Source code for nv_ingest_client.client.interface

# SPDX-FileCopyrightText: Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES.
# All rights reserved.
# SPDX-License-Identifier: Apache-2.0

# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

import collections
import glob
import gzip
import json
import logging
import os
import shutil
import tempfile
import threading
from io import BytesIO
from concurrent.futures import Future
from concurrent.futures import ThreadPoolExecutor
from concurrent.futures import as_completed
from functools import wraps
from typing import Any
from typing import Callable
from typing import Dict
from typing import Iterator
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
from urllib.parse import urlparse

import fsspec
from nv_ingest_api.internal.enums.common import PipelinePhase
from nv_ingest_api.internal.schemas.meta.ingest_job_schema import IngestTaskCaptionSchema
from nv_ingest_api.internal.schemas.meta.ingest_job_schema import IngestTaskDedupSchema
from nv_ingest_api.internal.schemas.meta.ingest_job_schema import IngestTaskEmbedSchema
from nv_ingest_api.internal.schemas.meta.ingest_job_schema import IngestTaskExtractSchema
from nv_ingest_api.internal.schemas.meta.ingest_job_schema import IngestTaskFilterSchema
from nv_ingest_api.internal.schemas.meta.ingest_job_schema import IngestTaskSplitSchema
from nv_ingest_api.internal.schemas.meta.ingest_job_schema import IngestTaskStoreEmbedSchema
from nv_ingest_api.internal.schemas.meta.ingest_job_schema import IngestTaskStoreSchema
from nv_ingest_api.util.introspection.function_inspect import infer_udf_function_name
from nv_ingest_client.client.client import NvIngestClient
from nv_ingest_client.client.util.processing import get_valid_filename
from nv_ingest_client.client.util.processing import save_document_results_to_jsonl
from nv_ingest_client.primitives import BatchJobSpec
from nv_ingest_client.primitives.jobs import JobStateEnum
from nv_ingest_client.primitives.tasks import CaptionTask
from nv_ingest_client.primitives.tasks import DedupTask
from nv_ingest_client.primitives.tasks import EmbedTask
from nv_ingest_client.primitives.tasks import ExtractTask
from nv_ingest_client.primitives.tasks import FilterTask
from nv_ingest_client.primitives.tasks import SplitTask
from nv_ingest_client.primitives.tasks import StoreTask
from nv_ingest_client.primitives.tasks import StoreEmbedTask
from nv_ingest_client.primitives.tasks import UDFTask
from nv_ingest_client.util.file_processing.extract import EXTENSION_TO_DOCUMENT_TYPE
from nv_ingest_client.util.processing import check_schema
from nv_ingest_client.util.system import ensure_directory_with_permissions
from nv_ingest_client.util.util import filter_function_kwargs, apply_pdf_split_config_to_job_specs
from nv_ingest_client.util.vdb import VDB, get_vdb_op_cls
from tqdm import tqdm

logger = logging.getLogger(__name__)

DEFAULT_JOB_QUEUE_ID = "ingest_task_queue"


[docs] def get_max_filename_length(path="."): return os.pathconf(path, "PC_NAME_MAX")
[docs] def safe_filename(base_dir, filename, suffix=""): max_name = os.pathconf(base_dir, "PC_NAME_MAX") # Account for suffix (like ".jsonl") in the allowed length allowed = max_name - len(suffix) # If filename too long, truncate and append suffix if len(filename) > allowed: filename = filename[:allowed] return filename + suffix
[docs] def ensure_job_specs(func): """Decorator to ensure _job_specs is initialized before calling task methods.""" @wraps(func) def wrapper(self, *args, **kwargs): if self._job_specs is None: raise ValueError( "Job specifications are not initialized because some files are " "remote or not accesible locally. Ensure file paths are correct, " "and call `.load()` first if files are remote." ) return func(self, *args, **kwargs) return wrapper
[docs] class LazyLoadedList(collections.abc.Sequence): def __init__(self, filepath: str, expected_len: Optional[int] = None, compression: Optional[str] = None): self.filepath = filepath self._len: Optional[int] = expected_len # Store pre-calculated length self._offsets: Optional[List[int]] = None self.compression = compression if self._len == 0: self._offsets = [] self._open = gzip.open if self.compression == "gzip" else open def __iter__(self) -> Iterator[Any]: try: with self._open(self.filepath, "rt", encoding="utf-8") as f: for line in f: yield json.loads(line) except FileNotFoundError: logger.error(f"LazyLoadedList: File not found {self.filepath}") return iter([]) except json.JSONDecodeError as e: logger.error(f"LazyLoadedList: JSON decode error in {self.filepath} during iteration: {e}") raise def _build_index(self): if self._offsets is not None: return self._offsets = [] line_count = 0 try: with self._open(self.filepath, "rb") as f: while True: current_pos = f.tell() line = f.readline() if not line: # End of file break self._offsets.append(current_pos) line_count += 1 self._len = line_count except FileNotFoundError: logger.error(f"LazyLoadedList: File not found while building index: {self.filepath}") self._offsets = [] self._len = 0 except Exception as e: logger.error( f"LazyLoadedList: Error building index for {self.filepath}: {e}", exc_info=True, ) self._offsets = [] self._len = 0 def __len__(self) -> int: if self._len is not None: return self._len if self._offsets is not None: self._len = len(self._offsets) return self._len self._build_index() return self._len if self._len is not None else 0 def __getitem__(self, idx: int) -> Any: if not isinstance(idx, int): raise TypeError(f"List indices must be integers or slices, not {type(idx).__name__}") if self._offsets is None: self._build_index() if idx < 0: if self._len is None: self._build_index() if self._len == 0: raise IndexError("Index out of range for empty list") idx = self._len + idx if self._offsets is None or not (0 <= idx < len(self._offsets)): if self._offsets is None or self._len == 0: raise IndexError(f"Index {idx} out of range (list is likely empty or file error for {self.filepath})") raise IndexError(f"Index {idx} out of range for {self.filepath} (len: {len(self._offsets)})") try: with self._open(self.filepath, "rb") as f: f.seek(self._offsets[idx]) line_bytes = f.readline() return json.loads(line_bytes.decode("utf-8")) except FileNotFoundError: raise IndexError(f"File not found when accessing item at index {idx} from {self.filepath}") except json.JSONDecodeError as e: raise ValueError(f"Error decoding JSON at indexed line for index {idx} in {self.filepath}: {e}") from e except Exception as e: logger.error( f"Unexpected error in __getitem__ for index {idx} in {self.filepath}: {e}", exc_info=True, ) raise def __repr__(self): return ( f"<LazyLoadedList file='{os.path.basename(self.filepath)}', " f"len={self.__len__() if self._len is not None else '?'}>" )
