
Appendix – Routing Chains



Table of contents

Configuring Routing Chains

Defining Port Groups

Defining Port Group Policy File

Configuring Port Group Policy

Port Group Qualifiers

Rule Qualifiers

Predefined Port Groups

Port Groups Policy Examples

Defining Topologies Policy File

Configuring Topology Policy

Topology Qualifiers

Configuration File per Routing Engine

Defining Routing Chain Policy File

First Routing Engine in Chain

Configuring Routing Chains Policy

Routing Engine Qualifiers

Dump Files per Routing Engine

Appendix – Routing Chains 1

Table of contents

Configuring Routing Chains

Defining Port Groups

Defining Port Group Policy File

Configuring Port Group Policy

Port Group Qualifiers

Rule Qualifiers

Predefined Port Groups

Port Groups Policy Examples

Defining Topologies Policy File

Configuring Topology Policy

Topology Qualifiers

Configuration File per Routing Engine

Defining Routing Chain Policy File

First Routing Engine in Chain

Configuring Routing Chains Policy

Routing Engine Qualifiers

Dump Files per Routing Engine



Appendix – Routing Chains 2

The routing chains feature is offering a solution that enables one to configure different
parts of the fabric and define a different routing engine to route each of them. The
routings are done in a sequence (hence the name "chains") and any node in the fabric
that is configured in more than one part is left with the last routing engine updated for it.

Configuring Routing Chains

The configuration for the routing chains feature consists of the following steps:

1. Define the port groups.

2. Define topologies based on previously defined port groups.

3. Define configuration files for each routing engine.

4. Define routing engine chains over defined topologies.

Defining Port Groups

The basic idea behind the port groups is the ability to divide the fabric into sub-groups
and give each group an identifier that can be used to relate to all nodes in this group. The
port groups are used to define the participants in each of the routing algorithms.

Defining Port Group Policy File

In order to define a port group policy file, set the parameter ‘pgrp_policy_file’ in the
opensm configuration file, as follows:

Configuring Port Group Policy

The port groups policy file details the port groups in the fabric. The policy file should be
composed of one or more paragraphs that define a group. Each paragraph should begin
with the line ‘port-group’ and end with the line ‘end-port-group’.

/opt/ufm/files/conf/opensm/port_groups_policy_file.conf



Appendix – Routing Chains 3

For example:

Port Group Qualifiers

Table 62: Port Group Qualifiers

Para
mete
r

Description Example

name
Each group must have a name. Without a name qualifier, the policy
fails.

name:
grp1

use
‘use’ is an optional qualifier that one can define in order to describe
the usage of this port group (if undefined, an empty string is used as
a default).

use: first
port
group

Rule Qualifiers

port-group
…port group qualifiers…
end-port-group

Note

Unlike the port group’s begining and ending which do not require a
colon, all qualifiers must end with a colon (‘:’). Also – a colon is a
predefined mark that must not be used inside qualifier values. An
inclusion of a colon in the name or the use of a port group, will result
in the policy’s failure.



Appendix – Routing Chains 4

There are several qualifiers used to describe a rule that determines which ports will be
added to the group. Each port group may contain one or more rules of the rule qualifiers
in Table 63 (at least one rule shall be defined for each port group).

Table 63: Rule Qualifiers

Par
am
eter

Description Example

gui
d
list

Comma separated list of guids to include in the group.
If no specific physical ports were configured, all physical ports of the
guid are chosen. However, for each guid, one can detail specific
physical ports to be included in the group. This can be done using the
following syntax:

Specify a specific port in a guid to be chosen

port-guid: 0x283@3

Specify a specific list of ports in a guid to be chosen

port-guid: 0x286@1/5/7

Specify a specific range of ports in a guid to be chosen

port-guid: 0x289@2-5

Specify a list of specific ports and ports ranges in a guid to be
chosen

port-guid: 0x289@2-5/7/9-13/18

Complex rule

port-guid: 0x283@5-8/12/14, 0x286, 0x289/6/8/12

port-
guid:
0x283,
0x286,
0x289

por
t
gui
d
ran
ge

It is possible to configure a range of guids to be chosen to the group.
However, while using the range qualifier, it is impossible to detail
specific physical ports.
Note: A list of ranges cannot be specified. The below example is invalid
and will cause the policy to fail:
port-guid-range: 0x283-0x289, 0x290-0x295

port-
guid-
range:
0x283-
0x289



Appendix – Routing Chains 5

Par
am
eter

Description Example

por
t
na
me

One can configure a list of hostnames as a rule. Hosts with a node
description that is built out of these hostnames will be chosen. Since
the node description contains the network card index as well, one
might also specify a network card index and a physical port to be
chosen. For example, the given configuration will cause only physical
port 2 of a host with the node description ‘kuku HCA-1’ to be chosen.
port and hca_idx parameters are optional. If the port is unspecified, all
physical ports are chosen. If hca_idx is unspecified, all card numbers
are chosen. Specifying a hostname is mandatory.
One can configure a list of hostname/port/hca_idx sets in the same
qualifier as follows:
port-name: hostname=kuku; port=2; hca_idx=1 , hostname=host1;
port=3, hostname=host2
Note: port-name qualifier is not relevant for switches, but for HCA’s
only.

