nat.data_models.optimizer#
Classes#
Parameters used by the workflow optimizer to define a metric to optimize. |
|
str(object='') -> str |
|
Configuration for numeric/enum optimization (Optuna). |
|
Configuration for prompt optimization using a Genetic Algorithm. |
|
Parameters used by the workflow optimizer. |
|
Parameters used for an Optimizer R=run |
Module Contents#
- class OptimizerMetric(/, **data: Any)#
Bases:
pydantic.BaseModelParameters used by the workflow optimizer to define a metric to optimize.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.
- class SamplerType#
-
str(object=’’) -> str str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to ‘utf-8’. errors defaults to ‘strict’.
Initialize self. See help(type(self)) for accurate signature.
- BAYESIAN = 'bayesian'#
- GRID = 'grid'#
- class NumericOptimizationConfig(/, **data: Any)#
Bases:
pydantic.BaseModelConfiguration for numeric/enum optimization (Optuna).
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.- sampler: SamplerType | None = None#
- class PromptGAOptimizationConfig(/, **data: Any)#
Bases:
pydantic.BaseModelConfiguration for prompt optimization using a Genetic Algorithm.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.
- class OptimizerConfig(/, **data: Any)#
Bases:
pydantic.BaseModelParameters used by the workflow optimizer.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.- output_path: pathlib.Path | None = None#
- eval_metrics: dict[str, OptimizerMetric] | None = None#
- numeric: NumericOptimizationConfig#
- prompt: PromptGAOptimizationConfig#
- class OptimizerRunConfig(/, **data: Any)#
Bases:
pydantic.BaseModelParameters used for an Optimizer R=run
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.- config_file: pathlib.Path | pydantic.BaseModel#
- dataset: str | pathlib.Path | None#