   lr 0.0
wandb:                   reduced_train_loss 1.66673
wandb:                train_backward_timing 5e-05
wandb:                    train_step_timing 17.50282
wandb:                  trainer/global_step 49
wandb:                             val_loss 1.65022
wandb:                      validation_loss 1.65022
wandb: validation_loss_databricks-dolly-15k 1.65022
wandb:               validation_step_timing 9.01902
wandb:
wandb: You can sync this run to the cloud by running:
wandb: wandb sync /results/wandb/offline-run-20230714_032640-iu65oacs
wandb: Find logs at: /results/wandb/offline-run-20230714_032640-iu65oacs/logs

Step 5: Run evaluation

Run evaluation using megatron_gpt_generate.py. First, set the appropriate model checkpoint path, test file path, batch sizes, number of tokens, etc. Then, run evaluation on the test file.

PATH_TO_TRAINED_MODEL=/results/checkpoints/megatron_gpt_peft_none_tuning.nemo
TEST_DS="[YOUR PATH TO test.jsonl]"
python /opt/NeMo/examples/nlp/language_modeling/tuning/megatron_gpt_generate.py \
    model.restore_from_path=${PATH_TO_TRAINED_MODEL} \
    trainer.devices=8 \
    model.micro_batch_size=2 \
    model.global_batch_size=16 \
    model.data.test_ds.file_names=${TEST_DS} \
    model.data.test_ds.names=['dolly-15k_test'] \
    model.data.test_ds.global_batch_size=16 \
    model.data.test_ds.micro_batch_size=2 \
    model.data.test_ds.tokens_to_generate=20 \
    model.tensor_model_parallel_size=1 \
    model.pipeline_model_parallel_size=1 \
    inference.greedy=True \
    model.data.test_ds.output_file_path_prefix=/results/sft_results \
    model.data.test_ds.write_predictions_to_file=True

The following shows a sample output:

tail -n 4 sft_results.jsonl

{"sentence": "What is Azure HDInsight? Azure HDInsight is a cloud service that provides a high-performance, scalable, and cost-effective way to run Apache Hadoop on the"}
{"sentence": "What is carnitine? Carnitine is a fatty acid that is found in the body. It is used to produce energy in the mitochondria of the cells. Carnit"}
{"sentence": "List some TV shows that Canadian actor William B. Davis has been in."}
{"sentence": "Identify which instrument is string or percussion: Handbell, Dobro, Drum"}

This is only a sample output based on a toy SFT example and your output may vary. The performance can be further improved by fine-tuning the model for more steps.