Embedding Search Providers
NeMo Guardrails utilizes embedding search, also known as vector databases, for implementing the guardrails process and for the knowledge base functionality.
To enhance the efficiency of the embedding search process, NeMo Guardrails can employ a caching mechanism for embeddings. This mechanism stores computed embeddings, thereby reducing the need for repeated computations and accelerating the search process. By default, the caching mechanism is disabled.
The default embedding search uses FastEmbed for computing the embeddings (the all-MiniLM-L6-v2
model) and Annoy for performing the search. The default configuration is as follows:
core:
embedding_search_provider:
name: default
parameters:
embedding_engine: FastEmbed
embedding_model: all-MiniLM-L6-v2
use_batching: False
max_batch_size: 10
max_batch_hold: 0.01
cache:
enabled: False
key_generator: md5
store: filesystem
store_config: {}
knowledge_base:
embedding_search_provider:
name: default
parameters:
embedding_engine: FastEmbed
embedding_model: all-MiniLM-L6-v2
use_batching: False
max_batch_size: 10
max_batch_hold: 0.01
cache:
enabled: False
key_generator: md5
store: filesystem
store_config: {}
The default embedding search provider can also work with OpenAI embeddings:
core:
embedding_search_provider:
name: default
parameters:
embedding_engine: openai
embedding_model: text-embedding-ada-002
cache:
enabled: False
key_generator: md5
store: filesystem
store_config: {}
knowledge_base:
embedding_search_provider:
name: default
parameters:
embedding_engine: openai
embedding_model: text-embedding-ada-002
cache:
enabled: False
key_generator: md5
store: filesystem
store_config: {}
The default implementation is also designed to support asynchronous execution of the embedding computation process, thereby enhancing the efficiency of the search functionality.
The cache
configuration is optional. If enabled, it uses the specified key_generator
and store
to cache the embeddings. The store_config
can be used to provide additional configuration options required for the store.
The default cache
configuration uses the md5
key generator and the filesystem
store. The cache is disabled by default.
Batch Implementation
The default embedding provider includes a batch processing feature designed to optimize the embedding generation process. This feature is designed to initiate the embedding generation process after a predefined latency of 10 milliseconds.
Custom Embedding Search Providers
You can implement your own custom embedding search provider by subclassing EmbeddingsIndex
. For quick reference, the complete interface is included below:
class EmbeddingsIndex:
"""The embeddings index is responsible for computing and searching a set of embeddings."""
@property
def embedding_size(self):
raise NotImplementedError
@property
def cache_config(self):
raise NotImplementedError
async def _get_embeddings(self, texts: List[str]):
raise NotImplementedError
async def add_item(self, item: IndexItem):
"""Adds a new item to the index."""
raise NotImplementedError()
async def add_items(self, items: List[IndexItem]):
"""Adds multiple items to the index."""
raise NotImplementedError()
async def build(self):
"""Build the index, after the items are added.
This is optional, might not be needed for all implementations."""
pass
async def search(self, text: str, max_results: int) -> List[IndexItem]:
"""Searches the index for the closest matches to the provided text."""
raise NotImplementedError()
@dataclass
class IndexItem:
text: str
meta: Dict = field(default_factory=dict)
In order to use your custom embedding search provider, you have to register it in your config.py
:
def init(app: LLMRails):
app.register_embedding_search_provider("simple", SimpleEmbeddingSearchProvider)
For a complete example, check out this test configuration.