# SPDX-FileCopyrightText: Copyright (c) 2024-25, NVIDIA CORPORATION & AFFILIATES.
# All rights reserved.
# SPDX-License-Identifier: Apache-2.0
# pylint: skip-file
from io import BytesIO
from typing import Annotated, Dict, List
import base64
import json
import logging
import time
import uuid
from fastapi import APIRouter, Request, Response
from fastapi import Depends
from fastapi import File, UploadFile, Form
from fastapi import HTTPException
from fastapi.responses import StreamingResponse
from fastapi.responses import JSONResponse
from nv_ingest.framework.schemas.framework_message_wrapper_schema import MessageWrapper
from nv_ingest.framework.schemas.framework_processing_job_schema import ProcessingJob, ConversionStatus
from nv_ingest.framework.util.service.impl.ingest.redis_ingest_service import RedisIngestService
from nv_ingest.framework.util.service.meta.ingest.ingest_service_meta import IngestServiceMeta
from nv_ingest_api.util.service_clients.client_base import FetchMode
from nv_ingest_client.primitives.jobs.job_spec import JobSpec
from nv_ingest_client.primitives.tasks.extract import ExtractTask
from opentelemetry import trace
from redis import RedisError
from nv_ingest_api.util.converters.formats import ingest_json_results_to_blob
from nv_ingest_client.primitives.tasks.table_extraction import TableExtractionTask
from nv_ingest_client.primitives.tasks.chart_extraction import ChartExtractionTask
from nv_ingest_client.primitives.tasks.infographic_extraction import InfographicExtractionTask
logger = logging.getLogger("uvicorn")
tracer = trace.get_tracer(__name__)
router = APIRouter()
async def _get_ingest_service() -> IngestServiceMeta:
"""
Gather the appropriate Ingestion Service to use for the nv-ingest endpoint.
"""
logger.debug("Creating RedisIngestService singleton for dependency injection")
return RedisIngestService.get_instance()
INGEST_SERVICE_T = Annotated[IngestServiceMeta, Depends(_get_ingest_service)]
STATE_RETRIEVED_DESTRUCTIVE = "RETRIEVED_DESTRUCTIVE"
STATE_RETRIEVED_NON_DESTRUCTIVE = "RETRIEVED_NON_DESTRUCTIVE"
STATE_RETRIEVED_CACHED = "RETRIEVED_CACHED"
STATE_FAILED = "FAILED"
STATE_PROCESSING = "PROCESSING"
STATE_SUBMITTED = "SUBMITTED"
INTERMEDIATE_STATES = {STATE_PROCESSING, STATE_SUBMITTED}
# POST /submit
[docs]
@router.post(
"/submit",
responses={
200: {"description": "Submission was successful"},
500: {"description": "Error encountered during submission"},
},
tags=["Ingestion"],
summary="submit document to the core nv ingestion service for processing",
operation_id="submit",
)
async def submit_job_curl_friendly(ingest_service: INGEST_SERVICE_T, file: UploadFile = File(...)):
"""
A multipart/form-data friendly Job submission endpoint that makes interacting with
the nv-ingest service through tools like Curl easier.
"""
try:
file_stream = BytesIO(file.file.read())
doc_content = base64.b64encode(file_stream.read()).decode("utf-8")
# Construct the JobSpec from the HTTP supplied form-data
job_spec = JobSpec(
# TOOD: Update this to look at the uploaded content-type, currently that is not working
document_type="pdf",
payload=doc_content,
source_id=file.filename,
source_name=file.filename,
# TODO: Update this to accept user defined options
extended_options={
"tracing_options": {
"trace": True,
"ts_send": time.time_ns(),
"trace_id": str(trace.get_current_span().get_span_context().trace_id),
}
},
)
# This is the "easy submission path" just default to extracting everything
extract_task = ExtractTask(document_type="pdf", extract_text=True, extract_images=True, extract_tables=True)
job_spec.add_task(extract_task)
submitted_job_id = await ingest_service.submit_job(MessageWrapper(payload=json.dumps(job_spec.to_dict())))
return submitted_job_id
except Exception as ex:
logger.exception(f"Error submitting job: {str(ex)}")
raise HTTPException(status_code=500, detail=f"Nv-Ingest Internal Server Error: {str(ex)}")
[docs]
def trace_id_to_uuid(trace_id: str) -> str:
"""Convert a 32-character OpenTelemetry trace ID to a UUID-like format."""
trace_id = str(trace.format_trace_id(trace_id))
if len(trace_id) != 32:
raise ValueError("Trace ID must be a 32-character hexadecimal string")
return f"{trace_id[:8]}-{trace_id[8:12]}-{trace_id[12:16]}-{trace_id[16:20]}-{trace_id[20:]}"
# POST /submit_job
[docs]
@router.post(
"/submit_job",
responses={
200: {"description": "Jobs were successfully submitted"},
500: {"description": "Error encountered while submitting jobs."},
503: {"description": "Service unavailable."},
},
tags=["Ingestion"],
summary="submit jobs to the core nv ingestion service for processing",
operation_id="submit_job",
)
async def submit_job(request: Request, response: Response, job_spec: MessageWrapper, ingest_service: INGEST_SERVICE_T):
with tracer.start_as_current_span("http-submit-job") as span:
try:
# Add custom attributes to the span
span.set_attribute("http.method", request.method)
span.set_attribute("http.url", str(request.url))
span.add_event("Submitting file for processing")
current_trace_id = span.get_span_context().trace_id
job_id = trace_id_to_uuid(current_trace_id)
# Add trace_id to job_spec payload
job_spec_dict = json.loads(job_spec.payload)
if "tracing_options" not in job_spec_dict:
job_spec_dict["tracing_options"] = {"trace": True}
job_spec_dict["tracing_options"]["trace_id"] = str(current_trace_id)
updated_job_spec = MessageWrapper(payload=json.dumps(job_spec_dict))
# Add another event
span.add_event("Finished processing")
# Submit the job to the pipeline task queue
await ingest_service.submit_job(updated_job_spec, job_id) # Pass job_id used for state
await ingest_service.set_job_state(job_id, "SUBMITTED")
response.headers["x-trace-id"] = trace.format_trace_id(current_trace_id)
return job_id
except Exception as ex:
logger.exception(f"Error submitting job: {str(ex)}")
raise HTTPException(status_code=500, detail=f"Nv-Ingest Internal Server Error: {str(ex)}")
# GET /fetch_job
[docs]
@router.get(
"/fetch_job/{job_id}",
responses={
200: {"description": "Job result successfully retrieved."},
202: {"description": "Job is processing or result not yet available. Retry later."},
404: {"description": "Job ID not found or associated state has expired."},
410: {"description": "Job result existed but is now gone (expired or retrieved destructively/cached)."},
500: {"description": "Internal server error during fetch processing."},
503: {"description": "Job processing failed, or backend service temporarily unavailable preventing fetch."},
},
tags=["Ingestion"],
summary="Fetch the result of a previously submitted job by its job_id",
operation_id="fetch_job",
)
async def fetch_job(job_id: str, ingest_service: INGEST_SERVICE_T):
"""
Fetches job result, checking job state *before* attempting data retrieval.
Distinguishes non-existent jobs (404) from expired results (410).
"""
try:
current_state = await ingest_service.get_job_state(job_id)
logger.debug(f"Initial state check for job {job_id}: {current_state}")
if current_state is None:
logger.warning(f"Job {job_id} not found or expired. Returning 404.")
raise HTTPException(status_code=404, detail="Job ID not found or state has expired.")
if current_state == STATE_FAILED:
logger.error(f"Job {job_id} failed. Returning 503.")
raise HTTPException(status_code=503, detail="Job processing failed.")
if current_state == STATE_RETRIEVED_DESTRUCTIVE:
logger.warning(f"Job {job_id} was destructively retrieved. Returning 410.")
raise HTTPException(status_code=410, detail="Job result is gone (destructive read).")
if current_state in INTERMEDIATE_STATES or current_state in {
STATE_RETRIEVED_NON_DESTRUCTIVE,
STATE_RETRIEVED_CACHED,
}:
logger.debug(f"Attempting fetch for job {job_id} in state {current_state}.")
