
BlueField Operation

Table of contents

Functional Diagram 5

Modes of Operation 7

Kernel Representors Model 22

Multi-host 24

Virtual Switch on BlueField 30

Configuring Uplink MTU 54

Link Aggregation 55

Scalable Functions 66

RDMA Stack Support on Host and Arm System 74

Controlling Host PF and VF Parameters 75

DPDK on BlueField 78

BlueField SNAP 79

BlueField SR-IOV 80

Compression Acceleration 82

Public Key Acceleration 83

IPsec Functionality 86

fTPM over OP-TEE 107

QoS Configuration 113

Virtio-net Emulated Devices 118

BlueField Operation 1

Table of contents

Functional Diagram

Modes of Operation

Kernel Representors Model

Multi-host

Virtual Switch on BlueField

Configuring Uplink MTU

Link Aggregation

Scalable Functions

RDMA Stack Support on Host and Arm System

Controlling Host PF and VF Parameters

DPDK on BlueField

BlueField SNAP

BlueField SR-IOV

Compression Acceleration

Public Key Acceleration

IPsec Functionality

fTPM over OP-TEE

QoS Configuration

Virtio-net Emulated Devices

Shared RQ Mode 119

BlueField Operation 2

Shared RQ Mode

BlueField Operation 3

The NVIDIA® BlueField® networking platform family delivers the flexibility to accelerate a
range of applications while leveraging ConnectX-based network controllers hardware-
based offloads with unmatched scalability, performance, and efficiency.

Functional Diagram

Modes of Operation

Kernel Representors Model

Multi-host

Virtual Switch on BlueField

Configuring Uplink MTU

Link Aggregation

Scalable Functions

RDMA Stack Support on Host and Arm System

Controlling Host PF and VF Parameters

DPDK on BlueField

BlueField SNAP

BlueField SR-IOV

Compression Acceleration

Public Key Acceleration

IPsec Functionality

fTPM over OP-TEE

QoS Configuration

Virtio-net Emulated Devices

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
file:///networking/display/bluefieldbsp480/Functional+Diagram
file:///networking/display/bluefieldbsp480/Modes+of+Operation
file:///networking/display/bluefieldbsp480/Kernel+Representors+Model
file:///networking/display/bluefieldbsp480/Virtual+Switch+on+BlueField
file:///networking/display/bluefieldbsp480/Configuring+Uplink+MTU
file:///networking/display/bluefieldbsp480/Link+Aggregation
file:///networking/display/bluefieldbsp480/Scalable+Functions
file:///networking/display/bluefieldbsp480/RDMA+Stack+Support+on+Host+and+Arm+System
file:///networking/display/bluefieldbsp480/Controlling+Host+PF+and+VF+Parameters
file:///networking/display/bluefieldbsp480/DPDK+on+BlueField
file:///networking/display/bluefieldbsp480/BlueField+SNAP
file:///networking/display/bluefieldbsp480/BlueField+SR-IOV
file:///networking/display/bluefieldbsp480/Compression+Acceleration
file:///networking/display/bluefieldbsp480/Public+Key+Acceleration
file:///networking/display/bluefieldbsp480/IPsec+Functionality
file:///networking/display/bluefieldbsp480/fTPM+over+OP-TEE
file:///networking/display/bluefieldbsp480/QoS+Configuration
file:///networking/display/bluefieldbsp480/Virtio-net+Emulated+Devices

BlueField Operation 4

Shared RQ Mode

file:///networking/display/bluefieldbsp480/Shared+RQ+Mode

BlueField Operation 5

Functional Diagram
The following is a functional diagram of the NVIDIA® BlueField®-2 DPU.

For each network port of the BlueField networking platform (DPU or SuperNIC), there are
2 physical PCIe networking functions exposed:

To the embedded Arm subsystem

To the host over PCIe

Note

BlueField Operation 6

The mlx5 drivers and their corresponding software stacks must be loaded on both hosts
(Arm and the host server). The OS running on each one of the hosts would probe the
drivers. BlueField-2 network interfaces are compatible with NVIDIA® ConnectX®-6 and
higher. BlueField-3 network interfaces are compatible with ConnectX-7 and higher.

The same network drivers are used both for BlueField and the ConnectX NIC family.

Different functions have different default grace period values during
which functions can recover from/handle a single fatal error:

ECPFs have a graceful period of 3 minutes

PFs have a graceful period of 1 minute

VFs/SFs have a graceful period of 30 seconds

BlueField Operation 7

Modes of Operation
The NVIDIA® BlueField® networking platform (DPU or SuperNIC) has several modes of
operation:

DPU mode, or embedded function (ECPF) ownership, where the embedded Arm
system controls the NIC resources and data path

Zero-trust mode which is an extension of the ECPF ownership with additional
restrictions on the host side

NIC mode where BlueField behaves exactly like an adapter card from the
perspective of the external host

DPU Mode

This mode, known also as embedded CPU function ownership (ECPF) mode, is the default
mode for the BlueField DPU.