[docs] def get_all_items(self) -> List[Any]: return list(self.__iter__())
[docs] class Ingestor: """ Ingestor provides an interface for building, managing, and running data ingestion jobs through NvIngestClient, allowing for chainable task additions and job state tracking. Parameters ---------- documents : List[str] List of document paths to be processed. client : Optional[NvIngestClient], optional An instance of NvIngestClient. If not provided, a client is created. job_queue_id : str, optional The ID of the job queue for job submission, default is "ingest_task_queue". """ def __init__( self, documents: Optional[List[str]] = None, client: Optional[NvIngestClient] = None, job_queue_id: str = DEFAULT_JOB_QUEUE_ID, **kwargs, ): self._documents = documents or [] self._buffers = [] self._client = client self._job_queue_id = job_queue_id self._vdb_bulk_upload = None self._purge_results_after_vdb_upload = True if self._client is None: client_kwargs = filter_function_kwargs(NvIngestClient, **kwargs) self._create_client(**client_kwargs) self._all_local = False # Track whether all files are confirmed as local self._job_specs = None self._job_ids = None self._job_states = None self._job_id_to_source_id = {} if self._check_files_local(): self._job_specs = BatchJobSpec(self._documents) self._all_local = True self._output_config = None self._created_temp_output_dir = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): if self._output_config and (self._output_config["cleanup"] is True): dir_to_cleanup = self._output_config["output_directory"] try: shutil.rmtree(dir_to_cleanup) except FileNotFoundError: logger.warning( f"Directory to be cleaned up not found (might have been removed already): {dir_to_cleanup}" ) except OSError as e: logger.error(f"Error removing {dir_to_cleanup}: {e}") def _create_client(self, **kwargs) -> None: """ Creates an instance of NvIngestClient if `_client` is not set. Raises ------ ValueError If `_client` already exists. """ if self._client is not None: raise ValueError("self._client already exists.") self._client = NvIngestClient(**kwargs) @staticmethod def _is_remote(pattern: str) -> bool: parsed = urlparse(pattern) return parsed.scheme in ("http", "https", "s3", "gs", "gcs", "ftp") @staticmethod def _is_glob(pattern: str) -> bool: # only treat '*' and '[' (and '?' when not remote) as glob chars wildcard = {"*", "["} if not Ingestor._is_remote(pattern): wildcard.add("?") return any(ch in pattern for ch in wildcard) def _check_files_local(self) -> bool: """ Check if all specified document files are local and exist. Returns ------- bool False immediately if any pattern is a remote URI. Local glob-patterns may match zero files (they’re skipped). Returns False if any explicit local path is missing or any matched file no longer exists. """ if not self._documents: return False for pattern in self._documents: # FAIL on any remote URI if self._is_remote(pattern): logger.error(f"Remote URI in local-check: {pattern}") return False # local glob: OK to match zero files if self._is_glob(pattern): matches = glob.glob(pattern, recursive=True) if not matches: logger.debug(f"No files for glob, skipping: {pattern}") continue else: # explicit local path must exist if not os.path.exists(pattern): logger.error(f"Local file not found: {pattern}") return False matches = [pattern] # verify all matched files still exist for fp in matches: if not os.path.exists(fp): logger.error(f"Matched file disappeared: {fp}") return False return True
[docs] def files(self, documents: Union[str, List[str]]) -> "Ingestor": """ Add documents (local paths, globs, or remote URIs) for processing. Remote URIs will force `_all_local=False`. Local globs that match nothing are fine. Explicit local paths that don't exist cause `_all_local=False`. """ if isinstance(documents, str): documents = [documents] if not documents: return self self._documents.extend(documents) self._all_local = False if self._check_files_local(): self._job_specs = BatchJobSpec(self._documents) self._all_local = True return self
[docs] def buffers(self, buffers: Union[Tuple[str, BytesIO], List[Tuple[str, BytesIO]]]) -> "Ingestor": """ Add buffers for processing. Parameters ---------- buffers : List[Tuple[str, BytesIO]] List of tuples containing the name of the buffer and the BytesIO object. """ if ( isinstance(buffers, tuple) and len(buffers) == 2 and isinstance(buffers[0], str) and isinstance(buffers[1], BytesIO) ): buffers = [buffers] self._buffers.extend(buffers) self._job_specs = BatchJobSpec(self._buffers) self._all_local = True return self
[docs] def load(self, **kwargs) -> "Ingestor": """ Ensure all document files are accessible locally, downloading if necessary. For each document in `_documents`, checks if the file exists locally. If not, attempts to download the file to a temporary directory using `fsspec`. Updates `_documents` with paths to local copies, initializes `_job_specs`, and sets `_all_local` to True upon successful loading. Parameters ---------- kwargs : dict Additional keyword arguments for remote file access via `fsspec`. Returns ------- Ingestor Returns self for chaining after ensuring all files are accessible locally. """ if self._all_local: return self temp_dir = tempfile.mkdtemp() local_files = [] for pattern_or_path in self._documents: files_local = glob.glob(pattern_or_path, recursive=True) if files_local: for local_path in files_local: local_files.append(local_path) else: with fsspec.open(pattern_or_path, **kwargs) as f: parsed_url = urlparse(f.path) original_name = os.path.basename(parsed_url.path) local_path = os.path.join(temp_dir, original_name) with open(local_path, "wb") as local_file: shutil.copyfileobj(f, local_file) local_files.append(local_path) self._documents = local_files self._job_specs = BatchJobSpec(self._documents) self._all_local = True return self
