Policy-based Routing
Typical routing systems and protocols forward traffic based on the destination address in the packet, which is used to look up an entry in a routing table. However, sometimes the traffic on your network requires a more hands-on approach. You might need to forward a packet based on the source address, the packet size, or other information in the packet header.
Policy-based routing (PBR) lets you make routing decisions based on filters that change the routing behavior of specific traffic so that you can override the routing table and influence where the traffic goes. For example, you can use PBR to help you reach the best bandwidth utilization for business-critical applications, isolate traffic for inspection or analysis, or manually load balance outbound traffic.
Policy-based routing is applied to incoming packets. All packets received on a PBR-enabled interface pass through enhanced packet filters that determine rules and specify where to forward the packets.
- You can create a maximum of 255 PBR match rules and 256 next hop groups (this is the ECMP limit).
- You can apply only one PBR policy per input interface.
- You can match on source and destination IP address, or match on Differentiated Services Code Point (DSCP) or Explicit Congestion Notification (ECN) values within a packet.
- PBR is not supported for VXLAN tunneling.
- PBR is not supported on management interfaces, such as eth0.
- A PBR rule cannot contain both IPv4 and IPv6 addresses.
Configure PBR
A PBR policy contains one or more policy maps. Each policy map:
- Is identified with a unique map name and sequence number. The sequence number is used to determine the relative order of the map within the policy.
- Contains a match source IP rule and (or) a match destination IP rule and a set rule, or a match DSCP or ECN rule and a set rule.
- To match on a source and destination address, a policy map can contain both match source and match destination IP rules.
- A set rule determines the PBR next hop for the policy. The set rule can contain a single next hop IP address or it can contain a next hop group. A next hop group has more than one next hop IP address so that you can use multiple interfaces to forward traffic. To use ECMP, you configure a next hop group.
To use PBR in Cumulus Linux, you define a PBR policy and apply it to the ingress interface (the interface must already have an IP address assigned). Traffic is matched against the match rules in sequential order and forwarded according to the set rule in the first match. Traffic that does not match any rule is passed onto the normal destination based routing mechanism.
For Tomahawk and Tomahawk+ platforms, you must configure the switch to operate in non-atomic mode, which offers better scaling as all TCAM resources are used to actively impact traffic. Add the line acl.non_atomic_update_mode = TRUE
to the /etc/cumulus/switchd.conf
file.
To configure a PBR policy:
When you commit a change that configures a new routing service such as PBR, the FRR daemon restarts and might interrupt network operations for other configured routing services.
Configure the policy map.
The example commands below configure a policy map called
map1
with sequence number 1, that matches on destination address 10.1.2.0/24 and source address 10.1.4.1/24.If the IP address in the rule is
0.0.0.0/0 or ::/0
, any IP address is a match. You cannot mix IPv4 and IPv6 addresses in a rule.cumulus@switch:~$ net add pbr-map map1 seq 1 match dst-ip 10.1.2.0/24 cumulus@switch:~$ net add pbr-map map1 seq 1 match src-ip 10.1.4.1/24
Instead of matching on IP address, you can match packets according to the DSCP or ECN field in the IP header. The DSCP value can be an integer between 0 and 63 or the DSCP codepoint name. The ECN value can be an integer between 0 and 3. The following example command configures a policy map called
map1
with sequence number 1 that matches on packets with the DSCP value 10:cumulus@switch:~$ net add pbr-map map1 seq 1 match dscp 10
The following example command configures a policy map called
map1
with sequence number 1 that matches on packets with the ECN value 2:cumulus@switch:~$ net add pbr-map map1 seq 1 match ecn 2
Either apply a next hop or a next hop group to the policy map. The example command below applies the next hop 192.168.0.31 on the output interface swp2 and VRF
rocket
to themap1
policy map. The next hop must be an IP address. The output interface and VRF are optional, however, you must specify the VRF you want to use for resolution if the next hop is not in the default VRF.cumulus@switch:~$ net add pbr-map map1 seq 1 set nexthop 192.168.0.31 swp2 nexthop-vrf rocket
To apply a next hop group (for ECMP) to the policy map, first create the next hop group, then apply the group to the policy map. The example commands below create a next hop group called
group1
that contains the next hop 192.168.0.21 on output interface swp1 and VRFrocket
, and the next hop 192.168.0.22, then applies the next hop groupgroup1
to themap1
policy map.The output interface and VRF are optional. However, you must specify the VRF if the next hop is not in the default VRF.