In DPU mode, the NIC resources and functionality are owned and controlled by the
embedded Arm subsystem. All network communication to the host flows through a
virtual switch control plane hosted on the Arm cores, and only then proceeds to the host.
While working in this mode, the BlueField is the trusted function managed by the data
center and host administrator—to load network drivers, reset an interface, bring an
interface up and down, update the firmware, and change the mode of operation on
BlueField.

Note

The default mode of operation for the BlueField DPU is DPU mode

The default mode of operation for the BlueField SuperNIC is NIC
mode

BlueField Operation 8

A network function is still exposed to the host, but it has limited privileges. In particular:

1. The driver on the host side can only be loaded after the driver on the BlueField has
loaded and completed NIC configuration.

2. All ICM (Interface Configuration Memory) is allocated by the ECPF and resides in the
BlueField's memory.

3. The ECPF controls and configures the NIC embedded switch which means that
traffic to and from the host (BlueField) interface always lands on the Arm side.

When the server and BlueField are initiated, the networking to the host is blocked until
the virtual switch on the BlueField is loaded. Once it is loaded, traffic to the host is
allowed by default.

There are two ways to pass traffic to the host interface: Either using representors to
forward traffic to the host (every packet to/from the host would be handled also by the
network interface on the embedded Arm side) or push rules to the embedded switch
which allows and offloads this traffic.

In DPU mode, OpenSM must be run from the BlueField side (not the host side). Also,
management tools (e.g., sminfo, ibdev2netdev, ibnetdiscover) can only be run from the
BlueField side (not from the host side).

Zero-trust Mode

Zero-trust mode is a specialization of DPU mode which implements an additional layer of
security where the host system administrator is prevented from accessing BlueField from
the host. Once zero-trust mode is enabled, the data center administrator should control
BlueField entirely through the Arm cores and/or BMC connection instead of through the
host.

BlueField Operation 9

For security and isolation purposes, it is possible to restrict the host from performing
operations that can compromise the BlueField. The following operations can be restricted
individually when changing the BlueField host to zero-trust mode:

Port ownership – the host cannot assign itself as port owner

Hardware counters – t he host does not have access to hardware counters

Tracer functionality is blocked

RShim interface is blocked

Firmware flash is restricted

Enabling Zero-trust Mode

To enable host restriction:

1. Start the MST service.

2. Set zero-trust mode. From the Arm side, run:

If no --disable_* flags are used, users must perform BlueField system reboot .

If any --disable_* flags are used, users must perform BlueField system-level
reset.

Disabling Zero-trust Mode

To disable host restriction:

1. Set the mode to privileged. Run:

$ sudo mlxprivhost -d /dev/mst/<device> r --disable_rshim --disable_tracer --disable_counter_rd -
-disable_port_owner

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystemRebootBlueFieldSystemReboot
https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystem-levelReset
https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystem-levelReset

BlueField Operation 10

2. Applying configuration:

I f host restriction had not been applied using any --disable_* flags, users must
perform BlueField system reboot .

If host restriction had been applied using any --disable_* flags, users must
perform BlueField system-level reset.

NIC Mode

In this mode, BlueField behaves exactly like an adapter card from the perspective of the
external host.

$ sudo mlxprivhost -d /dev/mst/<device> p

Note

The following instructions presume BlueField to be operating in DPU
mode. If BlueField is operating in zero-trust mode, please return to
DPU mode before proceeding.

Note

The following notes are relevant for updating the BFB bundle in NIC
mode:

During BFB Bundle installation, Linux is expected to boot to
upgrade NIC firmware and BMC software

During the BFB Bundle installation, it is expected for the mlx5
driver to error messages on the x86 host. These prints may be

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystemRebootBlueFieldSystemReboot
https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystem-levelReset

BlueField Operation 11

NIC Mode for BlueField-3

NIC mode for BlueField-3 saves power, improves device performance, and improves the
host memory footprint.

Configuring NIC Mode on BlueField-3 from Linux

Enabling NIC Mode on BlueField-3 from Linux

Before moving to NIC mode, make sure you are operating in DPU mode by running:

The output should have INTERNAL_CPU_MODEL= EMBBEDDED_CPU(1) and
EXP_ROM_UEFI_ARM_ENABLE = True (1) (default).

To enable NIC mode from DPU mode:

1. Run the following on the host or Arm:

ignored as they are resolved by a mandatory, post-installation
power cycle.

It is mandatory to power cycle the host after the installation is
complete for the changes to take effect

As Linux is booting during BFB Bundle installation, it is expected
for the mlx5 core driver to timeout on the BlueField Arm

Note

When BlueField-3 is configured to operate in NIC mode, Arm OS will
not boot.

host/bf> sudo mlxconfig -d /dev/mst/mt41692_pciconf0 -e q

BlueField Operation 12

2. Perform BlueField system-level reset for the mlxconfig settings to take effect.

Disabling NIC Mode on BlueField-3 from Linux

To return to DPU mode from NIC mode:

1. Run the following on the host:

2. Perform BlueField system-level reset for the mlxconfig settings to take effect.

Configuring NIC Mode on BlueField-3 from Host BIOS HII UEFI Menu

1. Select the network device that presents the uplink (i.e., select the device with the
uplink MAC address).

2. Select "BlueField Internal Cpu Configuration".

host/bf> sudo mlxconfig -d /dev/mst/mt41692_pciconf0 s INTERNAL_CPU_OFFLOAD_ENGINE=1

host> sudo mlxconfig -d /dev/mst/mt41692_pciconf0 s INTERNAL_CPU_OFFLOAD_ENGINE=0

Info

The screenshots in this section are examples only and may vary
depending on the vendor of your specific host.

