emerging_optimizers.riemannian_optimizers#
- class emerging_optimizers.riemannian_optimizers.normalized_optimizer.ObliqueAdam(
- params,
- lr=0.001,
- betas=(0.9, 0.99),
- weight_decay=0.0,
- dim=0,
- eps=1e-08,
- correct_bias=True,
Adam optimizer for row- or column-normalized 2D parameters on oblique manifolds.
This optimizer adapts an Adam-like algorithm to work on oblique manifolds, where parameters are constrained to have unit-norm rows or columns. It combines adaptive momentum estimation with Riemannian gradient computation and manifold retraction.
- Parameters:
- class emerging_optimizers.riemannian_optimizers.normalized_optimizer.ObliqueSGD(
- params,
- lr=0.001,
- momentum=0.9,
- weight_decay=0.0,
- dim=0,
- eps=1e-08,
SGD optimizer for row- or column-normalized 2D parameters on oblique manifolds.
This optimizer performs SGD on oblique manifolds, where parameters are constrained to have unit-norm rows or columns. It implements Riemannian SGD with manifold-aware gradient updates and retraction operations.
References
An Introduction to Optimization on Smooth Manifolds (Nicolas Boumal)
Jianlin Su: https://kexue.fm/archives/11196
Raman et al.: https://arxiv.org/abs/1909.06463
Franz Cesista: https://leloykun.github.io/ponder/steepest-descent-stiefel/#6-bonus-a-muon-like-optimizer-for-the-embedding-and-unembedding-layers
- Parameters: