Source code for nv_ingest_client.client.interface

# SPDX-FileCopyrightText: Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES.
# All rights reserved.
# SPDX-License-Identifier: Apache-2.0

# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

import glob
import logging
import os
import shutil
import tempfile
from concurrent.futures import Future
from functools import wraps
from typing import Any
from typing import Dict
from typing import List
from typing import Optional
from typing import Union

import fsspec
from nv_ingest_client.client.client import NvIngestClient
from nv_ingest_client.primitives import BatchJobSpec
from nv_ingest_client.primitives.jobs import JobStateEnum
from nv_ingest_client.primitives.tasks import CaptionTask
from nv_ingest_client.primitives.tasks import DedupTask
from nv_ingest_client.primitives.tasks import EmbedTask
from nv_ingest_client.primitives.tasks import ExtractTask
from nv_ingest_client.primitives.tasks import FilterTask
from nv_ingest_client.primitives.tasks import SplitTask
from nv_ingest_client.primitives.tasks import StoreEmbedTask
from nv_ingest_client.primitives.tasks import StoreTask
from nv_ingest_client.util.milvus import MilvusOperator
from nv_ingest_client.util.util import filter_function_kwargs
from tqdm import tqdm

logger = logging.getLogger(__name__)

DEFAULT_JOB_QUEUE_ID = "morpheus_task_queue"