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystem-levelReset
https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystem-levelReset

BlueField Operation 13

To enable NIC mode, set "Internal Cpu Offload Engine" to "Disabled".

To switch back to DPU mode, set "Internal Cpu Offload Engine" to "Enabled".

BlueField Operation 14

Configuring NIC Mode on BlueField-3 from Arm UEFI

1. Access the Arm UEFI menu by pressing the Esc button twice.

2. Select "Device Manager".

3. Select "System Configuration".

4. Select "BlueField Modes".

5. Set the "NIC Mode" field to NicMode to enable NIC mode.

6. Exit "BlueField Modes" and "System Configuration" and make sure to save the
settings. Exit the UEFI setup using the 'reset' option. The configuration is not yet
applied and BlueField is expected to boot regularly, still in DPU mode.

7. perform BlueField system-level reset to change to NIC mode.

Configuring NIC Mode on BlueField-3 Using Redfish

Run the following from the BlueField BMC:

1. Get the current BIOS attributes:

Info

Configuring Unavailable is inapplicable.

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystem-levelReset

BlueField Operation 15

2. Change BlueField mode from DpuMode to NicMode:

3. Verify that the BMC has registered the new settings:

4. Issue a software reset then power cycle the host for the change to take effect.

5. Verify the mode is changed:

sudo curl -k -u root:'<password>' -H 'content-type: application/json' -X GET
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios/

curl -k -u root:'<password>' -H 'content-type: application/json' -d '{ "Attributes": { "NicMode":
"NicMode" } }' -X PATCH https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios/Settings

Info

To revert back to DPU mode, run:

curl -k -u root:'<password>' -H 'content-type: application/json' -d '{
"Attributes": { "NicMode": "DpuMode" } }' -X PATCH
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios/Settings

curl -k -u root:'<password>' -H 'content-type: application/json' -X GET
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios/Settings

curl -k -u root:'<password>' -H 'content-type: application/json' -X GET
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Oem/Nvidia

BlueField Operation 16

Updating Firmware Components in BlueField-3 NIC Mode

Once in NIC mode, updating ATF and UFEI can be done using the standard *.bfb image:

NIC Mode for BlueField-2

In this mode, the ECPFs on the Arm side are not functional but the user is still able to
access the Arm system and update mlxconfig options.

Configuring NIC Mode on BlueField-2 from Linux

Enabling NIC Mode on BlueField-2 from Linux

Note

To retrieve the mode via BIOS attributes, another BlueField
software reset is required before running the command:

curl -k -u root:'<password>' -H 'content-type: application/json' -X
GET https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios

bfb-install --bfb <BlueField-BSP>.bfb --rshim rshim0

Note

When NIC mode is enabled, the drivers and services on the Arm are
no longer functional.

BlueField Operation 17

To enable NIC mode from DPU mode:

1. Run the following from the x86 host side:

2. Perform BlueField system-level reset t o load the new configuration .

$ mst start
$ mlxconfig -d /dev/mst/<device> s \
INTERNAL_CPU_PAGE_SUPPLIER=1 \
INTERNAL_CPU_ESWITCH_MANAGER=1 \
INTERNAL_CPU_IB_VPORT0=1 \
INTERNAL_CPU_OFFLOAD_ENGINE=1

Note

To restrict RShim PF (optional), make sure to configure
INTERNAL_CPU_RSHIM=1 as part of the mlxconfig command.

Info

Refer to the troubleshooting section of the guide for a step-by-
step procedure.

Note

Multi-host is not supported when BlueField is operating in NIC mode.

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystem-levelReset

BlueField Operation 18

Disabling NIC Mode on BlueField-2 from Linux

To change from NIC mode back to DPU mode:

1. Install and start the RShim driver on the host.

2. Disable NIC mode. Run:

3. Perform a BlueField system reboot for the mlxconfig settings to take effect.

Note

To obtain firmware BINs for BlueField-2 devices, please refer to the
BlueField-2 firmware download page.

$ mst start
$ mlxconfig -d /dev/mst/<device> s \
INTERNAL_CPU_PAGE_SUPPLIER=0 \
INTERNAL_CPU_ESWITCH_MANAGER=0 \
INTERNAL_CPU_IB_VPORT0=0 \
INTERNAL_CPU_OFFLOAD_ENGINE=0

Note

If INTERNAL_CPU_RSHIM=1, then make sure to configure
INTERNAL_CPU_RSHIM=0 as part of the mlxconfig command.

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystemRebootBlueFieldSystemReboot
https://network.nvidia.com/support/firmware/bluefield2/

BlueField Operation 19

Configuring NIC Mode on BlueField-2 from Arm UEFI

Follow the same instructions in section "Configuring NIC Mode on BlueField-3 from Arm
UEFI".