cumulus@switch:~$ net add nexthop-group group1 nexthop 192.168.0.21 swp1 nexthop-vrf rocket cumulus@switch:~$ net add nexthop-group group1 nexthop 192.168.0.22 cumulus@switch:~$ net add pbr-map map1 seq 1 set nexthop-group group1
If you want the rule to use a specific VRF table as its lookup, set the VRF. If no VRF is set, the rule uses the VRF table the interface is in as its lookup. The example command below sets the rule to use the
dmz
VRF table.You can set the VRF in a virtual environment only. Cumulus Linux on an NVIDIA switch does not support setting the VRF.
cumulus@switch:~$ net add pbr-map map1 seq 1 set vrf dmz
Assign the PBR policy to an ingress interface. The example command below assigns the PBR policy
map1
to interface swp51:cumulus@switch:~$ net add interface swp51 pbr-policy map1 cumulus@switch:~$ net pending cumulus@switch:~$ net commit
You can only set one policy per interface.
Enable the
pbrd
service in the/etc/frr/daemons
file:cumulus@leaf01:~$ sudo nano /etc/frr/daemons ... bgpd=yes ospfd=no ospf6d=no ripd=no ripngd=no isisd=no fabricd=no pimd=no ldpd=no nhrpd=no eigrpd=no babeld=no sharpd=no pbrd=yes ...
Restart FRR with this command:
cumulus@switch:~$ sudo systemctl restart frr.service
Restarting FRR restarts all the routing protocol daemons that are enabled and running.
Configure the policy map.
The example commands below configure a policy map called
map1
with sequence number 1, that matches on destination address 10.1.2.0/24 and source address 10.1.4.1/24.cumulus@switch:~$ sudo vtysh switch# configure terminal switch(config)# pbr-map map1 seq 1 switch(config-pbr-map)# match dst-ip 10.1.2.0/24 switch(config-pbr-map)# match src-ip 10.1.4.1/24
If the IP address in the rule is
0.0.0.0/0 or ::/0
, any IP address is a match. You cannot mix IPv4 and IPv6 addresses in a rule.Instead of matching on IP address, you can match packets according to the DSCP or ECN field in the IP header. The DSCP value can be an integer between 0 and 63 or the DSCP codepoint name. The ECN value can be an integer between 0 and 3. The following example command configures a policy map called
map1
with sequence number 1 that matches on packets with the DSCP value 10:switch# configure terminal switch(config)# pbr-map map1 seq 1 switch(config-pbr-map)# match dscp 10
The following example command configures a policy map called
map1
with sequence number 1 that matches on packets with the ECN value 2:switch# configure terminal switch(config)# pbr-map map1 seq 1 switch(config-pbr-map)# match ecn 2
Either apply a next hop or a next hop group to the policy map. The example command below applies the next hop 192.168.0.31 on the output interface swp2 and VRF
rocket
to themap1
policy map. The next hop must be an IP address. The output interface and VRF are optional, however, you must specify the VRF you want to use for resolution if the next hop is not in the default VRF.switch(config-pbr-map)# set nexthop 192.168.0.31 swp2 nexthop-vrf rocket switch(config-pbr-map)# exit switch(config)#
To apply a next hop group (for ECMP) to the policy map, first create the next hop group, then apply the group to the policy map. The example commands below create a next hop group called
group1
that contains the next hop 192.168.0.21 on output interface swp1 and VRFrocket
, and the next hop 192.168.0.22, then applies the next hop groupgroup1
to themap1
policy map.The output interface and VRF are optional. However, you must specify the VRF if the next hop is not in the default VRF.
switch(config)# nexthop-group group1 switch(config-nh-group)# nexthop 192.168.0.21 swp1 nexthop-vrf rocket switch(config-nh-group)# nexthop 192.168.0.22 switch(config-nh-group)# exit switch(config)# pbr-map map1 seq 1 switch(config-pbr-map)# set nexthop-group group1 switch(config-pbr-map)# exit switch(config)#
If you want the rule to use a specific VRF table as its lookup, set the VRF. If no VRF is set, the rule uses the VRF table the interface is in as its lookup. The example command below sets the rule to use the
dmz
VRF table.You can set the VRF in a virtual environment only. Cumulus Linux on an NVIDIA switch does not support setting the VRF.
switch(config)# pbr-map map1 seq 1 switch(config-pbr-map)# set vrf dmz switch(config-pbr-map)# exit switch(config)#
Assign the PBR policy to an ingress interface. The example command below assigns the PBR policy
map1
to interface swp51:switch(config)# interface swp51 switch(config-if)# pbr-policy map1 switch(config-if)# end switch# write memory switch# exit cumulus@switch:~$
You can only set one policy per interface.
