Source code for emerging_optimizers.scalar_optimizers.signum

# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch


__all__ = [
    "calculate_signum_update",
]


[docs] @torch.compile # type: ignore[misc] @torch.no_grad() # type: ignore[misc] def calculate_signum_update( grad: torch.Tensor, exp_avg: torch.Tensor, momentum_beta: float, correct_bias: bool, use_nesterov: bool, step: int, use_shape_scaling: bool = False, ) -> torch.Tensor: """Performs the sign-SGD or Signum update. This function performs the computation of 1 step of sign-SGD or Signum. Based on https://arxiv.org/abs/1802.04434. When using signSGD with shape scaling, general recommendation is to scale :math:`lr = \\text{adam lr} \\cdot \\text{network width} \\cdot \\frac{2}{\\text{rows} + \\text{cols}}`. This is for learning rate transfer with width scaling (https://arxiv.org/abs/2506.07254v1). The update rule is as follows: .. math:: m_t = \\beta m_{t-1} + (1 - \\beta) g_t \\\\ \\hat{m}_t = \\frac{m_t}{1 - \\beta^t} \\\\ \\text{update} = \\text{sign}(\\hat{m}_t) Args: grad: The gradient tensor. exp_avg: The accumulated first moment of the gradient. momentum_beta: The EMA beta coefficients for the momentum update. correct_bias: Whether to correct the bias of the momentum update. use_nesterov: Whether to use nesterov momentum. step: The current step of the optimizer, used to compute the bias correction terms. use_shape_scaling: Whether to scale the update by the shape of the tensor. Returns: The sign-SGD/Signum update. """ # Standard SignSGD: update momentum first, then compute signed update # Decay the momentum with exponential moving average exp_avg.lerp_(grad, 1 - momentum_beta) if correct_bias: bias_correction1 = 1 - momentum_beta**step else: bias_correction1 = 1 if use_nesterov: # Apply nesterov momentum correction, optionally with bias correction bias_correction_nesterov = (1 - momentum_beta ** (step + 1)) if correct_bias else 1.0 momentum = momentum_beta * exp_avg / bias_correction_nesterov + (1 - momentum_beta) * grad / bias_correction1 else: # Use standard momentum, optionally with bias correction momentum = exp_avg / bias_correction1 # scale update by shape of tensor to ensure consistent update size: https://arxiv.org/abs/2506.07254 if use_shape_scaling: m, n = grad.shape return torch.sign(momentum) * (2 / (m + n)) else: return torch.sign(momentum)