[docs] def ensure_job_specs(func): """Decorator to ensure _job_specs is initialized before calling task methods.""" @wraps(func) def wrapper(self, *args, **kwargs): if self._job_specs is None: raise ValueError( "Job specifications are not initialized because some files are " "remote or not accesible locally. Ensure file paths are correct, " "and call `.load()` first if files are remote." ) return func(self, *args, **kwargs) return wrapper
[docs] class Ingestor: """ Ingestor provides an interface for building, managing, and running data ingestion jobs through NvIngestClient, allowing for chainable task additions and job state tracking. Parameters ---------- documents : List[str] List of document paths to be processed. client : Optional[NvIngestClient], optional An instance of NvIngestClient. If not provided, a client is created. job_queue_id : str, optional The ID of the job queue for job submission, default is "morpheus_task_queue". """ def __init__( self, documents: Optional[List[str]] = None, client: Optional[NvIngestClient] = None, job_queue_id: str = DEFAULT_JOB_QUEUE_ID, **kwargs, ): self._documents = documents or [] self._client = client self._job_queue_id = job_queue_id self._vdb_bulk_upload = None if self._client is None: client_kwargs = filter_function_kwargs(NvIngestClient, **kwargs) self._create_client(**client_kwargs) self._all_local = False # Track whether all files are confirmed as local self._job_specs = None self._job_ids = None self._job_states = None self._job_id_to_source_id = {} if self._check_files_local(): self._job_specs = BatchJobSpec(self._documents) self._all_local = True def _create_client(self, **kwargs) -> None: """ Creates an instance of NvIngestClient if `_client` is not set. Raises ------ ValueError If `_client` already exists. """ if self._client is not None: raise ValueError("self._client already exists.") self._client = NvIngestClient(**kwargs) def _check_files_local(self) -> bool: """ Check if all specified document files are local and exist. Returns ------- bool Returns True if all files in `_documents` are local and accessible; False if any file is missing or inaccessible. """ if not self._documents: return False for pattern in self._documents: matched = glob.glob(pattern, recursive=True) if not matched: return False for file_path in matched: if not os.path.exists(file_path): return False return True
[docs] def files(self, documents: Union[str, List[str]]) -> "Ingestor": """ Add documents to the manager for processing and check if they are all local. Parameters ---------- documents : List[str] A list of document paths or patterns to be processed. Returns ------- Ingestor Returns self for chaining. If all specified documents are local, `_job_specs` is initialized, and `_all_local` is set to True. """ if isinstance(documents, str): documents = [documents] if not documents: return self self._documents.extend(documents) self._all_local = False if self._check_files_local(): self._job_specs = BatchJobSpec(self._documents) self._all_local = True return self
[docs] def load(self, **kwargs) -> "Ingestor": """ Ensure all document files are accessible locally, downloading if necessary. For each document in `_documents`, checks if the file exists locally. If not, attempts to download the file to a temporary directory using `fsspec`. Updates `_documents` with paths to local copies, initializes `_job_specs`, and sets `_all_local` to True upon successful loading. Parameters ---------- kwargs : dict Additional keyword arguments for remote file access via `fsspec`. Returns ------- Ingestor Returns self for chaining after ensuring all files are accessible locally. """ if self._all_local: return self temp_dir = tempfile.mkdtemp() local_files = [] for pattern_or_path in self._documents: files_local = glob.glob(pattern_or_path, recursive=True) if files_local: for local_path in files_local: local_files.append(local_path) else: with fsspec.open(pattern_or_path, **kwargs) as f: original_name = os.path.basename(f.path) local_path = os.path.join(temp_dir, original_name) with open(local_path, "wb") as local_file: shutil.copyfileobj(f, local_file) local_files.append(local_path) self._documents = local_files self._job_specs = BatchJobSpec(self._documents) self._all_local = True return self
[docs] def ingest(self, show_progress: bool = False, return_failures=False, **kwargs: Any) -> List[Dict[str, Any]]: """ Synchronously submits jobs to the NvIngestClient and fetches the results. Parameters ---------- kwargs : dict Additional parameters for `submit_job` and `fetch_job_result` methods of NvIngestClient. Optionally, include 'show_progress' (bool) to display a progress bar while fetching results. Returns ------- List[Dict] Result of each job after execution. """ self._prepare_ingest_run() self._job_ids = self._client.add_job(self._job_specs) submit_kwargs = filter_function_kwargs(self._client.submit_job, **kwargs) self._job_states = self._client.submit_job(self._job_ids, self._job_queue_id, **submit_kwargs) # Pop the show_progress flag from kwargs; default to False if not provided. fetch_kwargs = filter_function_kwargs(self._client.fetch_job_result, **kwargs) # If progress display is enabled, create a tqdm progress bar and set a callback to update it. if show_progress: pbar = tqdm(total=len(self._job_ids), desc="Processing Documents: ", unit="doc") def progress_callback(result: Dict, job_id: str) -> None: _, _ = result, job_id pbar.update(1) fetch_kwargs["completion_callback"] = progress_callback if return_failures: result, failure = self._client.fetch_job_result( self._job_ids, return_failures=return_failures, **fetch_kwargs ) else: result = self._client.fetch_job_result(self._job_ids, return_failures=return_failures, **fetch_kwargs) if show_progress and pbar: pbar.close() if self._vdb_bulk_upload: self._vdb_bulk_upload.run(result) # only upload as part of jobs user specified this action self._vdb_bulk_upload = None if return_failures: return result, failure return result