Configuring NIC Mode on BlueField-2 Using Redfish

Follow the same instructions in section "Configuring NIC Mode on BlueField-3 Using
Redfish".

Separated Host Mode (Obsolete)

In separated host mode, a network function is assigned to both the Arm cores and the
host cores. The ports/functions are symmetric in the sense that traffic is sent to both
physical functions simultaneously. Each one of those functions has its own MAC address,
which allows one to communicate with the other, and can send and receive Ethernet and
RDMA over Converged Ethernet (RoCE) traffic. There is an equal bandwidth share
between the two functions.

There is no dependency between the two functions. They can operate simultaneously or
separately. The host can communicate with the embedded function as two separate
hosts, each with its own MAC and IP addresses (configured as a standard interface).

In separated host mode, the host administrator is a trusted actor who can perform all
configuration and management actions related to either network function.

Warning

This BlueField mode of operation is obsolete. Please do not use it!

BlueField Operation 20

This mode enables the same operational model of a SmartNIC (that does not have a
separated control plane). In this case, the Arm control plane can be used for different
functions but does not have any control on the host steering functions.

The limitations of this mode are as follows:

Switchdev (virtual switch offload) mode is not supported on either of the functions

SR-IOV is only supported on the host side

To configure separated host mode from DPU mode:

1. Enable separated host mode. Run:

2. Power cycle.

3. Verify configuration. Run:

4. Remove OVS bridges configuration from the Arm-side. Run:

$ mst start
$ mlxconfig -d /dev/mst/<device> s INTERNAL_CPU_MODEL=0

$ mst start
$ mlxconfig -d /dev/mst/<device> q | grep -i model

BlueField Operation 21

$ ovs-vsctl list-br | xargs -r -l ovs-vsctl del-br

BlueField Operation 22

Kernel Representors Model

BlueField uses netdev representors to map each one of the host side physical and virtual
functions.

1. Serve as the tunnel to pass traffic for the virtual switch or application running on the
Arm cores to the relevant PF or VF on the host side.

2. Serve as the channel to configure the embedded switch with rules to the
corresponding represented function.

Those representors are used as the virtual ports being connected to OVS or any other
virtual switch running on the Arm cores.

When operating in DPU mode, we see 2 representors for each one of the BlueField's
network ports: one for the uplink, and another one for the host side PF (the PF
representor created even if the PF is not probed on the host side). For each one of the
VFs created on the host side a corresponding representor would be created on the Arm
side. The naming convention for the representors is as follows:

Uplink representors: p<port_number>

PF representors: pf<port_number>hpf

VF representors: pf<port_number>vf<function_number>

The following diagram shows the mapping of between the PCIe functions exposed on the
host side and the representors. For the sake of simplicity, a single port model (duplicated
for the second port) is shown.

Note

This model is only applicable when the NVIDIA® BlueField®
networking platform (DPUs or SuperNIC) is operating in DPU mode.

file:///networking/display/bluefieldbsp480/Modes+of+Operation
file:///networking/display/bluefieldbsp480/Modes+of+Operation#src-3094733988_ModesofOperation-SmartNICmode

BlueField Operation 23

The red arrow demonstrates a packet flow through the representors, while the green
arrow demonstrates the packet flow when steering rules are offloaded to the embedded
switch. More details on that are available in the switch offload section.

Note

The MTU of host functions (PF/VF) must be smaller than the MTUs of
both the uplink and corresponding PF/VF representor. For example, if
the host PF MTU is set to 9000, both uplink and PF representor must
be set to above 9000.

BlueField Operation 24

Multi-host

In multi-host mode, each host interface can be divided into up to 4 independent PCIe
interfaces. All interfaces would share the same physical port, and are managed by the
same multi-physical function switch (MPFS). Each host would have its own e-switch and
would control its own traffic.

Note

This is only applicable to NVIDIA® BlueField® networking platforms
(DPU or SuperNIC) running on multi-host model.

Note

All hosts in multi-host configurations must be of the same type (e.g.,
all x86 or all Arm); a mix of different types is not supported.

BlueField Operation 25

Representors

Similar to Kernel Representors Model, each host here has an uplink representor, PF
representor, and VF representors (if SR-IOV is enabled). There are 8 sets of representors
(uplink/PF; see example code). For each host to work with OVS offload, the corresponding
representors must be added to the OVS bridge.