def _resolve_source_name(self, job_id: str, results_data: Optional[Union[List, Dict]] = None) -> str: """ Resolves the source name for a given job ID using available metadata or fallback options. Parameters ---------- job_id : str The job identifier. results_data : Any, optional The data associated with the job result, which might contain metadata. Returns ------- str The resolved source name. """ source_name = "unknown_source" job_spec = self._client._job_index_to_job_spec.get(job_id) if job_spec: source_name = job_spec.source_name else: try: if results_data: first_item = results_data[0] if isinstance(results_data, list) and results_data else results_data if isinstance(first_item, dict): source_name = first_item.get("metadata", {}).get("source_metadata", {}).get("source_id", "") if not source_name: source_name = f"{job_id}" except (IndexError, KeyError, TypeError): source_name = f"{job_id}" return source_name def _write_results_to_disk(self, doc_data: Any, source_name: str, job_id: str) -> Optional[LazyLoadedList]: """ Writes the results for a single job to a JSONL file and returns a LazyLoadedList. Parameters ---------- doc_data : Any The result data to save. source_name : str The name of the source document. job_id : str The job identifier. Returns ------- Optional[LazyLoadedList] A proxy object to the saved file, or None if the save failed. """ if not self._output_config: logger.warning("Attempted to write results to disk without output configuration.") return None try: output_dir = self._output_config["output_directory"] clean_source_basename = get_valid_filename(os.path.basename(source_name)) file_name, file_ext = os.path.splitext(clean_source_basename) file_suffix = f".{file_ext.strip('.')}.results.jsonl" if self._output_config["compression"] == "gzip": file_suffix += ".gz" jsonl_filepath = os.path.join(output_dir, safe_filename(output_dir, file_name, file_suffix)) data_to_save = doc_data if isinstance(doc_data, list) else [doc_data] num_items_saved = save_document_results_to_jsonl( data_to_save, jsonl_filepath, source_name, ensure_parent_dir_exists=False, compression=self._output_config["compression"], ) if num_items_saved > 0: return LazyLoadedList( jsonl_filepath, expected_len=num_items_saved, compression=self._output_config["compression"] ) except Exception as e_save: logger.error( f"Disk save I/O task error for job {job_id} (source: {source_name}): {e_save}", exc_info=True, ) return None
[docs] def ingest( self, show_progress: bool = False, return_failures: bool = False, save_to_disk: bool = False, return_traces: bool = False, **kwargs: Any, ) -> Union[List[Any], Tuple[Any, ...]]: """ Ingest documents by submitting jobs and fetching results concurrently. Parameters ---------- show_progress : bool, optional Whether to display a progress bar. Default is False. return_failures : bool, optional If True, return a tuple (results, failures); otherwise, return only results. Default is False. save_to_disk : bool, optional If True, save results to disk and return LazyLoadedList proxies. Default is False. return_traces : bool, optional If True, return trace metrics alongside results. Default is False. Traces contain timing metrics (entry, exit, resident_time) for each stage. **kwargs : Any Additional keyword arguments for the underlying client methods. Optional flags include `include_parent_trace_ids=True` to also return parent job trace identifiers (V2 API only). Returns ------- list or tuple Returns vary based on flags: - Default: list of results - return_failures=True: (results, failures) - return_traces=True: (results, traces) - return_failures=True, return_traces=True: (results, failures, traces) - Additional combinations with include_parent_trace_ids kwarg Notes ----- Trace metrics include timing data for each processing stage. For detailed usage and examples, see src/nv_ingest/api/v2/README.md """ if save_to_disk and (not self._output_config): self.save_to_disk() include_parent_trace_ids = bool(kwargs.pop("include_parent_trace_ids", False)) self._prepare_ingest_run() # Add jobs locally first if self._job_specs is None: raise RuntimeError("Job specs missing.") self._job_ids = self._client.add_job(self._job_specs) final_results_payload_list: Union[List[List[Dict[str, Any]]], List[LazyLoadedList]] = [] # Lock for thread-safe appending to final_results_payload_list by I/O tasks results_lock = threading.Lock() if self._output_config else None io_executor: Optional[ThreadPoolExecutor] = None io_futures: List[Future] = [] if self._output_config: io_executor = ThreadPoolExecutor(max_workers=1, thread_name_prefix="IngestorDiskIO") def _perform_save_task(doc_data, job_id, source_name): # This function runs in the io_executor results = self._write_results_to_disk(doc_data, source_name, job_id) if results: if results_lock: with results_lock: final_results_payload_list.append(results) else: # Should not happen if io_executor is used final_results_payload_list.append(results) def _disk_save_callback( results_data: Dict[str, Any], job_id: str, ): source_name = self._resolve_source_name(job_id, results_data) if not results_data: logger.warning(f"No data in response for job {job_id} (source: {source_name}). Skipping save.") if pbar: pbar.update(1) return if io_executor: future = io_executor.submit(_perform_save_task, results_data, job_id, source_name) io_futures.append(future) else: # Fallback to blocking save if no I/O pool _perform_save_task(results_data, job_id, source_name) if pbar: pbar.update(1) def _in_memory_callback( results_data: Dict[str, Any], job_id: str, ): if pbar: pbar.update(1) pbar = tqdm(total=len(self._job_ids), desc="Processing", unit="doc") if show_progress else None callback: Optional[Callable] = None if self._output_config: callback = _disk_save_callback stream_to_callback_only = True output_dir = self._output_config["output_directory"] os.makedirs(output_dir, exist_ok=True) else: callback = _in_memory_callback stream_to_callback_only = False # Default concurrent-processing parameters DEFAULT_TIMEOUT: int = 100 DEFAULT_MAX_RETRIES: int = None DEFAULT_VERBOSE: bool = False timeout: int = kwargs.pop("timeout", DEFAULT_TIMEOUT) max_job_retries: int = kwargs.pop("max_job_retries", DEFAULT_MAX_RETRIES) verbose: bool = kwargs.pop("verbose", DEFAULT_VERBOSE) proc_kwargs = filter_function_kwargs(self._client.process_jobs_concurrently, **kwargs) # Telemetry controls (optional) enable_telemetry: Optional[bool] = kwargs.pop("enable_telemetry", None) show_telemetry: Optional[bool] = kwargs.pop("show_telemetry", None) if show_telemetry is None: # Fallback to env NV_INGEST_CLIENT_SHOW_TELEMETRY (0/1), default off try: show_telemetry = bool(int(os.getenv("NV_INGEST_CLIENT_SHOW_TELEMETRY", "0"))) except ValueError: show_telemetry = False # If user explicitly wants to show telemetry but did not specify enable_telemetry, # ensure collection is enabled so summary isn't empty. if enable_telemetry is None and show_telemetry: enable_telemetry = True if enable_telemetry is not None and hasattr(self._client, "enable_telemetry"): self._client.enable_telemetry(bool(enable_telemetry)) # Call process_jobs_concurrently proc_result = self._client.process_jobs_concurrently( job_indices=self._job_ids, job_queue_id=self._job_queue_id, timeout=timeout, max_job_retries=max_job_retries, completion_callback=callback, return_failures=True, stream_to_callback_only=stream_to_callback_only, verbose=verbose, return_traces=return_traces, **proc_kwargs, ) # Unpack result based on return_traces flag if return_traces: results, failures, traces_list = proc_result else: results, failures = proc_result traces_list = [] # Empty list when traces not requested if show_progress and pbar: pbar.close() if io_executor: for future in as_completed(io_futures): try: future.result() except Exception as e_io: logger.error(f"A disk I/O task failed: {e_io}", exc_info=True) io_executor.shutdown(wait=True) if self._output_config: results = final_results_payload_list if self._vdb_bulk_upload: if len(failures) > 0: # Calculate success metrics total_jobs = len(results) + len(failures) successful_jobs = len(results) if return_failures: # Emit message about partial success logger.warning( f"Job was not completely successful. " f"{successful_jobs} out of {total_jobs} records completed successfully. " f"Uploading successful results to vector database." ) # Upload only the successful results if successful_jobs > 0: self._vdb_bulk_upload.run(results) if self._purge_results_after_vdb_upload: logger.info("Purging saved results from disk after successful VDB upload.") self._purge_saved_results(results) else: # Original behavior: raise RuntimeError raise RuntimeError( "Failed to ingest documents, unable to complete vdb bulk upload due to " f"no successful results. {len(failures)} out of {total_jobs} records failed " ) else: # No failures - proceed with normal upload self._vdb_bulk_upload.run(results) if self._purge_results_after_vdb_upload: logger.info("Purging saved results from disk after successful VDB upload.") self._purge_saved_results(results) # Print telemetry summary if requested if show_telemetry: try: summary = self._client.summarize_telemetry() # Print to stdout and log for convenience print("NvIngestClient Telemetry Summary:", json.dumps(summary, indent=2)) logger.info("NvIngestClient Telemetry Summary: %s", json.dumps(summary, indent=2)) except Exception: pass parent_trace_ids = self._client.consume_completed_parent_trace_ids() if include_parent_trace_ids else [] # Build return tuple based on requested outputs # Order: results, failures (if requested), traces (if requested), parent_trace_ids (if requested) returns = [results] if return_failures: returns.append(failures) if return_traces: returns.append(traces_list) if include_parent_trace_ids: returns.append(parent_trace_ids) return tuple(returns) if len(returns) > 1 else results
[docs] def ingest_async(self, *, return_failures: bool = False, return_traces: bool = False, **kwargs: Any) -> Future: """ Asynchronously submits jobs and returns a single future that completes when all jobs have finished. The return type of the future's result is dynamic and mirrors the behavior of the synchronous `ingest()` method, controlled by the `return_failures` and `return_traces` flags. If a VDB upload is configured, the future will complete *after* the VDB upload finishes. Parameters ---------- return_failures : bool, optional If True, return a tuple containing failures; otherwise, only return results. Default is False. return_traces : bool, optional If True, return trace metrics alongside results. Default is False. kwargs : dict Additional parameters passed to the concurrent processor. Optional flags include `include_parent_trace_ids=True` to also return parent job trace identifiers (V2 API only). Returns ------- Future[Union[List[Any], Tuple[Any, ...]]] A future that completes when all jobs and any subsequent VDB upload have finished. Its result will be one of the following: - Default: list of results - return_failures=True: (results, failures) - return_traces=True: (results, traces) - return_failures=True, return_traces=True: (results, failures, traces) """ try: self._prepare_ingest_run() # Add jobs locally first if self._job_specs is None: raise RuntimeError("Job specs missing for ingest_async.") self._job_ids = self._client.add_job(self._job_specs) self._job_states = {job_id: self._client._get_and_check_job_state(job_id) for job_id in self._job_ids} proc_kwargs = filter_function_kwargs(self._client.process_jobs_concurrently_async, **kwargs) stream_to_callback_only = False completion_callback = None async_results_map = {} io_executor = None io_futures = [] if self._output_config: stream_to_callback_only = True output_dir = self._output_config["output_directory"] os.makedirs(output_dir, exist_ok=True) io_executor = ThreadPoolExecutor(max_workers=1, thread_name_prefix="IngestAsyncIO") def _io_task(data: Dict[str, Any], job_id: str): try: source_name = self._resolve_source_name(job_id, data) result = self._write_results_to_disk(data, source_name, job_id) if result: # Store the LazyLoadedList in our map using job_id as key async_results_map[job_id] = result except Exception as e: logger.error(f"Error in async I/O task for job {job_id}: {e}", exc_info=True) def _composite_callback(data: Dict[str, Any], job_id: str): """Callback executed by worker