Source code for nemo_automodel.datasets.llm.mock

# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random

from datasets import Dataset, Features, Sequence, Value


[docs] def make_vocab(vocab_size:int=100): """ Build a trivial vocab; index 0=<pad>, 1=<eos>, rest = tok_i. """ vocab = {"<pad>": 0, "<eos>": 1} for i in range(2, vocab_size): vocab[f"tok_{i}"] = i return vocab
[docs] def gen_sentence_ids(vocab, mean_len:float, std_len:float, max_len:int): """ Sentence generator with Gaussian length control. """ words = list(vocab.values())[2:] # exclude <pad>, <eos> L = max(1, min(max_len, int(random.gauss(mean_len, std_len)))) return random.choices(words, k=L) + [vocab["<eos>"]]
[docs] def build_unpacked_dataset( *, num_sentences: int = 10, mean_len: float = 20.0, std_len: float = 6.0, vocab_size: int = 100, max_sentence_len: int = 64, seed: int = 0, ): """ Build a dataset where each example is one sentence (variable length). Returns: - a HuggingFace Dataset with fields: input_ids: Sequence(int64) attention_mask:Sequence(int8) labels: Sequence(int64) position_ids: Sequence(int64) """ random.seed(seed) vocab = make_vocab(vocab_size) eos_id = vocab["<eos>"] examples = [] for _ in range(num_sentences): sent = gen_sentence_ids(vocab, mean_len, std_len, max_sentence_len) # build position_ids just like flush_block would pos_ids = [] pos = 0 for tid in sent: pos_ids.append(pos) pos = 0 if tid == eos_id else pos + 1 examples.append({ "input_ids": sent, "attention_mask": [1] * len(sent), "labels": sent.copy(), "position_ids": pos_ids, }) features = Features({ "input_ids": Sequence(Value("int64")), "attention_mask": Sequence(Value("int8")), "labels": Sequence(Value("int64")), "position_ids": Sequence(Value("int64")), }) ds = Dataset.from_list(examples, features=features) return ds
if __name__ == "__main__": ds = build_unpacked_dataset( num_sentences = 5, mean_len = 12.0, std_len = 3.0, vocab_size = 50, max_sentence_len= 20, ) print(ds) # Show lengths of each field for the first example print({k: len(v) for k, v in ds[0].items()}) print("ds[0]:", ds[0])