139: p0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master ovs-system state UP
group default qlen 1000
 link/ether 0c:42:a1:70:1d:b2 brd ff:ff:ff:ff:ff:ff
140: p1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 0c:42:a1:70:1d:b3 brd ff:ff:ff:ff:ff:ff
141: p2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master ovs-system state UP
group default qlen 1000
 link/ether 0c:42:a1:70:1d:b4 brd ff:ff:ff:ff:ff:ff
142: p3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 0c:42:a1:70:1d:b5 brd ff:ff:ff:ff:ff:ff
143: p4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 0c:42:a1:70:1d:b6 brd ff:ff:ff:ff:ff:ff
144: p5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000

file:///networking/display/bluefieldbsp480/Kernel+Representors+Model

BlueField Operation 26

The following is an example of adding all representors to OVS:

 link/ether 0c:42:a1:70:1d:b7 brd ff:ff:ff:ff:ff:ff
145: p6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 0c:42:a1:70:1d:b8 brd ff:ff:ff:ff:ff:ff
146: p7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 0c:42:a1:70:1d:b9 brd ff:ff:ff:ff:ff:ff
147: pf0hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master ovs-system state UP
group default qlen 1000
 link/ether 86:c5:8a:b7:7c:84 brd ff:ff:ff:ff:ff:ff
148: pf1hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 6e:ea:1b:84:88:49 brd ff:ff:ff:ff:ff:ff
149: pf2hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 92:ec:99:cb:d7:23 brd ff:ff:ff:ff:ff:ff
150: pf3hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 0e:0d:8e:03:2e:27 brd ff:ff:ff:ff:ff:ff
151: pf4hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 5e:42:af:05:67:93 brd ff:ff:ff:ff:ff:ff
152: pf5hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 96:e4:69:4c:b7:7f brd ff:ff:ff:ff:ff:ff
153: pf6hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 5e:67:33:c0:35:05 brd ff:ff:ff:ff:ff:ff
154: pf7hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 12:29:7d:56:07:3e brd ff:ff:ff:ff:ff:ff

 Bridge armBr-3
 Port armBr-3
 Interface armBr-3
 type: internal
 Port p3
 Interface p3
 Port pf3hpf
 Interface pf3hpf

BlueField Operation 27

 Bridge armBr-2
 Port p2
 Interface p2
 Port pf2hpf
 Interface pf2hpf
 Port armBr-2
 Interface armBr-2
 type: internal
 Bridge armBr-5
 Port p5
 Interface p5
 Port pf5hpf
 Interface pf5hpf
 Port armBr-5
 Interface armBr-5
 type: internal
 Bridge armBr-7
 Port pf7hpf
 Interface pf7hpf
 Port armBr-7
 Interface armBr-7
 type: internal
 Port p7
 Interface p7
 Bridge armBr-0
 Port p0
 Interface p0
 Port armBr-0
 Interface armBr-0
 type: internal
 Port pf0hpf
 Interface pf0hpf
 Bridge armBr-4
 Port p4
 Interface p4
 Port pf4hpf
 Interface pf4hpf
 Port armBr-4
 Interface armBr-4
 type: internal
 Bridge armBr-1
 Port armBr-1
 Interface armBr-1
 type: internal

BlueField Operation 28

For now, users can get the representor-to-host PF mapping by comparing the MAC
address queried from host control on the Arm-side and PF MAC on the host-side. In the
following example, the user knows p0 is the uplink representor for p6p1 as the MAC
address is the same.

From Arm:

From host:

The implicit mapping is as follows:

PF0, PF1 = host controller 1

PF2, PF3 = host controller 2

 Port p1
 Interface p1
 Port pf1hpf
 Interface pf1hpf
 Bridge armBr-6
 Port armBr-6
 Interface armBr-6
 type: internal
 Port p6
 Interface p6
 Port pf6hpf
 Interface pf6hpf
 ovs_version: "2.13.1"

cat /sys/class/net/p0/smart_nic/pf/config
MAC : 0c:42:a1:70:1d:9a
MaxTxRate : 0
State : Up

ip addr show p6p1
3: p6p1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen
1000
 link/ether 0c:42:a1:70:1d:9a brd ff:ff:ff:ff:ff:ff

BlueField Operation 29

PF4, PF5 = host controller 3

PF6, PF7 = host controller 4

Note

The maximum SF or VF count across all hosts is limited to 488 in total.
The user can divide 488 VFs/SFs to single or multiple controllers as
desired.

BlueField Operation 30

Virtual Switch on BlueField

NVIDIA® BlueField® networking platforms (DPUs or SuperNICs) support ASAP2

technology. It utilizes the representors mentioned in the previous section. The BlueField
software package includes OVS installation which already supports ASAP2. The virtual
switch running on the Arm cores allows us to pass all the traffic to and from the host
functions through the Arm cores while performing all the operations supported by OVS.
ASAP2 allows us to offload the datapath by programming the NIC embedded switch and
avoiding the need to pass every packet through the Arm cores. The control plane remains
the same as working with standard OVS.

OVS bridges are created by default upon first boot of the BlueField after BFB installation.

If manual configuration of the default settings for the OVS bridge is desired, run:

Note

For general information on OVS offload using ASAP² direct, please
refer to the MLNX_OFED documentation under OVS Offload Using
ASAP² Direct.

