This documentation is for the extended support release (ESR) version of Cumulus Linux. We will continue to keep this content up to date until 21 February, 2023, when ESR support ends. For more information about ESR, please read this knowledge base article.

If you are using the current version of Cumulus Linux, the content on this page may not be up to date. The current version of the documentation is available here. If you are redirected to the main page of the user guide, then this page may have been renamed; please search for it there.

Address Resolution Protocol - ARP

Address Resolution Protocol (ARP) is a communication protocol used for discovering the link layer address, such as a MAC address, associated with a given network layer address. ARP is defined by RFC 826.

The Cumulus Linux ARP implementation differs from standard Debian Linux ARP behavior in a few ways because Cumulus Linux is an operating system for routers/switches rather than servers. This chapter describes the differences in ARP behavior, why the changes were made, where the changes were implemented, and how to change port-specific values.

Standard Debian ARP Behavior and the Tunable ARP Parameters

Debian has these five tunable ARP parameters:

  • arp_accept
  • arp_announce
  • arp_filter
  • arp_ignore
  • arp_notify

These parameters are described in the Linux documentation, but snippets for each parameter description are included in the table below and are highlighted in italics.

In a standard Debian installation, all of these ARP parameters are set to 0, leaving the router as wide open and unrestricted as possible. These settings are based on the assertion made long ago that Linux IP addresses are a property of the device, not a property of an individual interface. Thus an ARP request or reply could be sent on one interface containing an address residing on a different interface. While this unrestricted behavior makes sense for a server, it is not the normal behavior of a router. Routers expect the MAC/IP address mappings supplied by ARP to match the physical topology, with the IP addresses matching the interfaces on which they reside. With these tunable ARP parameters, Cumulus Linux has been able to specify the behavior to match the expectations of a router.

ARP Tunable Parameter Settings in Cumulus Linux

The ARP tunable parameters are set to the following values by default in Cumulus Linux.








Define behavior for gratuitous ARP frames whose IP is not already present in the ARP table:

0 - Don't create new entries in the ARP table.

1 - Create new entries in the ARP table.

Cumulus Linux uses the default arp_accept behavior of not creating new entries in the ARP table when a gratuitous ARP is seen on an interface or when an ARP reply packet is received. However, an individual interface can have the arp_accept behavior set differently than the remainder of the switch if needed. For information on how to apply this port-specific behavior, see below.




Define different restriction levels for announcing the local source IP address from IP packets in ARP requests sent on interface:

0 - (default) Use any local address, configured on any interface.

1 - Try to avoid local addresses that are not in the target's subnet for this interface. This mode is useful when target hosts reachable via this interface require the source IP address in ARP requests to be part of their logical network configured on the receiving interface. When we generate the request we will check all our subnets that include the target IP and will preserve the source address if it is from such subnet. If there is no such subnet we select source address according to the rules for level 2.

2 - Always use the best local address for this target. In this mode we ignore the source address in the IP packet and try to select local address that we prefer for talks with the target host. Such local address is selected by looking for primary IP addresses on all our subnets on the outgoing interface that include the target IP address. If no suitable local address is found we select the first local address we have on the outgoing interface or on all other interfaces, with the hope we will receive reply for our request and even sometimes no matter the source IP address we announce.

The default Debian behavior with arp_announce set to 0 is to send gratuitous ARPs or ARP requests using any local source IP address, not limiting the IP source of the ARP packet to an address residing on the interface used to send the packet. This reflects the historically held view in Linux that IP addresses reside inside the device and are not considered a property of a specific interface.

Routers expect a different relationship between the IP address and the physical network. Adjoining routers look for MAC/IP addresses to reach a next-hop residing on a connecting interface for transiting traffic. By setting the arp_announce parameter to 2, Cumulus Linux uses the best local address for each ARP request, preferring primary addresses on the interface used to send the ARP. This most closely matches traditional router ARP request behavior.




0 - (default) The kernel can respond to ARP requests with addresses from other interfaces. This may seem wrong but it usually makes sense, because it increases the chance of successful communication. IP addresses are owned by the complete host on Linux, not by particular interfaces. Only for more complex setups like load- balancing, does this behavior cause problems.

1 - Allows you to have multiple network interfaces on the same subnet, and have the ARPs for each interface be answered based on whether or not the kernel would route a packet from the ARP'd IP address out of that interface (therefore you must use source based routing for this to work). In other words, it allows control of which cards (usually 1) will respond to an ARP request.

arp_filter for the interface will be enabled if at least one of conf/{all,interface}/arp_filter is set to TRUE, it is disabled otherwise.