port-
name:
hostnam
e=kuku;
port=2;
hca_idx=
1

por
t
reg
exp

One can define a regular expression so that only nodes with a
matching node description will be chosen to the group

port-
regexp:
SW.*

It is possible to specify one physical port to be chosen for matching
nodes (there is no option to define a list or a range of ports). The given
example will cause only nodes that match physical port 3 to be added
to the group.

port-
regexp:
SW.*:3

uni
on
rule

It is possible to define a rule that unites two different port groups. This
means that all ports from both groups will be included in the united
group.

union-
rule:
grp1,
grp2

sub
trac
t
rule

One can define a rule that subtracts one port group from another. The
given rule, for example, will cause all the ports which are a part of grp1,
but not included in grp2, to be chosen.
In subtraction (unlike union), the order does matter, since the purpose
is to subtract the second group from the first one.
There is no option to define more than two groups for
union/subtraction. However, one can unite/subtract groups which are a
union or a subtraction themselves, as shown in the port groups policy
file example.

subtract-
rule:
grp1,
grp2



Appendix – Routing Chains 6

Predefined Port Groups

There are 3 predefined port groups that are available for use, yet cannot be defined in
the policy file (if a group in the policy is configured with the name of one of these
predefined groups, the policy fails) –

ALL – a group that includes all nodes in the fabric

ALL_SWITCHES – a group that includes all switches in the fabric.

ALL_CAS – a group that includes all HCA’s in the fabric.

Port Groups Policy Examples

port-group
name: grp3
use: Subtract of groups grp1 and grp2
subtract-rule: grp1, grp2
end-port-group
 
port-group
name: grp1
port-guid: 0x281, 0x282, 0x283
end-port-group
 
port-group
name: grp2
port-guid-range: 0x282-0x286
port-name: hostname=server1 port=1
end-port-group
 
port-group



Appendix – Routing Chains 7

Defining Topologies Policy File

In order to define a port group policy file, set the parameter ‘topo_policy_file’ in the
opensm configuration file.

Configuring Topology Policy

The topologies policy file details a list of topologies. The policy file should be composed of
one or more paragraphs which define a topology. Each paragraph should begin with the
line ‘topology’ and end with the line ‘end-topology’.

For example:

Topology Qualifiers

name: grp4
port-name: hostname=kika port=1 hca_idx=1
end-port-group
 
port-group
name: grp3
union-rule: grp3, grp4
end-port-group

/opt/ufm/files/conf/opensm/topo_policy_file.conf

topology
…topology qualifiers…
end-topology

Note



Appendix – Routing Chains 8

All topology qualifiers are mandatory. Absence of any of the below qualifiers will cause
the policy parsing to fail.

Param
eter

Description Example

id
Topology ID.
Legal Values – any positive value.
Must be unique.

id: 1

sw-grp
Name of the port group that includes all switches and switch
ports to be used in this topology.

sw-grp:
some_switches

hca-grp
Name of the port group that includes all HCA’s to be used in
this topology.

hca-grp:
some_hosts

Configuration File per Routing Engine

Each engine in the routing chain can be provided by its own configuration file. Routing
engine configuration file is the fraction of parameters defined in the main opensm
configuration file.

Some rules should be applied when defining a particular configuration file for a routing
engine:

Parameters that are not specified in specific routing engine configuration file are
inherited from the main opensm configuration file.

The following configuration parameters are taking effect only in the main opensm
configuration file:

qos and qos_* settings like (vl_arb, sl2vl, etc.)

Unlike topology and end-topology which do not require a colon, all
qualifiers must end with a colon (‘:’). Also – a colon is a predefined
mark that must not be used inside qualifier values. An inclusion of a
column in the qualifier values will result in the policy’s failure.



Appendix – Routing Chains 9

lmc

routing_engine

Defining Routing Chain Policy File

In order to define a port group policy file, set the parameter ‘rch_policy_file’ in the
opensm configuration file, as follows:

First Routing Engine in Chain

The first unicast engine in a routing chain must include all switches and HCA’s in the
fabric (topology id must be 0). The path-bit parameter value is path-bit 0 and it cannot be
changed.