Note

ASAP2 is only supported in Embedded (DPU) mode.

systemctl start openvswitch-switch.service
ovs-vsctl add-port ovsbr1 p0
ovs-vsctl add-port ovsbr1 pf0hpf
ovs-vsctl add-port ovsbr2 p1

http://www.mellanox.com/page/asap2?mtag=asap2
http://www.mellanox.com/page/asap2?mtag=asap2
https://docs.mellanox.com/category/mlnxofedib

BlueField Operation 31

To verify successful bridging:

The host is now connected to the network.

ovs-vsctl add-port ovsbr2 pf1hpf

$ ovs-vsctl show
9f635bd1-a9fd-4f30-9bdc-b3fa21f8940a
 Bridge ovsbr2
 Port ovsbr2
 Interface ovsbr2
 type: internal
 Port p1
 Interface p1
 Port pf1sf0
 Interface en3f1pf1sf0
 Port pf1hpf
 Interface pf1hpf
 Bridge ovsbr1
 Port pf0hpf
 Interface pf0hpf
 Port p0
 Interface p0
 Port ovsbr1
 Interface ovsbr1
 type: internal
 Port pf0sf0
 Interface en3f0pf0sf0
 ovs_version: "2.14.1"

Note

TC-offload is not supported for IPv6 fragment packets. To make IPv6
fragment packets pass through OVS, the MTU of a specific port must
be set to equal to or larger than the fragmented packet size. IPv4

BlueField Operation 32

Verifying Host Connection on Linux

When BlueField is connected to another BlueField on another machine, manually assign
IP addresses with the same subnet to both ends of the connection.

1. Assuming the link is connected to p3p1 on the other host, run:

2. On the host to which BlueField is connected, run:

3. Have one ping the other. This is an example of the BlueField pinging the host:

Verifying Connection from Host to BlueField

There are two SFs configured on the BlueFIeld-2 device, enp3s0f0s0 and enp3s0f1s0, and
their representors are part of the built-in bridge. These interfaces will get IP addresses
from the DHCP server if it is present. Otherwise it is possible to configure IP address from
the host. It is possible to access BlueField via the SF netdev interfaces.

For example:

1. Verify the default OVS configuration. Run:

fragment packets can be TC-offloaded as their packet size is not
checked by OVS.

$ ifconfig p3p1 192.168.200.1/24 up

$ ifconfig p4p2 192.168.200.2/24 up

$ ping 192.168.200.1

ovs-vsctl show

BlueField Operation 33

2. Verify whether the SF netdev received an IP address from the DHCP server. If not,
assign a static IP. Run:

3. Verify the connection of the configured IP address. Run:

5668f9a6-6b93-49cf-a72a-14fd64b4c82b
 Bridge ovsbr1
 Port pf0hpf
 Interface pf0hpf
 Port ovsbr1
 Interface ovsbr1
 type: internal
 Port p0
 Interface p0
 Port en3f0pf0sf0
 Interface en3f0pf0sf0
 Bridge ovsbr2
 Port en3f1pf1sf0
 Interface en3f1pf1sf0
 Port ovsbr2
 Interface ovsbr2
 type: internal
 Port pf1hpf
 Interface pf1hpf
 Port p1
 Interface p1
 ovs_version: "2.14.1"

ifconfig enp3s0f0s0
enp3s0f0s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.200.125 netmask 255.255.255.0 broadcast 192.168.200.255
 inet6 fe80::8e:bcff:fe36:19bc prefixlen 64 scopeid 0x20<link>
 ether 02:8e:bc:36:19:bc txqueuelen 1000 (Ethernet)
 RX packets 3730 bytes 1217558 (1.1 MiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 22 bytes 2220 (2.1 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

ping 192.168.200.25 -c 5

BlueField Operation 34

Verifying Host Connection on Windows

Set IP address on the Windows side for the RShim or Physical network adapter, please
run the following command in Command Prompt:

To get the interface name, please run the following command in Command Prompt:

Output should give us the interface name that matches the description (e.g. NVIDIA
BlueField Management Network Adapter).

Once IP address is set, Have one ping the other.

PING 192.168.200.25 (192.168.200.25) 56(84) bytes of data.
64 bytes from 192.168.200.25: icmp_seq=1 ttl=64 time=0.228 ms
64 bytes from 192.168.200.25: icmp_seq=2 ttl=64 time=0.175 ms
64 bytes from 192.168.200.25: icmp_seq=3 ttl=64 time=0.232 ms
64 bytes from 192.168.200.25: icmp_seq=4 ttl=64 time=0.174 ms
64 bytes from 192.168.200.25: icmp_seq=5 ttl=64 time=0.168 ms

--- 192.168.200.25 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 91ms
rtt min/avg/max/mdev = 0.168/0.195/0.232/0.031 ms

PS C:\Users\Administrator> New-NetIPAddress -InterfaceAlias "Ethernet 16" -IPAddress "192.168.100.1"
-PrefixLength 22

PS C:\Users\Administrator> Get-NetAdapter

Ethernet 2 NVIDIA ConnectX-4 Lx Ethernet Adapter 6 Not Present 24-8A-07-0D-E8-1D
Ethernet 6 NVIDIA ConnectX-4 Lx Ethernet Ad...#2 23 Not Present 24-8A-07-0D-E8-1C
Ethernet 16 NVIDIA BlueField Management Netw...#2 15 Up CA-FE-01-CA-
FE-02

C:\Windows\system32>ping 192.168.100.2

BlueField Operation 35

Enabling OVS HW Offloading

OVS HW offloading is set by default by the /sbin/mlnx_bf_configure script upon first boot after
installation.