Cumulus Linux uses the default Debian Linux arp_filter setting of 0.

The arp_filter is primarily used when multiple interfaces reside in the same subnet and is used to allow/disallow which interfaces respond to ARP requests. In the case of OSPF using IP unnumbered interfaces, many interfaces appear to be in the same subnet, and so actually contain the same address. If multiple interfaces are used between a pair of routers, having arp_filter set to 1 causes forwarding to fail.

The arp_filter parameter is set to allow a response on any interface in the subnet, where the arp_ignore setting (below) to limit cross-interface ARP behavior.




Define different modes for sending replies in response to received ARP requests that resolve local target IP addresses:

0 - (default) Reply for any local target IP address, configured on any interface.

1 - Reply only if the target IP address is local address configured on the incoming interface.

2 - Reply only if the target IP address is local address configured on the incoming interface and both with the sender's IP address are part from same subnet on this interface.

3 - Do not reply for local addresses configured with scope host, only resolutions for global and link addresses are replied.

4-7 - Reserved

8 - Do not reply for all local addresses.

The maximum value from conf/{all,interface}/arp_ignore is used when the ARP request is received on the {interface}.

The default Debian arp_ignore parameter allows the device to reply to an ARP request for any IP address on any interface. While this matches the expectation that an IP address belongs to the device, not an interface, it can cause some unexpected and undesirable behavior on a router.

For example, if the arp_ignore parameter were set to 0 and an ARP request is received on one interface for the IP address residing on a different interface, the switch responds with an ARP reply even if the interface of the target address is down. This can cause a loss of traffic due to incorrect understanding about the reachability of next-hops, and also makes troubleshooting extremely challenging for some failure conditions.

In Cumulus Linux, the arp_ignore value is set to 1 so that it only replies to ARP requests on the interface that contains the target IP address. This acts much more like a traditional router and provides simplicity in troubleshooting and operation.




Define mode for notification of address and device changes.

0 - (default) Do nothing.

1 - Generate gratuitous arp requests when device is brought up or hardware address changes.

The default Debian arp_notify setting is to remain silent when an interface is brought up or the hardware address is changed. Since Cumulus Linux often acts as a next-hop for many end hosts, it immediately notifies attached devices when an interface comes up or the address changes. This speeds up convergence on the new information and provides the most rapid support for changes.

Change Tunable ARP Parameters

You can change the ARP parameter settings in several places, including:

  • /proc/sys/net/ipv4/conf/all/arp* (all interfaces)
  • /proc/sys/net/ipv4/conf/default/arp* (default for future interfaces)
  • /proc/sys/net/ipv4/conf/swp*/arp* (individual interfaces)

The ARP parameter changes in Cumulus Linux use the default file locations.

The all and default locations sound similar, with the exception of which interfaces are impacted, but they operate in significantly different ways. The all location can potentially change the value for all interfaces running IP, both now and in the future. The reason for this uncertainty is that the all value is applied to each parameter using either MAX or OR logic between the all and any port-specific settings, as the following table shows:

ARP ParameterCondition

For example, if the /proc/sys/net/conf/all/arp_ignore value is set to 1 and the /proc/sys/net/conf/swp1/arp_ignore value is set to 0, to try to disable it on a per-port basis, interface swp1 still uses the value of 1 in its operation. While it may appear that the port-specific setting should override the global all setting, it does not actually work that way. Instead, the MAX value between the all value and port-specific value defines the actual behavior.

The default location /proc/sys/net/ipv4/conf/default/arp* defines the values for all future IP interfaces. Changing the default setting of an ARP parameter does not impact interfaces that already contain an IP address. If changes are being made to a running system that already has IP addresses assigned to it, port-specific settings should be used instead.

The way the default setting is implemented in Linux, the value of the default parameter is copied to every port-specific location, excluding those that already have an IP address assigned, as previously mentioned. Therefore there is not any complicated logic between the default setting and the port-specific setting like there is when using the all location. This makes the application of particular port-specific policies much simpler and more deterministic.

To determine the current ARP parameter settings for each of the the locations, use the following mechanism; other methods are available but this one is quite simple:

cumulus@switch:~$ sudo grep . /proc/sys/net/ipv4/conf/all/arp*

cumulus@switch:~$ sudo grep . /proc/sys/net/ipv4/conf/default/arp*

cumulus@switch:~$ sudo grep . /proc/sys/net/ipv4/conf/swp1/arp*

Note that Cumulus Linux implements this change at boot time using the arp.conf file at the following location:

cumulus@switch:~$ cat /etc/sysctl.d/arp.conf
net.ipv4.conf.default.arp_announce = 2
net.ipv4.conf.default.arp_notify = 1

Change Port-specific ARP Parameters

The simplest way to configure port-specific ARP parameters in a running device is with the following command:

cumulus@switch:~$ sudo sh -c "echo 0 > /proc/sys/net/ipv4/conf/swp1/arp_ignore"
cumulus@switch:~$ sudo grep . /proc/sys/net/ipv4/conf/swp1/arp*

To make the change persist through reboots, edit the /etc/sysctl.d/arp.conf file and add your port-specific ARP setting.

