Installation Guide#
NeMo Evaluator provides multiple installation paths depending on your needs. Choose the approach that best fits your use case.
Choose Your Installation Path#
Installation Path |
Best For |
Key Features |
---|---|---|
NeMo Evaluator Launcher (Recommended) |
Most users who want unified CLI and orchestration across backends |
• Unified CLI for 100+ benchmarks |
NeMo Evaluator Core |
Developers building custom evaluation pipelines |
• Programmatic Python API |
Container Direct |
Users who prefer container-based workflows |
• Pre-built NGC evaluation containers |
Prerequisites#
System Requirements#
Python 3.10 or higher (supports 3.10, 3.11, 3.12, and 3.13)
CUDA-compatible GPU(s) (tested on RTX A6000, A100, H100)
Docker (for container-based workflows)
Recommended Environment#
Python 3.12
CUDA 12.9
Ubuntu 24.04
Installation Methods#
Install NeMo Evaluator Launcher for unified CLI and orchestration:
# Create and activate virtual environment
python3 -m venv nemo-eval-env
source nemo-eval-env/bin/activate
# Install launcher with all exporters (recommended)
pip install nemo-evaluator-launcher[all]
Quick verification:
# Verify installation
nemo-evaluator-launcher --version
# Test basic functionality - list available tasks
nemo-evaluator-launcher ls tasks | head -10
Install NeMo Evaluator Core for programmatic access:
# Create and activate virtual environment
python3 -m venv nemo-eval-env
source nemo-eval-env/bin/activate
# Install core library with dependencies
pip install nemo-evaluator
# Install evaluation frameworks
pip install nvidia-simple-evals nvidia-lm-eval
Quick verification:
# Verify installation
nemo-evaluator ls | head && echo '✓ CLI available' || exit 1
python3 -c "from nemo_evaluator.api import evaluate; print('✓ Python API available')" || exit 1
echo "✓ NeMo Evaluator Core installed successfully"
Use pre-built evaluation containers from NVIDIA NGC for guaranteed reproducibility:
# Pull evaluation containers (no local installation needed)
docker pull nvcr.io/nvidia/eval-factory/simple-evals:25.09
docker pull nvcr.io/nvidia/eval-factory/lm-evaluation-harness:25.09
docker pull nvcr.io/nvidia/eval-factory/bigcode-evaluation-harness:25.09
# Run container interactively
docker run --rm -it \
-v $(pwd)/results:/workspace/results \
nvcr.io/nvidia/eval-factory/simple-evals:25.09 bash
# Or run evaluation directly
docker run --rm \
-v $(pwd)/results:/workspace/results \
-e NGC_API_KEY=nvapi-xxx \
nvcr.io/nvidia/eval-factory/simple-evals:25.09 \
nemo-evaluator run_eval \
--eval_type mmlu_pro \
--model_url https://integrate.api.nvidia.com/v1/chat/completions \
--model_id meta/llama-3.1-8b-instruct \
--api_key_name NGC_API_KEY \
--output_dir /workspace/results
Quick verification:
# Test container access
docker run --rm nvcr.io/nvidia/eval-factory/simple-evals:25.09 \
nemo-evaluator ls | head -5
echo " Container access verified"
Clone the Repository#
Clone the NeMo Evaluator repository to get easy access to our ready-to-use examples:
git clone https://github.com/NVIDIA-NeMo/Evaluator.git
Run the example:
cd Evaluator/
export NGC_API_KEY=nvapi-... # API Key with access to build.nvidia.com
nemo-evaluator-launcher run \
--config-dir packages/nemo-evaluator-launcher/examples \
--config-name local_nvidia_nemotron_nano_9b_v2 \
--override execution.output_dir=nemotron-eval
Add Evaluation Harnesses to Your Environment#
Build your custom evaluation pipeline by adding evaluation harness packages to your environment of choice:
pip install nemo-evaluator <evaluation-package>
Available PyPI Packages#
Package Name |
PyPI URL |
---|---|
nvidia-bfcl |
|
nvidia-bigcode-eval |
|
nvidia-compute-eval |
|
nvidia-eval-factory-garak |
|
nvidia-genai-perf-eval |
|
nvidia-crfm-helm |
|
nvidia-hle |
|
nvidia-ifbench |
|
nvidia-livecodebench |
|
nvidia-lm-eval |
|
nvidia-mmath |
|
nvidia-mtbench-evaluator |
|
nvidia-eval-factory-nemo-skills |
|
nvidia-safety-harness |
|
nvidia-scicode |
|
nvidia-simple-evals |
|
nvidia-tooltalk |
|
nvidia-vlmeval |
Note
Evaluation harnessess that require complex environments are not available as packages but only as containers.