1. Enable TC offload on the relevant interfaces. Run:

2. Enable the HW offload: run the following commands (after enabling the HW offload):

3. Restarting OVS is required for the configuration to apply:

For Ubuntu:

For CentOS/RHEL:

To show OVS configuration:

Pinging 192.168.100.2 with 32 bytes of data:
Reply from 192.168.100.2: bytes=32 time=148ms TTL=64
Reply from 192.168.100.2: bytes=32 time=152ms TTL=64
Reply from 192.168.100.2: bytes=32 time=158ms TTL=64
Reply from 192.168.100.2: bytes=32 time=158ms TTL=64

$ ethtool -K <PF> hw-tc-offload on

$ ovs-vsctl set Open_vSwitch . Other_config:hw-offload=true

$ systemctl restart openvswitch-switch

$ systemctl restart openvswitch

BlueField Operation 36

At this point OVS would automatically try to offload all the rules.

To see all the rules that are added to the OVS datapath:

To see the rules that are offloaded to the HW:

Enabling OVS-DPDK Hardware Offload

1. Remove previously configured OVS bridges. Run:

Issue the command ovs-vsctl show to see already configured OVS bridges.

2. Enable the Open vSwitch service. Run:

$ ovs-dpctl show
system@ovs-system:
 lookups: hit:0 missed:0 lost:0
 flows: 0
 masks: hit:0 total:0 hit/pkt:0.00
 port 0: ovs-system (internal)
 port 1: armbr1 (internal)
 port 2: p0
 port 3: pf0hpf
 port 4: pf0vf0
 port 5: pf0vf1
 port 6: pf0vf2

$ ovs-appctl dpctl/dump-flows

$ ovs-appctl dpctl/dump-flows type=offloaded

ovs-vsctl del-br <bridge-name>

BlueField Operation 37

3. Configure huge pages:

4. Configure DPDK socket memory and limit. Run:

5. Enable hardware offload (disabled by default). Run:

6. Configure the DPDK whitelist. Run:

7. Create OVS-DPDK bridge. Run:

8. Add PF to OVS. Run:

systemctl start openvswitch

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

ovs-vsctl set Open_vSwitch . other_config:dpdk-socket-limit=2048
ovs-vsctl set Open_vSwitch . other_config:dpdk-socket-mem=2048

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true
ovs-vsctl --no-wait set Open_vSwitch . other_config:hw-offload=true

ovs-vsctl set Open_vSwitch . other_config:dpdk-extra="-a 0000:03:00.0,representor=
[0,65535],dv_flow_en=1,dv_xmeta_en=1,sys_mem_en=1"

ovs-vsctl add-br br0-ovs -- set Bridge br0-ovs datapath_type=netdev -- br-set-external-id br0-ovs
bridge-id br0-ovs -- set bridge br0-ovs fail-mode=standalone

BlueField Operation 38

9. Add representor to OVS. Run:

10. Restart the Open vSwitch service. This step is required for HW offload changes to
take effect.

For CentOS, run:

For Debian/Ubuntu, run:

For a reference setup configuration for BlueField-2 devices, refer to the article
"Configuring OVS-DPDK Offload with BlueField-2".

Configuring DPDK and Running TestPMD

1. Configure hugepages. Run:

2. Run testpmd.

ovs-vsctl add-port br0-ovs p0 -- set Interface p0 type=dpdk options:dpdk-devargs=0000:03:00.0

ovs-vsctl add-port br0-ovs pf0vf0 -- set Interface pf0vf0 type=dpdk options:dpdk-
devargs=0000:03:00.0,representor=[0]
ovs-vsctl add-port br0-ovs pf0hpf -- set Interface pf0hpf type=dpdk options:dpdk-
devargs=0000:03:00.0,representor=[65535]

systemctl restart openvswitch

systemctl restart openvswitch-switch

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

https://enterprise-support.nvidia.com/s/article/Configuring-OVS-DPDK-Offload-with-BlueField-2

BlueField Operation 39

For Ubuntu/Debian:

For CentOS:

For a detailed procedure with port display, refer to the article "Configuring DPDK and
Running testpmd on BlueField-2".

Flow Statistics and Aging

The aging timeout of OVS is given in milliseconds and can be configured by running the
following command:

Connection Tracking Offload

This feature enables tracking connections and storing information about the state of
these connections. When used with OVS, BlueField can offload connection tracking, so
that traffic of established connections bypasses the kernel and goes directly to hardware.

Both source NAT (SNAT) and destination NAT (DNAT) are supported with connection
tracking offload.

