Source code for nemo_automodel.utils.model_utils

# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging

import torch.nn as nn

from nemo_automodel.utils.dist_utils import get_rank_safe


logger = logging.getLogger(__name__)






[docs] def _freeze_module_by_attribute_and_patterns(model, attribute_name, name_patterns): """Helper function to freeze parameters by attribute name and name patterns. Args: model: The model to apply freezing to. attribute_name: Name of the model attribute to freeze (e.g., 'vision_tower'). name_patterns: List of patterns to match in module names. """ # Freeze by attribute name if hasattr(model, attribute_name): for param in getattr(model, attribute_name).parameters(): param.requires_grad = False # Freeze by name patterns for name, module in model.named_modules(): if any(pattern in name.lower() for pattern in name_patterns): for param in module.parameters(): param.requires_grad = False
[docs] def apply_parameter_freezing(model, freeze_config): """Apply parameter freezing based on configuration. Args: model: The model to apply freezing to. freeze_config: Configuration dict specifying what to freeze. freeze_config can contain: - freeze_embeddings: bool (default True) - freeze_vision_tower: bool (default False) - freeze_language_model: bool (default False) """ freeze_embeddings = freeze_config.get("freeze_embeddings", True) freeze_vision_tower = freeze_config.get("freeze_vision_tower", True) freeze_audio_tower = freeze_config.get("freeze_audio_tower", False) freeze_language_model = freeze_config.get("freeze_language_model", False) # Freeze embeddings if freeze_embeddings: for m in model.modules(): if isinstance(m, nn.Embedding): m.weight.requires_grad = False # Freeze vision tower if freeze_vision_tower: _freeze_module_by_attribute_and_patterns( model, "vision_tower", ["vision", "visual", "image_encoder"] ) # Freeze audio tower if freeze_audio_tower: _freeze_module_by_attribute_and_patterns( model, "audio_tower", ["audio", "audio_encoder"] ) # Freeze language model backbone if freeze_language_model: _freeze_module_by_attribute_and_patterns( model, "language_model", ["language", "text", "llm"] )