Source code for emerging_optimizers.scalar_optimizers.laprop
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import torch
__all__ = [
"calculate_laprop_update",
]
[docs]
@torch.compile # type: ignore[misc]
@torch.no_grad() # type: ignore[misc]
def calculate_laprop_update(
grad: torch.Tensor,
exp_avg: torch.Tensor,
exp_avg_sq: torch.Tensor,
correct_bias: bool,
betas: Tuple[float, float],
step: int,
eps: float,
) -> torch.Tensor:
"""Performs the LAProp/Normalized SGD with momentum update.
LAProp can be seen as RMSProp with a momentum term, or normalized SGD with momentum.
Based on https://github.com/Z-T-WANG/LaProp-Optimizer/blob/master/laprop.py
and https://arxiv.org/abs/2002.04839.
The update rule is as follows:
.. math::
v_t = \\beta_2 v_{t-1} + (1 - \\beta_2) g_t^2 \\\\
\\hat{v}_t = \\frac{v_t}{1 - \\beta_2^t} \\\\
g'_t = \\frac{g_t}{\\sqrt{\\hat{v}_t} + \\epsilon} \\\\
m_t = \\beta_1 m_{t-1} + (1 - \\beta_1) g'_t \\\\
\\hat{m}_t = \\frac{m_t}{1 - \\beta_1^t} \\\\
\\text{update} = \\hat{m}_t
Args:
grad: The gradient tensor.
exp_avg: The exponential moving average of the gradient.
exp_avg_sq: The exponential moving average of the gradient squared.
correct_bias: Whether to correct the bias of the Adam update.
betas: The betas for the exponential moving average.
step: The current step.
eps: The epsilon for the second moment update.
Returns:
The LAProp update.
"""
beta1, beta2 = betas
# Decay the second moment running average coefficient
exp_avg_sq.lerp_(grad.square(), 1 - beta2)
# step size correction for optimizer states EMA
bias_correction1 = 1.0
bias_correction2 = 1.0
if correct_bias:
# step size correction for ADAM moments EMA
bias_correction1 = 1.0 - beta1 ** (step)
bias_correction2 = 1.0 - beta2 ** (step)
# construct the denominator of the inner ADAM optimizer
second_moment = exp_avg_sq / bias_correction2
second_moment = second_moment.sqrt() + eps
normalized_grad = grad / second_moment
# update the exponential moving average of the gradient
exp_avg.lerp_(normalized_grad, 1 - beta1)
# return the LAProp update
return exp_avg / bias_correction1