nemo_automodel.datasets.vlm.utils
#
Module Contents#
Functions#
Returns list of tokens to mask in labels. |
|
Convert an ordered JSON object into a token sequence. |
|
Process a batch of texts and optionally images. |
Data#
API#
- nemo_automodel.datasets.vlm.utils.QWEN_TOKENS#
[β<|im_start|>β, β<|im_end|>β, β<|vision_start|>β, β<|vision_end|>β, β<|vision_pad|>β, β<|image_pad|β¦
- nemo_automodel.datasets.vlm.utils.LLAVA_TOKENS#
[β
β, β β]
- nemo_automodel.datasets.vlm.utils.LLAMA_TOKENS#
[β<|begin_of_text|>β, β<|end_of_text|>β, β<|finetune_right_pad_id|>β, β<|step_id|>β, β<|start_headerβ¦
- nemo_automodel.datasets.vlm.utils.GEMMA_TOKENS#
[β<image_soft_token>β]
- nemo_automodel.datasets.vlm.utils.PAD_TOKENS#
βset(β¦)β
- nemo_automodel.datasets.vlm.utils.extract_skipped_token_ids(processor)[source]#
Returns list of tokens to mask in labels.
Extracted from NeMoβs HFAutoModelForImageTextToText.extract_skipped_token_ids
- nemo_automodel.datasets.vlm.utils.json2token(obj, sort_json_key: bool = True)[source]#
Convert an ordered JSON object into a token sequence.
From NeMoβs automodel_datasets.py
- nemo_automodel.datasets.vlm.utils.process_text_batch(
- processor,
- texts: list[str],
- images: list | None = None,
Process a batch of texts and optionally images.
- Parameters:
processor β The processor to use for tokenization and image processing
texts β List of text strings to process
images β Optional list of images to process
- Returns:
Dict containing processed batch data