threads to save data to disk.""" try: future = io_executor.submit(_io_task, data, job_id) io_futures.append(future) except Exception as e: logger.error(f"Error in async callback for job {job_id}: {e}", exc_info=True) completion_callback = _composite_callback final_future: Future = Future() processor_future = self._client.process_jobs_concurrently_async( job_indices=self._job_ids, job_queue_id=self._job_queue_id, return_traces=return_traces, completion_callback=completion_callback, stream_to_callback_only=stream_to_callback_only, **proc_kwargs, ) include_parent_trace_ids = bool(kwargs.get("include_parent_trace_ids", False)) def _processor_done_callback(proc_future: Future): """Callback to handle completion, VDB upload, and final result setting.""" try: if proc_future.cancelled(): if not final_future.done(): final_future.cancel() return if proc_future.exception(): if not final_future.done(): final_future.set_exception(proc_future.exception()) return results, failures, traces_list = proc_future.result() if io_executor: for f in as_completed(io_futures): if f.exception(): logger.error(f"Async I/O task failed: {f.exception()}") io_executor.shutdown(wait=True) final_results_list = [] if self._output_config: for item in results: if isinstance(item, str) and item in async_results_map: final_results_list.append(async_results_map[item]) else: final_results_list = results failed_job_ids = set() for job_id_with_source, error_msg in failures: job_id = job_id_with_source.split(":", 1)[0] if job_id in self._job_states: if self._job_states[job_id].state != JobStateEnum.FAILED: self._job_states[job_id].state = JobStateEnum.FAILED failed_job_ids.add(job_id) all_submitted_job_ids = set(self._job_ids) successful_job_ids = all_submitted_job_ids - failed_job_ids for job_id in successful_job_ids: if job_id in self._job_states: if self._job_states[job_id].state != JobStateEnum.COMPLETED: self._job_states[job_id].state = JobStateEnum.COMPLETED if self._vdb_bulk_upload and final_results_list: with ThreadPoolExecutor(max_workers=1, thread_name_prefix="VDB_Uploader") as vdb_executor: results_future = Future() results_future.set_result(final_results_list) vdb_future = vdb_executor.submit(self._vdb_bulk_upload.run_async, results_future) vdb_future.result() if self._purge_results_after_vdb_upload and self._output_config: logger.info("Purging saved results from disk after successful VDB upload.") self._purge_saved_results(final_results_list) parent_trace_ids = ( self._client.consume_completed_parent_trace_ids() if include_parent_trace_ids else [] ) returns = [final_results_list] if return_failures: returns.append(failures) if return_traces: returns.append(traces_list) if include_parent_trace_ids: returns.append(parent_trace_ids) final_result = tuple(returns) if len(returns) > 1 else final_results_list if not final_future.done(): final_future.set_result(final_result) except Exception as e: logger.exception("Error in ingest_async processor callback") if not final_future.done(): final_future.set_exception(e) finally: final_state = JobStateEnum.CANCELLED if proc_future.cancelled() else JobStateEnum.FAILED for job_state in self._job_states.values(): if ( job_state.state not in [JobStateEnum.COMPLETED, JobStateEnum.FAILED] and job_state.state != final_state ): job_state.state = final_state if io_executor: io_executor.shutdown(wait=False) processor_future.add_done_callback(_processor_done_callback) return final_future except Exception as setup_err: logger.exception("Failed during synchronous setup of ingest_async") error_future: Future[Tuple[List[Any], List[Tuple[str, str]], List[Optional[Dict[str, Any]]]]] = Future() error_future.set_exception(setup_err) return error_future
@ensure_job_specs def _prepare_ingest_run(self): """ Prepares the ingest run by ensuring tasks are added to the batch job specification. If no tasks are specified in `_job_specs`, this method invokes `all_tasks()` to add a default set of tasks to the job specification. """ if (not self._job_specs.tasks) or all(not tasks for tasks in self._job_specs.tasks.values()): self.all_tasks()
[docs] def all_tasks(self) -> "Ingestor": """ Adds a default set of tasks to the batch job specification. The default tasks include extracting text, tables, charts, images, deduplication, filtering, splitting, and embedding tasks. Returns ------- Ingestor Returns self for chaining. """ # fmt: off self.extract(extract_text=True, extract_tables=True, extract_charts=True, extract_images=True) \ .dedup() \ .filter() \ .split() \ .embed() \ .store_embed() # .store() \ # fmt: on return self
[docs] @ensure_job_specs def dedup(self, **kwargs: Any) -> "Ingestor": """ Adds a DedupTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the DedupTask. Returns ------- Ingestor Returns self for chaining. """ # Extract content_type and build params dict for API schema content_type = kwargs.pop("content_type", "text") # Default to "text" if not specified params = kwargs # Remaining parameters go into params dict # Validate with API schema api_options = { "content_type": content_type, "params": params, } task_options = check_schema(IngestTaskDedupSchema, api_options, "dedup", json.dumps(api_options)) # Extract individual parameters from API schema for DedupTask constructor dedup_params = { "content_type": task_options.content_type, "filter": task_options.params.filter, } dedup_task = DedupTask(**dedup_params) self._job_specs.add_task(dedup_task) return self
[docs] @ensure_job_specs def embed(self, **kwargs: Any) -> "Ingestor": """ Adds an EmbedTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the EmbedTask. Returns ------- Ingestor Returns self for chaining. """ # Filter out deprecated parameters before API schema validation # The EmbedTask constructor handles these deprecated parameters with warnings filtered_kwargs = {k: v for k, v in kwargs.items() if k not in ["text", "tables"]} _ = check_schema(IngestTaskEmbedSchema, filtered_kwargs, "embed", json.dumps(filtered_kwargs)) # Pass original kwargs to EmbedTask constructor so it can handle deprecated parameters embed_task = EmbedTask(**kwargs) self._job_specs.add_task(embed_task) return self