[docs] def ingest_async(self, **kwargs: Any) -> Future: """ Asynchronously submits jobs and returns a single future that completes when all jobs have finished. Parameters ---------- kwargs : dict Additional parameters for the `submit_job_async` method. Returns ------- Future A future that completes when all submitted jobs have reached a terminal state. """ self._prepare_ingest_run() self._job_ids = self._client.add_job(self._job_specs) future_to_job_id = self._client.submit_job_async(self._job_ids, self._job_queue_id, **kwargs) self._job_states = {job_id: self._client._get_and_check_job_state(job_id) for job_id in self._job_ids} combined_future = Future() submitted_futures = set(future_to_job_id.keys()) completed_futures = set() future_results = [] def _done_callback(future): job_id = future_to_job_id[future] job_state = self._job_states[job_id] try: result = self._client.fetch_job_result(job_id) if job_state.state != JobStateEnum.COMPLETED: job_state.state = JobStateEnum.COMPLETED except Exception: result = None if job_state.state != JobStateEnum.FAILED: job_state.state = JobStateEnum.FAILED completed_futures.add(future) future_results.extend(result) if completed_futures == submitted_futures: combined_future.set_result(future_results) for future in future_to_job_id: future.add_done_callback(_done_callback) if self._vdb_bulk_upload: self._vdb_bulk_upload.run(combined_future.result()) # only upload as part of jobs user specified this action self._vdb_bulk_upload = None return combined_future
@ensure_job_specs def _prepare_ingest_run(self): """ Prepares the ingest run by ensuring tasks are added to the batch job specification. If no tasks are specified in `_job_specs`, this method invokes `all_tasks()` to add a default set of tasks to the job specification. """ if (not self._job_specs.tasks) or all(not tasks for tasks in self._job_specs.tasks.values()): self.all_tasks()
[docs] def all_tasks(self) -> "Ingestor": """ Adds a default set of tasks to the batch job specification. The default tasks include extracting text, tables, charts, images, deduplication, filtering, splitting, and embedding tasks. Returns ------- Ingestor Returns self for chaining. """ # fmt: off self.extract(extract_text=True, extract_tables=True, extract_charts=True, extract_images=True) \ .dedup() \ .filter() \ .split() \ .embed() \ .store_embed() # .store() \ # fmt: on return self
[docs] @ensure_job_specs def dedup(self, **kwargs: Any) -> "Ingestor": """ Adds a DedupTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the DedupTask. Returns ------- Ingestor Returns self for chaining. """ dedup_task = DedupTask(**kwargs) self._job_specs.add_task(dedup_task) return self
[docs] @ensure_job_specs def embed(self, **kwargs: Any) -> "Ingestor": """ Adds an EmbedTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the EmbedTask. Returns ------- Ingestor Returns self for chaining. """ embed_task = EmbedTask(**kwargs) self._job_specs.add_task(embed_task) return self
[docs] @ensure_job_specs def extract(self, **kwargs: Any) -> "Ingestor": """ Adds an ExtractTask for each document type to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the ExtractTask. Returns ------- Ingestor Returns self for chaining. """ extract_tables = kwargs.pop("extract_tables", True) extract_charts = kwargs.pop("extract_charts", True) # Defaulting to False since enabling infographic extraction reduces throughput. # Users have to set to True if infographic extraction is required. extract_infographics = kwargs.pop("extract_infographics", False) for file_type in self._job_specs.file_types: # Let user override document_type if user explicitly sets document_type. if "document_type" in kwargs: document_type = kwargs.pop("document_type") if document_type != file_type: logger.warning( f"User-specified document_type '{document_type}' overrides the inferred type '{file_type}'.", ) else: document_type = file_type extract_task = ExtractTask( document_type, extract_tables=extract_tables, extract_charts=extract_charts, extract_infographics=extract_infographics, **kwargs, ) self._job_specs.add_task(extract_task, document_type=document_type) return self
[docs] @ensure_job_specs def filter(self, **kwargs: Any) -> "Ingestor": """ Adds a FilterTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the FilterTask. Returns ------- Ingestor Returns self for chaining. """ filter_task = FilterTask(**kwargs) self._job_specs.add_task(filter_task) return self
[docs] @ensure_job_specs def split(self, **kwargs: Any) -> "Ingestor": """ Adds a SplitTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the SplitTask. Returns ------- Ingestor Returns self for chaining. """ extract_task = SplitTask(**kwargs) self._job_specs.add_task(extract_task) return self
[docs] @ensure_job_specs def store(self, **kwargs: Any) -> "Ingestor": """ Adds a StoreTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the StoreTask. Returns ------- Ingestor Returns self for chaining. """ store_task = StoreTask(**kwargs) self._job_specs.add_task(store_task) return self
[docs] @ensure_job_specs def store_embed(self, **kwargs: Any) -> "Ingestor": """ Adds a StoreTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the StoreTask. Returns ------- Ingestor Returns self for chaining. """ store_task = StoreEmbedTask(**kwargs) self._job_specs.add_task(store_task) return self
[docs] def vdb_upload(self, **kwargs: Any) -> "Ingestor": """ Adds a VdbUploadTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the VdbUploadTask. Returns ------- Ingestor Returns self for chaining. """ self._vdb_bulk_upload = MilvusOperator(**kwargs) return self
[docs] @ensure_job_specs def caption(self, **kwargs: Any) -> "Ingestor": """ Adds a CaptionTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the CaptionTask. Returns ------- Ingestor Returns self for chaining. """ caption_task = CaptionTask(**kwargs) self._job_specs.add_task(caption_task) return self
def _count_job_states(self, job_states: set[JobStateEnum]) -> int: """ Counts the jobs in specified states. Parameters ---------- job_states : set Set of JobStateEnum states to count. Returns ------- int Count of jobs in specified states. """ count = 0 for job_id, job_state in self._job_states.items(): if job_state.state in job_states: count += 1 return count
[docs] def completed_jobs(self) -> int: """ Counts the jobs that have completed successfully. Returns ------- int Number of jobs in the COMPLETED state. """ completed_job_states = {JobStateEnum.COMPLETED} return self._count_job_states(completed_job_states)
[docs] def failed_jobs(self) -> int: """ Counts the jobs that have failed. Returns ------- int Number of jobs in the FAILED state. """ failed_job_states = {JobStateEnum.FAILED} return self._count_job_states(failed_job_states)
[docs] def cancelled_jobs(self) -> int: """ Counts the jobs that have been cancelled. Returns ------- int Number of jobs in the CANCELLED state. """ cancelled_job_states = {JobStateEnum.CANCELLED} return self._count_job_states(cancelled_job_states)
[docs] def remaining_jobs(self) -> int: """ Counts the jobs that are not in a terminal state. Returns ------- int Number of jobs that are neither completed, failed, nor cancelled. """ terminal_jobs = self.completed_jobs() + self.failed_jobs() + self.cancelled_jobs() return len(self._job_states) - terminal_jobs