nv_ingest_api.internal.schemas.transform package#
Submodules#
nv_ingest_api.internal.schemas.transform.transform_image_caption_schema module#
- class nv_ingest_api.internal.schemas.transform.transform_image_caption_schema.ImageCaptionExtractionSchema(
- *,
- api_key: str = 'api_key',
- endpoint_url: str = 'https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-11b-vision-instruct/chat/completions',
- prompt: str = 'Caption the content of this image:',
- model_name: str = 'meta/llama-3.2-11b-vision-instruct',
- raise_on_failure: bool = False,
Bases:
BaseModel
- api_key: str#
- endpoint_url: str#
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_name: str#
- prompt: str#
- raise_on_failure: bool#
nv_ingest_api.internal.schemas.transform.transform_image_filter_schema module#
- class nv_ingest_api.internal.schemas.transform.transform_image_filter_schema.ImageFilterSchema(
- *,
- raise_on_failure: Annotated[bool, Strict(strict=True)] = False,
- cpu_only: Annotated[bool, Strict(strict=True)] = False,
Bases:
BaseModel
- cpu_only: Annotated[bool, Strict(strict=True)]#
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- raise_on_failure: Annotated[bool, Strict(strict=True)]#
nv_ingest_api.internal.schemas.transform.transform_text_embedding_schema module#
- class nv_ingest_api.internal.schemas.transform.transform_text_embedding_schema.TextEmbeddingSchema(
- *,
- api_key: str = 'api_key',
- batch_size: int = 4,
- embedding_model: str = 'nvidia/llama-3.2-nv-embedqa-1b-v2',
- embedding_nim_endpoint: str = 'http://embedding:8000/v1',
- encoding_format: str = 'float',
- httpx_log_level: LogLevel = LogLevel.WARNING,
- input_type: str = 'passage',
- raise_on_failure: bool = False,
- truncate: str = 'END',
Bases:
BaseModel
- api_key: str#
- batch_size: int#
- embedding_model: str#
- embedding_nim_endpoint: str#
- encoding_format: str#
- input_type: str#
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- raise_on_failure: bool#
- truncate: str#
nv_ingest_api.internal.schemas.transform.transform_text_splitter_schema module#
- class nv_ingest_api.internal.schemas.transform.transform_text_splitter_schema.TextSplitterSchema(
- *,
- tokenizer: str | None = None,
- chunk_size: Annotated[int, Gt(gt=0)] = 1024,
- chunk_overlap: Annotated[int, Ge(ge=0)] = 150,
- raise_on_failure: bool = False,
Bases:
BaseModel
- chunk_overlap: int#
- chunk_size: int#
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- raise_on_failure: bool#
- tokenizer: str | None#