[docs] @ensure_job_specs def extract(self, **kwargs: Any) -> "Ingestor": """ Adds an ExtractTask for each document type to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the ExtractTask. Returns ------- Ingestor Returns self for chaining. """ extract_text = kwargs.pop("extract_text", True) extract_images = kwargs.pop("extract_images", True) extract_tables = kwargs.pop("extract_tables", True) extract_charts = kwargs.pop("extract_charts", True) extract_page_as_image = kwargs.pop("extract_page_as_image", False) table_output_format = kwargs.pop("table_output_format", "markdown") # Defaulting to False since enabling infographic extraction reduces throughput. # Users have to set to True if infographic extraction is required. extract_infographics = kwargs.pop("extract_infographics", False) for file_type in self._job_specs.file_types: # Let user override document_type if user explicitly sets document_type. if "document_type" in kwargs: document_type = kwargs.pop("document_type") if document_type != file_type: logger.warning( f"User-specified document_type '{document_type}' overrides the inferred type '{file_type}'.", ) else: document_type = file_type task_options = dict( document_type=document_type, extract_text=extract_text, extract_images=extract_images, extract_tables=extract_tables, extract_charts=extract_charts, extract_infographics=extract_infographics, extract_page_as_image=extract_page_as_image, table_output_format=table_output_format, **kwargs, ) api_document_type = EXTENSION_TO_DOCUMENT_TYPE.get(document_type.lower(), document_type) # Extract method from task_options for API schema method = task_options.pop("extract_method", None) if method is None: # Let ExtractTask constructor handle default method selection if api_document_type == "docx": method = "python_docx" elif api_document_type == "pptx": method = "python_pptx" else: method = "pdfium" # Default fallback # Build params dict for API schema params = {k: v for k, v in task_options.items() if k != "document_type"} # Map document type to API schema expected values # Handle common file extension to DocumentTypeEnum mapping document_type_mapping = { "txt": "text", "md": "text", "sh": "text", "json": "text", "jpg": "jpeg", "jpeg": "jpeg", "png": "png", "pdf": "pdf", "docx": "docx", "pptx": "pptx", "html": "html", "bmp": "bmp", "tiff": "tiff", "svg": "svg", "mp3": "mp3", "wav": "wav", } # Use mapped document type for API schema validation api_document_type = document_type_mapping.get(document_type.lower(), document_type) # Validate with API schema api_task_options = { "document_type": api_document_type, "method": method, "params": params, } check_schema(IngestTaskExtractSchema, api_task_options, "extract", json.dumps(api_task_options)) # Create ExtractTask with mapped document type for API schema compatibility extract_task_params = {"document_type": api_document_type, "extract_method": method, **params} extract_task = ExtractTask(**extract_task_params) self._job_specs.add_task(extract_task, document_type=document_type) return self
[docs] @ensure_job_specs def filter(self, **kwargs: Any) -> "Ingestor": """ Adds a FilterTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the FilterTask. Returns ------- Ingestor Returns self for chaining. """ # Restructure parameters to match API schema structure params_fields = {"min_size", "max_aspect_ratio", "min_aspect_ratio", "filter"} params = {k: v for k, v in kwargs.items() if k in params_fields} top_level = {k: v for k, v in kwargs.items() if k not in params_fields} # Build API schema structure api_kwargs = top_level.copy() if params: api_kwargs["params"] = params task_options = check_schema(IngestTaskFilterSchema, api_kwargs, "filter", json.dumps(api_kwargs)) # Extract individual parameters from API schema for FilterTask constructor filter_params = { "content_type": task_options.content_type, "min_size": task_options.params.min_size, "max_aspect_ratio": task_options.params.max_aspect_ratio, "min_aspect_ratio": task_options.params.min_aspect_ratio, "filter": task_options.params.filter, } filter_task = FilterTask(**filter_params) self._job_specs.add_task(filter_task) return self
[docs] @ensure_job_specs def split(self, **kwargs: Any) -> "Ingestor": """ Adds a SplitTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the SplitTask. Returns ------- Ingestor Returns self for chaining. """ task_options = check_schema(IngestTaskSplitSchema, kwargs, "split", json.dumps(kwargs)) extract_task = SplitTask(**task_options.model_dump()) self._job_specs.add_task(extract_task) return self
[docs] @ensure_job_specs def store(self, **kwargs: Any) -> "Ingestor": """ Adds a StoreTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the StoreTask. Returns ------- Ingestor Returns self for chaining. """ deprecated_method = kwargs.pop("store_method", None) if deprecated_method is not None: logger.warning("`store_method` is deprecated and no longer used. Configure storage_uri instead.") task_options = check_schema(IngestTaskStoreSchema, kwargs, "store", json.dumps(kwargs)) # Map API schema fields back to StoreTask constructor parameters store_params = { "structured": task_options.structured, "images": task_options.images, "storage_uri": task_options.storage_uri, "storage_options": task_options.storage_options, "public_base_url": task_options.public_base_url, "params": task_options.params, } store_task = StoreTask(**store_params) self._job_specs.add_task(store_task) return self
[docs] @ensure_job_specs def store_embed(self, **kwargs: Any) -> "Ingestor": """ Adds a StoreEmbedTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the StoreEmbedTask. Returns ------- Ingestor Returns self for chaining. """ task_options = check_schema(IngestTaskStoreEmbedSchema, kwargs, "store_embedding", json.dumps(kwargs)) store_task = StoreEmbedTask(**task_options.model_dump()) self._job_specs.add_task(store_task) return self