Configure Proxy ARP

The proxy ARP setting is a kernel setting that you can manipulate using sysctl or sysfs. Proxy ARP works with IPv4 only, since ARP is an IPv4-only protocol.

You need to set /proc/sys/net/ipv4/conf/<INTERFACE>/proxy_arp to 1:

cumulus@switch:~$ net add interface swp1 post-up "echo 1 > /proc/sys/net/ipv4/conf/swp1/proxy_arp"
cumulus@switch:~$ net pending
cumulus@switch:~$ net commit

These commands create the following snippet in the /etc/network/interfaces file:

auto swp1
iface swp1
    post-up echo 1 > /proc/sys/net/ipv4/conf/swp1/proxy_arp

If you’re running two interfaces in the same broadcast domain, which is typically seen when using VRR, as it creates a “-v0” interface in the same broadcast domain, make sure to use sysctl or sysfs to let the kernel know, so that both interfaces do not respond with proxy ARP replies. To do so, set /proc/sys/net/ipv4/conf/<INTERFACE>/medium_id to 2 on both the interface and the -v0 interface. Continuing with the previous example:

cumulus@switch:~$ net add interface swp1 post-up "echo 2 > /proc/sys/net/ipv4/conf/swp1/medium_id"
cumulus@switch:~$ net add interface swp1-v0 post-up "echo 1 > /proc/sys/net/ipv4/conf/swp1-v0/proxy_arp"
cumulus@switch:~$ net add interface swp1-v0 post-up "echo 2 > /proc/sys/net/ipv4/conf/swp1-v0/medium_id"
cumulus@switch:~$ net pending
cumulus@switch:~$ net commit

These commands create the following snippet in the /etc/network/interfaces file:

auto swp1
iface swp1
    post-up echo 1 > /proc/sys/net/ipv4/conf/swp1/proxy_arp
    post-up echo 2 > /proc/sys/net/ipv4/conf/swp1/medium_id

auto swp1-v0
iface swp1-v0
    post-up echo 1 > /proc/sys/net/ipv4/conf/swp1-v0/proxy_arp
    post-up echo 2 > /proc/sys/net/ipv4/conf/swp1-v0/medium_id

If you are running proxy ARP on a VRR interface, add a post-up line to the VRR interface stanza similar to the following. For example, if vlan100 is the VRR interface for the configuration above:

cumulus@switch:~$ net add vlan 100 post-up "echo 1 > /proc/sys/net/ipv4/conf/swp1/proxy_arp && echo 1 > /proc/sys/net/ipv4/conf/swp1-v0/proxy_arp && echo 2 > /proc/sys/net/ipv4/conf/swp1/medium_id && echo 2 > /proc/sys/net/ipv4/conf/swp1-v0/medium_id"
cumulus@switch:~$ net pending
cumulus@switch:~$ net commit

Duplicate Address Detection (Windows Hosts)

In centralized VXLAN environments, where ARP/ND suppression is enabled and SVIs exist on the leaf switches but are not assigned an address within the subnet, problems with the Duplicate Address Detection process on Microsoft Windows hosts can occur. For example, in a pure layer 2 scenario or with SVIs that have the ip-forward option set to off, the IP address is not assigned to the SVI. The neighmgrd service selects a source IP address for an ARP probe based on the subnet match on the neighbor IP address. Because the SVI on which this neighbor is learned does not contain an IP address, the subnet match fails. This results in neighmgrd using UNSPEC ( for IPv4) as the source IP address in the ARP probe.

To work around this issue, run the neighmgrctl setsrcipv4 <ipaddress> command to specify a non- address for the source; for example:

cumulus@switch:~$ neighmgrctl setsrcipv4

The configuration above takes effect immediately but does not persist if you reboot the switch. To make the changes apply persistently:

  1. Create a new file called /etc/cumulus/neighmgr.conf and add the setsrcipv4 <ipaddress> option; for example:

    cumulus@switch:~$  sudo nano /etc/cumulus/neighmgr.conf
  2. Restart the neighmgrd service:

    cumulus@switch:~$ sudo systemctl restart neighmgrd