try:
job_response = await ingest_service.fetch_job(job_id)
logger.debug(f"Fetched result for job {job_id}.")
try:
current_fetch_mode = await ingest_service.get_fetch_mode()
if current_fetch_mode == FetchMode.DESTRUCTIVE:
target_state = STATE_RETRIEVED_DESTRUCTIVE
elif current_fetch_mode == FetchMode.NON_DESTRUCTIVE:
target_state = STATE_RETRIEVED_NON_DESTRUCTIVE
elif current_fetch_mode == FetchMode.CACHE_BEFORE_DELETE:
target_state = STATE_RETRIEVED_CACHED
else:
target_state = "RETRIEVED_UNKNOWN"
if target_state != "RETRIEVED_UNKNOWN":
await ingest_service.set_job_state(job_id, target_state)
logger.debug(f"Updated job {job_id} state to {target_state}.")
except Exception as state_err:
logger.error(f"Failed to set job state for {job_id} after fetch: {state_err}")
try:
json_bytes = json.dumps(job_response).encode("utf-8")
return StreamingResponse(iter([json_bytes]), media_type="application/json", status_code=200)
except TypeError as json_err:
logger.exception(f"Serialization error for job {job_id}: {json_err}")
raise HTTPException(status_code=500, detail="Internal server error: Failed to serialize result.")
except (TimeoutError, RedisError, ConnectionError) as fetch_err:
fetch_err_type = type(fetch_err).__name__
if isinstance(fetch_err, TimeoutError):
logger.info(
f"Job {job_id} still processing (state: {current_state}), fetch attempt timed out cleanly."
)
else:
logger.warning(
f"Backend error ({fetch_err_type}) during fetch attempt for job {job_id} "
f"(state: {current_state}): {fetch_err}"
)
if current_state == STATE_RETRIEVED_NON_DESTRUCTIVE:
if isinstance(fetch_err, TimeoutError):
raise HTTPException(status_code=410, detail="Job result is gone (TTL expired).")
else:
raise HTTPException(
status_code=503, detail="Backend service unavailable preventing access to job result."
)
elif current_state == STATE_RETRIEVED_CACHED:
raise HTTPException(status_code=410, detail="Job result is gone (previously cached, fetch failed).")
elif current_state in INTERMEDIATE_STATES:
if isinstance(fetch_err, TimeoutError):
raise HTTPException(
status_code=202, detail=f"Job is processing (state: {current_state}). Retry later."
)
else:
raise HTTPException(
status_code=503, detail="Backend service unavailable preventing fetch of job result."
)
else:
logger.error(f"Unexpected state '{current_state}' for job {job_id} after fetch failure.")
raise HTTPException(
status_code=500, detail="Internal server error: Unexpected job state after fetch failure."
)
except ValueError as ve:
logger.exception(f"Value error fetching job {job_id}: {ve}")
raise HTTPException(status_code=500, detail="Internal server error processing job data.")
except Exception as fetch_ex:
logger.exception(f"Unexpected fetch error for job {job_id}: {fetch_ex}")
raise HTTPException(status_code=500, detail="Internal server error during data fetch.")
else:
logger.error(f"Unknown job state '{current_state}' for job {job_id}.")
raise HTTPException(status_code=500, detail=f"Internal server error: Unknown job state '{current_state}'.")
except HTTPException as http_exc:
raise http_exc # Pass through cleanly
except Exception as initial_err:
logger.exception(f"Unexpected server error handling fetch for job {job_id}: {initial_err}")
raise HTTPException(status_code=500, detail="Internal server error during job fetch.")