[docs] def udf( self, udf_function: str, udf_function_name: Optional[str] = None, phase: Optional[Union[PipelinePhase, int, str]] = None, target_stage: Optional[str] = None, run_before: bool = False, run_after: bool = False, ) -> "Ingestor": """ Adds a UDFTask to the batch job specification. Parameters ---------- udf_function : str UDF specification. Supports three formats: 1. Inline function: 'def my_func(control_message): ...' 2. Import path: 'my_module.my_function' 3. File path: '/path/to/file.py:function_name' udf_function_name : str, optional Name of the function to execute from the UDF specification. If not provided, attempts to infer from udf_function. phase : Union[PipelinePhase, int, str], optional Pipeline phase to execute UDF. Accepts phase names ('extract', 'split', 'embed', 'response') or numbers (1-4). Cannot be used with target_stage. target_stage : str, optional Specific stage name to target for UDF execution. Cannot be used with phase. run_before : bool, optional If True and target_stage is specified, run UDF before the target stage. Default: False. run_after : bool, optional If True and target_stage is specified, run UDF after the target stage. Default: False. Returns ------- Ingestor Returns self for chaining. Raises ------ ValueError If udf_function_name cannot be inferred and is not provided explicitly, or if both phase and target_stage are specified, or if neither is specified. """ # Validate mutual exclusivity of phase and target_stage if phase is not None and target_stage is not None: raise ValueError("Cannot specify both 'phase' and 'target_stage'. Please specify only one.") elif phase is None and target_stage is None: # Default to response phase for backward compatibility phase = PipelinePhase.RESPONSE # Try to infer udf_function_name if not provided if udf_function_name is None: udf_function_name = infer_udf_function_name(udf_function) if udf_function_name is None: raise ValueError( f"Could not infer UDF function name from '{udf_function}'. " "Please specify 'udf_function_name' explicitly." ) logger.info(f"Inferred UDF function name: {udf_function_name}") # Use UDFTask constructor with explicit parameters udf_task = UDFTask( udf_function=udf_function, udf_function_name=udf_function_name, phase=phase, target_stage=target_stage, run_before=run_before, run_after=run_after, ) self._job_specs.add_task(udf_task) return self
[docs] def vdb_upload(self, purge_results_after_upload: bool = True, **kwargs: Any) -> "Ingestor": """ Adds a VdbUploadTask to the batch job specification. Parameters ---------- purge_results_after_upload : bool, optional If True, the saved result files will be deleted from disk after a successful upload. This requires `save_to_disk()` to be active. Defaults to True kwargs : dict Parameters specific to the VdbUploadTask. Returns ------- Ingestor Returns self for chaining. """ vdb_op = kwargs.pop("vdb_op", "milvus") if isinstance(vdb_op, str): op_cls = get_vdb_op_cls(vdb_op) vdb_op = op_cls(**kwargs) elif isinstance(vdb_op, VDB): vdb_op = vdb_op else: raise ValueError(f"Invalid type for op: {type(vdb_op)}, must be type VDB or str.") self._vdb_bulk_upload = vdb_op self._purge_results_after_vdb_upload = purge_results_after_upload return self
[docs] def save_to_disk( self, output_directory: Optional[str] = None, cleanup: bool = True, compression: Optional[str] = "gzip", ) -> "Ingestor": """Configures the Ingestor to save results to disk instead of memory. This method enables disk-based storage for ingestion results. When called, the `ingest()` method will write the output for each processed document to a separate JSONL file. The return value of `ingest()` will be a list of `LazyLoadedList` objects, which are memory-efficient proxies to these files. The output directory can be specified directly, via an environment variable, or a temporary directory will be created automatically. Parameters ---------- output_directory : str, optional The path to the directory where result files (.jsonl) will be saved. If not provided, it defaults to the value of the environment variable `NV_INGEST_CLIENT_SAVE_TO_DISK_OUTPUT_DIRECTORY`. If the environment variable is also not set, a temporary directory will be created. Defaults to None. cleanup : bool, optional) If True, the entire `output_directory` will be recursively deleted when the Ingestor's context is exited (i.e., when used in a `with` statement). Defaults to True. compression : str, optional The compression algorithm to use for the saved result files. Currently, the only supported value is `'gzip'`. To disable compression, set this parameter to `None`. Defaults to `'gzip'`, which significantly reduces the disk space required for results. When enabled, files are saved with a `.gz` suffix (e.g., `results.jsonl.gz`). Returns ------- Ingestor Returns self for chaining. """ output_directory = output_directory or os.getenv("NV_INGEST_CLIENT_SAVE_TO_DISK_OUTPUT_DIRECTORY") if not output_directory: self._created_temp_output_dir = tempfile.mkdtemp(prefix="ingestor_results_") output_directory = self._created_temp_output_dir self._output_config = { "output_directory": output_directory, "cleanup": cleanup, "compression": compression, } ensure_directory_with_permissions(output_directory) return self
def _purge_saved_results(self, saved_results: List[LazyLoadedList]): """ Deletes the .jsonl files associated with the results and the temporary output directory if it was created by this Ingestor instance. """ if not self._output_config: logger.warning("Purge requested, but save_to_disk was not configured. No files to purge.") return deleted_files_count = 0 for result_item in saved_results: if isinstance(result_item, LazyLoadedList) and hasattr(result_item, "filepath"): filepath = result_item.filepath try: if os.path.exists(filepath): os.remove(filepath) deleted_files_count += 1 logger.debug(f"Purged result file: {filepath}") except OSError as e: logger.error(f"Error purging result file {filepath}: {e}", exc_info=True) logger.info(f"Purged {deleted_files_count} saved result file(s).") if self._created_temp_output_dir: logger.info(f"Removing temporary output directory: {self._created_temp_output_dir}") try: shutil.rmtree(self._created_temp_output_dir) self._created_temp_output_dir = None # Reset flag after successful removal except OSError as e: logger.error( f"Error removing temporary output directory {self._created_temp_output_dir}: {e}", exc_info=True, )
