Source code for emerging_optimizers.scalar_optimizers.lion

# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional

import torch


__all__ = [
    "calculate_lion_update",
]


[docs] @torch.compile # type: ignore[misc] @torch.no_grad() # type: ignore[misc] def calculate_lion_update( grad: torch.Tensor, exp_avg: torch.Tensor, momentum_beta: float, momentum_beta2: Optional[float] = None, ) -> torch.Tensor: """Performs the Lion update. This function performs the computation of 1 step of Lion update. The update rule is as follows: .. math:: \\text{update} = \\text{sign}(\\beta_1 m_{t-1} + (1 - \\beta_1) g_t) \\\\ m_t = \\beta_2 m_{t-1} + (1 - \\beta_2) g_t Args: grad: The gradient tensor. exp_avg: The accumulated first moment of the gradient. momentum_beta: The EMA beta coefficients for the momentum update (beta1 in Lion). momentum_beta2: The second EMA beta coefficient for Lion momentum update. Returns: The Lion update. """ # Lion update: interpolate before sign, update momentum after if momentum_beta2 is None: momentum_beta2 = momentum_beta # Compute update using interpolation (like Lion's beta1) update_momentum = momentum_beta * exp_avg + (1 - momentum_beta) * grad # Update the momentum state (Lion's beta2) exp_avg.lerp_(grad, 1 - momentum_beta2) # Return signed update (no shape scaling for Lion) return torch.sign(update_momentum)