Runtime and Execution Issues#

Solutions for problems that occur during evaluation execution, including configuration validation and launcher management.

Common Runtime Problems#

When evaluations fail during execution, start with these diagnostic steps:

# Validate configuration before running
nv-eval run --config-dir examples --config-name local_llama_3_1_8b_instruct --dry-run

# Test minimal configuration
python -c "
from nemo_evaluator import EvaluationConfig, ConfigParams
config = EvaluationConfig(type='mmlu', params=ConfigParams(limit_samples=1))
print('Configuration valid')
"
import requests

# Test model endpoint connectivity
response = requests.post(
    "http://0.0.0.0:8080/v1/completions/",
    json={"prompt": "test", "model": "megatron_model", "max_tokens": 1}
)
print(f"Endpoint status: {response.status_code}")
# Monitor system resources during evaluation
nvidia-smi -l 1  # GPU usage
htop            # CPU/Memory usage

Runtime Categories#

Choose the category that matches your runtime issue:

Configuration Issues

Config parameter validation, tokenizer setup, and endpoint configuration problems.

Configuration Issues
Launcher Issues

NeMo Evaluator Launcher-specific problems including job management and multi-backend execution.

Launcher Issues