Configuring Routing Chains Policy

The routing chains policy file details the routing engines (and their fallback engines) used
for the fabric’s routing. The policy file should be composed of one or more paragraphs
which defines an engine (or a fallback engine). Each paragraph should begin with the line
‘unicast-step’ and end with the line ‘end-unicast-step’.

For example:

Routing Engine Qualifiers

/opt/ufm/files/conf/opensm/routing_chains_policy.conf

unicast-step
…routing engine qualifiers…
end-unicast-step



Appendix – Routing Chains 10

Par
ame
ter

Description Example

id

‘id’ is mandatory. Without an id qualifier for each engine, the policy
fails.

Legal values – size_t value (0 is illegal).
The engines in the policy chain are set according to an ascending
id order, so it is highly crucial to verify that the id that is given to
the engines match the order in which you would like the engines
to be set.

is: 1

engi
ne

This is a mandatory qualifier that describes the routing algorithm
used within this unicast step.
Currently, on the first phase of routing chains, legal values are
minhop/ftree/updn.

engine:
minhop

use
This is an optional qualifier that enables one to describe the usage of
this unicast step. If undefined, an empty string is used as a default.

use: ftree
routing
for cluster
1

conf
ig

This is an optional qualifier that enables one to define a separate
opensm config file for a specific unicast step. If undefined, all
parameters are taken from main opensm configuration file.

config:
/etc/confi
g/opensm
2.cfg

Note

Unlike unicast-step and end-unicast-step which do not require a
colon, all qualifiers must end with a colon (‘:’). Also – a colon is a
predefined mark that must not be used inside qualifier values. An
inclusion of a colon in the qualifier values will result in the policy’s
failure.



Appendix – Routing Chains 11

Par
ame
ter

Description Example

top
olog
y

Define the topology that this engine uses.

Legal value – id of an existing topology that is defined in
topologies policy (or zero that represents the entire fabric and
not a specific topology).
Default value – If unspecified, a routing engine will relate to the
entire fabric (as if topology zero was defined).
Notice: The first routing engine (the engine with the lowest id)
MUST be configured with topology: 0 (entire fabric) or else, the
routing chain algorithm will fail.

topology:
1

fallb
ack-
to

This is an optional qualifier that enables one to define the current
unicast step as a fallback to another unicast step. This can be done by
defining the id of the unicast step that this step is a fallback to.

If undefined, the current unicast step is not a fallback.
If the value of this qualifier is a non-existent engine id, this step
will be ignored.
A fallback step is meaningless if the step it is a fallback to did not
fail.
It is impossible to define a fallback to a fallback step (such
definition will be ignored)

-

pat
h-
bit

This is an optional qualifier that enables one to define a specific lid
offset to be used by the current unicast step. Setting lmc > 0 in main
opensm configuration file is a prerequisite for assigning specific path-
bit for the routing engine.
Default value is 0 (if path-bit is not specified)

Path-bit: 1

Dump Files per Routing Engine

Each routing engine on the chain will dump its own data files if the appropriate log_flags
is set (for instance 0x43).

The files that are dumped by each engine are:



Appendix – Routing Chains 12

opensm-lid-matrix.dump

opensm-lfts.dump

opensm.fdbs

opensm-subnet.lst

These files should contain the relevant data for each engine topology.

Each engine concatenates its ID and routing algorithm name in its dump files
names, as follows:

opensm-lid-matrix.2.minhop.dump

opensm.fdbs.3.ftree

opensm-subnet.4.updn.lst

If a fallback routing engine is used, both the routing engine that failed and the
fallback engine that replaces it, dump their data.

If, for example, engine 2 runs ftree and it has a fallback engine with 3 as its id that runs
minhop, one should expect to find 2 sets of dump files, one for each engine:

opensm-lid-matrix.2.ftree.dump

opensm-lid-matrix.3.minhop.dump

opensm.fdbs.2.ftree

opensm.fdbs.3.munhop

Note

sl2vl and mcfdbs files are dumped only once for the entire fabric and
NOT by every routing engine.



Appendix – Routing Chains 13

© Copyright 2024, NVIDIA. PDF Generated on 06/06/2024


	Configuring Routing Chains
	Defining Port Groups
	Defining Port Group Policy File
	Configuring Port Group Policy
	Port Group Qualifiers
	Rule Qualifiers
	Predefined Port Groups
	Port Groups Policy Examples

	Defining Topologies Policy File
	Configuring Topology Policy
	Topology Qualifiers

	Configuration File per Routing Engine
	Defining Routing Chain Policy File
	First Routing Engine in Chain
	Configuring Routing Chains Policy
	Routing Engine Qualifiers
	Dump Files per Routing Engine