The NCLU and vtysh
commands save the configuration in the /etc/frr/frr.conf
file. For example:
...
interface swp51
pbr-policy map1
...
nexthop-group group1
nexthop 192.168.0.21 swp1 nexthop-vrf rocket
nexthop 192.168.0.22
...
pbr-map map1 seq 1
match dst-ip 10.1.2.0/24
match src-ip 10.1.4.1/24
set nexthop-group group1
set vrf dmz
...
Review Your Configuration
Use the following commands to see the configured PBR policies.
To see the policies applied to all interfaces on the switch, run the NCLU net show pbr interface
command or the vtysh
show pbr interface
command. For example:
cumulus@switch:~$ net show pbr interface
swp55s3(67) with pbr-policy map1
To see the policies applied to a specific interface on the switch, add the interface name at the end of the command; for example, net show pbr interface swp51
(or show pbr interface swp51
in vtysh
).
To see information about all policies, including mapped table and rule numbers, run the NCLU net show pbr map
command or the vtysh
show pbr map
command. If the rule is not set, you see a reason why.
cumulus@switch:~$ net show pbr map
pbr-map map1 valid: yes
Seq: 700 rule: 999 Installed: yes Reason: Valid
SRC Match: 10.0.0.1/32
nexthop 192.168.0.32
Installed: yes Tableid: 10003
Seq: 701 rule: 1000 Installed: yes Reason: Valid
SRC Match: 90.70.0.1/32
nexthop 192.168.0.32
Installed: yes Tableid: 10004
To see information about a specific policy, what it matches, and with which interface it is associated, add the map name at the end of the command; for example, net show pbr map map1
(or show pbr map map1
in vtysh
).
To see information about all next hop groups, run the NCLU net show pbr nexthop-group
command or the vtysh
show pbr nexthop-group
command.
cumulus@switch:~$ net show pbr nexthop-group
Nexthop-Group: map1701 Table: 10004 Valid: yes Installed: yes
Valid: yes nexthop 10.1.1.2
Nexthop-Group: map1700 Table: 10003 Valid: yes Installed: yes
Valid: yes nexthop 10.1.1.2
Nexthop-Group: group1 Table: 10000 Valid: yes Installed: yes
Valid: yes nexthop 192.168.10.0 bond1
Valid: yes nexthop 192.168.10.2
Valid: yes nexthop 192.168.10.3 vlan70
Nexthop-Group: group2 Table: 10001 Valid: yes Installed: yes
Valid: yes nexthop 192.168.8.1
Valid: yes nexthop 192.168.8.2
Valid: yes nexthop 192.168.8.3
To see information about a specific next hop group, add the group name at the end of the command; for example, net show pbr nexthop-group group1
(or show pbr nexthop-group group1
in vtysh
).
A new Linux routing table ID is used for each next hop and next hop group.
Modify Existing PBR Rules
When you want to change or extend an existing PBR rule, you must first delete the conditions in the rule, then add the rule back with the modification or addition.
Delete PBR Rules and Policies
You can delete a PBR rule, a next hop group, or a policy. The following commands provide examples.
Use caution when deleting PBR rules and next hop groups, as you might create an incorrect configuration for the PBR policy.
