Source code for emerging_optimizers.scalar_optimizers.adam
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import torch
__all__ = [
"calculate_adam_update",
]
[docs]
@torch.compile # type: ignore[misc]
@torch.no_grad() # type: ignore[misc]
def calculate_adam_update(
grad: torch.Tensor,
exp_avg: torch.Tensor,
exp_avg_sq: torch.Tensor,
betas: Tuple[float, float],
correct_bias: bool,
use_nesterov: bool,
step: int,
eps: float,
) -> torch.Tensor:
"""Performs the Adam update.
This function performs the computation of 1 step of Adam.
The update rule is as follows:
.. math::
m_t = \\beta_1 m_{t-1} + (1 - \\beta_1) g_t \\\\
v_t = \\beta_2 v_{t-1} + (1 - \\beta_2) g_t^2 \\\\
\\hat{m}_t = \\frac{m_t}{1 - \\beta_1^t} \\\\
\\hat{v}_t = \\frac{v_t}{1 - \\beta_2^t} \\\\
\\text{update} = \\frac{\\hat{m}_t}{\\sqrt{\\hat{v}_t} + \\epsilon} \\\\
Args:
grad: The gradient tensor.
exp_avg: The accumulated first moment of the gradient.
exp_avg_sq: The accumulated second moment of the gradient.
betas: The EMA beta coefficients for the Adam update.
correct_bias: Whether to correct the bias of the Adam update.
use_nesterov: Whether to use nesterov momentum.
step: The current step of the optimizer, used to compute the bias correction terms.
eps: The epsilon for the Adam second moment update.
Returns:
The Adam-update.
"""
beta1, beta2 = betas
# Decay the first and second moment running average coefficient
exp_avg.lerp_(grad, 1 - beta1)
exp_avg_sq.lerp_(grad.square(), 1 - beta2)
# step size correction for optimizer states EMA
bias_correction1 = 1.0
bias_correction2 = 1.0
if correct_bias:
# step size correction for ADAM moments EMA
bias_correction1 = 1.0 - beta1 ** (step)
bias_correction2 = 1.0 - beta2 ** (step)
if use_nesterov:
# Apply nesterov momentum correction, optionally with bias correction
bias_correction_nesterov = (1 - beta1 ** (step + 1)) if correct_bias else 1.0
momentum = beta1 * exp_avg / bias_correction_nesterov + (1 - beta1) * grad / bias_correction1
else:
# Use standard momentum, optionally with bias correction
momentum = exp_avg / bias_correction1
# construct the denominator of the inner ADAM optimizer
adam_second_moment = exp_avg_sq / bias_correction2
adam_second_moment = adam_second_moment.sqrt() + eps
return momentum / adam_second_moment