[docs] @ensure_job_specs def caption(self, **kwargs: Any) -> "Ingestor": """ Adds a CaptionTask to the batch job specification. Parameters ---------- kwargs : dict Parameters specific to the CaptionTask. Supports `reasoning` (bool), `prompt` (str), `api_key` (str), `endpoint_url` (str), and `model_name` (str). Returns ------- Ingestor Returns self for chaining. """ if "reasoning" in kwargs: reasoning = kwargs.pop("reasoning") if not isinstance(reasoning, bool): raise ValueError("'reasoning' parameter must be a boolean (True or False)") kwargs["system_prompt"] = "/think" if reasoning else "/no_think" elif "system_prompt" in kwargs: raise ValueError("'system_prompt' parameter is not supported. Use 'reasoning' (bool) instead.") task_options = check_schema(IngestTaskCaptionSchema, kwargs, "caption", json.dumps(kwargs)) # Extract individual parameters from API schema for CaptionTask constructor caption_params = { "api_key": task_options.api_key, "endpoint_url": task_options.endpoint_url, "prompt": task_options.prompt, "system_prompt": task_options.system_prompt, "model_name": task_options.model_name, } caption_task = CaptionTask(**caption_params) self._job_specs.add_task(caption_task) return self
[docs] @ensure_job_specs def pdf_split_config(self, pages_per_chunk: int = 32) -> "Ingestor": """ Configure PDF splitting behavior for V2 API. Parameters ---------- pages_per_chunk : int, optional Number of pages per PDF chunk (default: 32) Server enforces boundaries: min=1, max=128 Returns ------- Ingestor Self for method chaining Notes ----- - Only affects V2 API endpoints with PDF splitting support - Server will clamp values outside [1, 128] range - Smaller chunks = more parallelism but more overhead - Larger chunks = less overhead but reduced concurrency """ MIN_PAGES = 1 MAX_PAGES = 128 # Warn if value will be clamped by server if pages_per_chunk < MIN_PAGES: logger.warning(f"pages_per_chunk={pages_per_chunk} is below minimum. Server will clamp to {MIN_PAGES}.") elif pages_per_chunk > MAX_PAGES: logger.warning(f"pages_per_chunk={pages_per_chunk} exceeds maximum. Server will clamp to {MAX_PAGES}.") # Flatten all job specs and apply PDF config using shared utility all_job_specs = [spec for job_specs in self._job_specs._file_type_to_job_spec.values() for spec in job_specs] apply_pdf_split_config_to_job_specs(all_job_specs, pages_per_chunk) return self
def _count_job_states(self, job_states: set[JobStateEnum]) -> int: """ Counts the jobs in specified states. Parameters ---------- job_states : set Set of JobStateEnum states to count. Returns ------- int Count of jobs in specified states. """ count = 0 for job_id, job_state in self._job_states.items(): if job_state.state in job_states: count += 1 return count
[docs] def completed_jobs(self) -> int: """ Counts the jobs that have completed successfully. Returns ------- int Number of jobs in the COMPLETED state. """ completed_job_states = {JobStateEnum.COMPLETED} return self._count_job_states(completed_job_states)
[docs] def failed_jobs(self) -> int: """ Counts the jobs that have failed. Returns ------- int Number of jobs in the FAILED state. """ failed_job_states = {JobStateEnum.FAILED} return self._count_job_states(failed_job_states)
[docs] def cancelled_jobs(self) -> int: """ Counts the jobs that have been cancelled. Returns ------- int Number of jobs in the CANCELLED state. """ cancelled_job_states = {JobStateEnum.CANCELLED} return self._count_job_states(cancelled_job_states)
[docs] def remaining_jobs(self) -> int: """ Counts the jobs that are not in a terminal state. Returns ------- int Number of jobs that are neither completed, failed, nor cancelled. """ terminal_jobs = self.completed_jobs() + self.failed_jobs() + self.cancelled_jobs() return len(self._job_states) - terminal_jobs
[docs] def get_status(self) -> Dict[str, str]: """ Returns a dictionary mapping document identifiers to their current status in the pipeline. This method is designed for use with async ingestion to poll the status of submitted jobs. For each document submitted to the ingestor, the method returns its current processing state. Returns ------- Dict[str, str] A dictionary where: - Keys are document identifiers (source names or source IDs) - Values are status strings representing the current state: * "pending": Job created but not yet submitted * "submitted": Job submitted and waiting for processing * "processing": Job is currently being processed * "completed": Job finished successfully * "failed": Job encountered an error * "cancelled": Job was cancelled * "unknown": Job state could not be determined (initial state) Examples -------- >>> ingestor = Ingestor(documents=["doc1.pdf", "doc2.pdf"], client=client) >>> ingestor.extract().embed() >>> future = ingestor.ingest_async() >>> >>> # Poll status while processing >>> status = ingestor.get_status() >>> print(status) {'doc1.pdf': 'processing', 'doc2.pdf': 'submitted'} >>> >>> # Check again after some time >>> status = ingestor.get_status() >>> print(status) {'doc1.pdf': 'completed', 'doc2.pdf': 'processing'} Notes ----- - This method is most useful when called after `ingest_async()` to track progress - If called before any jobs are submitted, returns an empty dictionary or documents with "unknown" status - The method accesses internal job state from the client, so it reflects the most current known state """ status_dict = {} if not self._job_states: # If job states haven't been initialized yet (before ingest_async is called) # Return unknown status for all documents for doc in self._documents: doc_name = os.path.basename(doc) if isinstance(doc, str) else str(doc) status_dict[doc_name] = "unknown" return status_dict # Map job IDs to their states and source identifiers for job_id, job_state in self._job_states.items(): # Get the job spec to find the source identifier job_spec = self._client._job_index_to_job_spec.get(job_id) if job_spec: # Use source_name as the key (the document name) source_identifier = job_spec.source_name else: # Fallback to job_id if we can't find the spec source_identifier = f"job_{job_id}" # Map the JobStateEnum to a user-friendly string state_mapping = { JobStateEnum.PENDING: "pending", JobStateEnum.SUBMITTED_ASYNC: "submitted", JobStateEnum.SUBMITTED: "submitted", JobStateEnum.PROCESSING: "processing", JobStateEnum.COMPLETED: "completed", JobStateEnum.FAILED: "failed", JobStateEnum.CANCELLED: "cancelled", } status_dict[source_identifier] = state_mapping.get(job_state.state, "unknown") return status_dict