The following examples show how to delete a PBR rule match:
cumulus@switch:~$ net del pbr-map map1 seq 1 match dst-ip 10.1.2.0/24
cumulus@switch:~$ net pending
cumulus@switch:~$ net commit
The following examples show how to delete a next hop from a group:
cumulus@switch:~$ net del nexthop-group group1 nexthop 192.168.0.32 swp1 nexthop-vrf rocket
cumulus@switch:~$ net pending
cumulus@switch:~$ net commit
The following examples show how to delete a next hop group:
cumulus@switch:~$ net del nexthop-group group1
cumulus@switch:~$ net pending
cumulus@switch:~$ net commit
The following examples show how to delete a PBR policy so that the PBR interface is no longer receiving PBR traffic:
cumulus@switch:~$ net del interface swp3 pbr-policy map1
cumulus@switch:~$ net pending
cumulus@switch:~$ net commit
The following examples show how to delete a PBR rule:
cumulus@switch:~$ net del pbr-map map1 seq 1
cumulus@switch:~$ net pending
cumulus@switch:~$ net commit
The following examples show how to delete a PBR rule match:
cumulus@switch:~$ sudo vtysh
switch# configure terminal
switch(config)# pbr-map map1 seq 1
switch(config-pbr-map)# no match dst-ip 10.1.2.0/24
switch(config-pbr-map)# end
switch# write memory
switch# exit
cumulus@switch:~$
The following examples show how to delete a next hop from a group:
cumulus@switch:~$ sudo vtysh
switch# configure terminal
switch(config)# nexthop-group group1
switch(config-nh-group)# no nexthop 192.168.0.32 swp1 nexthop-vrf rocket
switch(config-nh-group)# end
switch# write memory
switch# exit
cumulus@switch:~$
The following examples show how to delete a next hop group:
cumulus@switch:~$ sudo vtysh
switch# configure terminal
switch(config)# no set nexthop-group group1
switch(config)# end
switch# write memory
switch# exit
cumulus@switch:~$
The following examples show how to delete a PBR policy so that the PBR interface is no longer receiving PBR traffic:
cumulus@switch:~$ sudo vtysh
switch# configure terminal
switch(config)# interface swp51
switch(config-if)# no pbr-policy map1
switch(config-if)# end
switch# write memory
switch# exit
cumulus@switch:~$
The following examples show how to delete a PBR rule:
cumulus@switch:~$ sudo vtysh
switch# configure terminal
switch(config)# no pbr-map map1 seq 1
switch(config)# end
switch# write memory
switch# exit
cumulus@switch:~$
If a PBR rule has multiple conditions (for example, a source IP match and a destination IP match), but you only want to delete one condition, you have to delete all conditions first, then re-add the ones you want to keep.
The example below shows an existing configuration that has a source IP match and a destination IP match.
Seq: 6 rule: 305 Installed: yes Reason: Valid
SRC Match: 10.1.4.1/24
DST Match: 10.1.2.0/24
nexthop 192.168.0.21
Installed: yes Tableid: 10011
The NCLU commands for the above configuration are:
net add pbr-map pbr-policy seq 6 match src-ip 10.1.4.1/24
net add pbr-map pbr-policy seq 6 match dst-ip 10.1.2.0/24
net add pbr-map pbr-policy seq 6 set nexthop 192.168.0.21
To remove the destination IP match, you must first delete all existing conditions defined under this sequence:
net del pbr-map pbr-policy seq 6 match src-ip 10.1.4.1/24
net del pbr-map pbr-policy seq 6 match dst-ip 10.1.2.0/24
net del pbr-map pbr-policy seq 6 set nexthop 192.168.0.21
net commit
Then, add back the conditions you want to keep:
net add pbr-map pbr-policy seq 6 match src-ip 10.1.4.1/24
net add pbr-map pbr-policy seq 6 set nexthop 192.168.0.21
net commit
Example Configuration
In the following example, the PBR-enabled switch has a PBR policy to route all traffic from the Internet to a server that performs anti-DDOS. The traffic returns to the PBR-enabled switch after being cleaned and is then passed onto the regular destination based routing mechanism.
The configuration for the example above is:
cumulus@switch:~$ net add pbr-map map1 seq 1 match src-ip 0.0.0.0/0
cumulus@switch:~$ net add pbr-map map1 seq 1 set nexthop 192.168.0.32
cumulus@switch:~$ net add interface swp51 pbr-policy map1
cumulus@switch:~$ net pending
cumulus@switch:~$ net commit
cumulus@switch:~$ sudo vtysh
switch# configure terminal
switch(config)# pbr-map map1 seq 1
switch(config-pbr-map)# match src-ip 0.0.0.0/0
switch(config-pbr-map)# set nexthop 192.168.0.32
switch(config-pbr-map)# exit
switch(config)# interface swp51
switch(config-if)# pbr-policy map1
switch(config-if)# end
switch# write memory
switch# exit
cumulus@switch:~$
The NCLU and vtysh
commands save the configuration in the /etc/frr/frr.conf
file. For example:
...
interface swp51
pbr-policy map1
...
pbr-map map1 seq 1
match src-ip 0.0.0.0/0
set nexthop 192.168.0.32
...