[docs]
@router.post("/convert")
async def convert_pdf(
ingest_service: INGEST_SERVICE_T,
files: List[UploadFile] = File(...),
job_id: str = Form(...),
extract_text: bool = Form(True),
extract_images: bool = Form(True),
extract_tables: bool = Form(True),
extract_charts: bool = Form(False),
extract_infographics: bool = Form(False),
) -> Dict[str, str]:
try:
if job_id is None:
job_id = str(uuid.uuid4())
logger.debug(f"JobId is None, Created JobId: {job_id}")
submitted_jobs: List[ProcessingJob] = []
for file in files:
file_stream = BytesIO(file.file.read())
doc_content = base64.b64encode(file_stream.read()).decode("utf-8")
try:
content_type = file.content_type.split("/")[1]
except Exception:
err_message = f"Unsupported content_type: {file.content_type}"
logger.error(err_message)
raise HTTPException(status_code=500, detail=err_message)
job_spec = JobSpec(
document_type=content_type,
payload=doc_content,
source_id=file.filename,
source_name=file.filename,
extended_options={
"tracing_options": {
"trace": True,
"ts_send": time.time_ns(),
}
},
)
extract_task = ExtractTask(
document_type=content_type,
extract_text=extract_text,
extract_images=extract_images,
extract_tables=extract_tables,
extract_charts=extract_charts,
extract_infographics=extract_infographics,
)
job_spec.add_task(extract_task)
# Conditionally add tasks as needed.
if extract_tables:
table_data_extract = TableExtractionTask()
job_spec.add_task(table_data_extract)
if extract_charts:
chart_data_extract = ChartExtractionTask()
job_spec.add_task(chart_data_extract)
if extract_infographics:
infographic_data_extract = InfographicExtractionTask()
job_spec.add_task(infographic_data_extract)
submitted_job_id = await ingest_service.submit_job(
MessageWrapper(payload=json.dumps(job_spec.to_dict())), job_id
)
processing_job = ProcessingJob(
submitted_job_id=submitted_job_id,
filename=file.filename,
status=ConversionStatus.IN_PROGRESS,
)
submitted_jobs.append(processing_job)
await ingest_service.set_processing_cache(job_id, submitted_jobs)
logger.debug(f"Submitted: {len(submitted_jobs)} documents of type: '{content_type}' for processing")
return {
"task_id": job_id,
"status": "processing",
"status_url": f"/status/{job_id}",
}
except Exception as e:
logger.error(f"Error starting conversion: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
[docs]
@router.get("/status/{job_id}")
async def get_status(ingest_service: INGEST_SERVICE_T, job_id: str):
t_start = time.time()
try:
processing_jobs = await ingest_service.get_processing_cache(job_id)
except Exception as e:
logger.error(f"Error getting status: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
updated_cache: List[ProcessingJob] = []
num_ready_docs = 0
for processing_job in processing_jobs:
logger.debug(f"submitted_job_id: {processing_job.submitted_job_id} - Status: {processing_job.status}")
if processing_job.status == ConversionStatus.IN_PROGRESS:
# Attempt to fetch the job from the ingest service
try:
job_response = await ingest_service.fetch_job(processing_job.submitted_job_id)
job_response = json.dumps(job_response)
# Convert JSON into pseudo markdown format
blob_response = ingest_json_results_to_blob(job_response)
processing_job.raw_result = job_response
processing_job.content = blob_response
processing_job.status = ConversionStatus.SUCCESS
num_ready_docs = num_ready_docs + 1
updated_cache.append(processing_job)
except TimeoutError:
logger.error(f"TimeoutError getting result for job_id: {processing_job.submitted_job_id}")
updated_cache.append(processing_job)
continue
except RedisError:
logger.error(f"RedisError getting result for job_id: {processing_job.submitted_job_id}")
updated_cache.append(processing_job)
continue
else:
logger.debug(f"{processing_job.submitted_job_id} has already finished successfully ....")
num_ready_docs = num_ready_docs + 1
updated_cache.append(processing_job)
await ingest_service.set_processing_cache(job_id, updated_cache)
logger.debug(f"{num_ready_docs}/{len(updated_cache)} complete")
if num_ready_docs == len(updated_cache):
results = []
raw_results = []
for result in updated_cache:
results.append(
{
"filename": result.filename,
"status": "success",
"content": result.content,
}
)
raw_results.append(result.raw_result)
return JSONResponse(
content={"status": "completed", "result": results},
status_code=200,
)
else:
# Not yet ready ...
logger.debug(f"/status/{job_id} endpoint execution time: {time.time() - t_start}")
raise HTTPException(status_code=202, detail="Job is not ready yet. Retry later.")