Configuring Connection Tracking Offload

This section provides an example of configuring OVS to offload all IP connections of host
PF0.

env LD_LIBRARY_PATH=/opt/mellanox/dpdk/lib/aarch64-linux-gnu
/opt/mellanox/dpdk/bin/dpdk-testpmd -a 03:00.0,representor=[0,65535] --socket-
mem=1024 -- --total-num-mbufs=131000 -i

env LD_LIBRARY_PATH=/opt/mellanox/dpdk/lib64/ /opt/mellanox/dpdk/bin/dpdk-testpmd
-a 03:00.0,representor=[0,65535] --socket-mem=1024 -- --total-num-mbufs=131000 -i

$ ovs-vsctl set Open_vSwitch . other_config:max-idle=30000

https://enterprise-support.nvidia.com/s/article/Configuring-OVS-DPDK-Offload-with-BlueField-2
https://enterprise-support.nvidia.com/s/article/Configuring-OVS-DPDK-Offload-with-BlueField-2

BlueField Operation 40

1. Enable OVS HW offloading.

2. Create OVS connection tracking bridge. Run:

3. Add p0 and pf0hpf to the bridge. Run:

4. Configure ARP packets to behave normally. Packets which do not comply are routed
to table1. Run:

5. Configure RoCEv2 packets to behave normally. RoCEv2 packets follow UDP port
4791 and a different source port in each direction of the connection. RoCE traffic is
not supported by CT. In order to run RoCE from the host add the following line
before ovs-ofctl add-flow ctBr "table=0,ip,ct_state=-trk,action=ct(table=1)":

This rule allows RoCEv2 UDP packets to skip connection tracking rules.

6. Configure the new established flows to be admitted to the connection tracking
bridge and to then behave normally. Run:

$ ovs-vsctl add-br ctBr

$ ovs-vsctl add-port ctBr p0
$ ovs-vsctl add-port ctBr pf0hpf

$ ovs-ofctl add-flow ctBr "table=0,arp,action=normal"
$ ovs-ofctl add-flow ctBr "table=0,ip,ct_state=-trk,action=ct(table=1)"

$ ovs-ofctl add-flow ctBr table=0,udp,tp_dst=4791,action=normal

$ ovs-ofctl add-flow ctBr "table=1,priority=1,ip,ct_state=+trk+new,action=ct(commit),normal"

BlueField Operation 41

7. Set already established flows to behave normally. Run:

Connection Tracking With NAT

This section provides an example of configuring OVS to offload all IP connections of host
PF0, and performing source network address translation (SNAT). The server host sends
traffic via source IP from 2.2.2.1 to 1.1.1.2 on another host. Arm performs SNAT and
changes the source IP to 1.1.1.16. Note that static ARP or route table must be configured
to find that route.

1. Configure untracked IP packets to do nat. Run:

2. Configure new established flows to do SNAT, and change source IP to 1.1.1.16. Run:

3. Configure already established flows act normal. Run:

Conntrack shows the connection with SNAT applied. Run conntrack -L for Ubuntu
22.04 kernel or cat /proc/net/nf_conntrack for older kernel versions. Example output:

$ ovs-ofctl add-flow ctBr "table=1,priority=1,ip,ct_state=+trk+est,action=normal"

ovs-ofctl add-flow ctBr "table=0,ip,ct_state=-trk,action=ct(table=1,nat)"

ovs-ofctl add-flow ctBr
"table=1,in_port=pf0hpf,ip,ct_state=+trk+new,action=ct(commit,nat(src=1.1.1.16)), p0"

ovs-ofctl add-flow ctBr "table=1,ip,ct_state=+trk+est,action=normal"

ipv4 2 tcp 6 src=2.2.2.1 dst=1.1.1.2 sport=34541 dport=5001 src=1.1.1.2 dst=1.1.1.16

BlueField Operation 42

Querying Connection Tracking Offload Status

Start traffic on PF0 from the server host (e.g., iperf) with an external network. Note that
only established connections can be offloaded. TCP should have already finished the
handshake, UDP should have gotten the reply.

To check if specific connections are offloaded from Arm, run conntrack -L for Ubuntu 22.04
kernel or cat /proc/net/nf_conntrack for older kernel versions.

The following is example output of offloaded TCP connection:

Performance Tune Based on Traffic Pattern

Offloaded flows (including connection tracking) are added to virtual switch FDB flow
tables. FDB tables have a set of flow groups. Each flow group saves the same traffic
pattern flows. For example, for connection tracking offloaded flow, TCP and UDP are
different traffic patterns which end up in two different flow groups.

A flow group has a limited size to save flow entries. By default, the driver has 4 big FDB
flow groups. Each of these big flow groups can save at most 4000000/(4+1)=800k
different 5-tuple flow entries. For scenarios with more than 4 traffic patterns, the driver

sport=5001 dport=34541 [OFFLOAD] mark=0 zone=1 use=3

Note

ICMP is not currently supported.

ipv4 2 tcp 6 src=1.1.1.2 dst=1.1.1.3 sport=51888 dport=5001 src=1.1.1.3 dst=1.1.1.2 sport=5001
dport=51888 [HW_OFFLOAD] mark=0 zone=0 use=3

BlueField Operation 43

provides a module parameter (num_of_groups) to allow customization and performance
tune.

To change the number of big FDB flow groups, run:

The change takes effect immediately if there is no flow inside the FDB table (no traffic
running and all offloaded flows are aged out), and it can be dynamically changed without
reloading the driver.

If there are residual offloaded flows when changing this parameter, then the new
configuration only takes effect after all flows age out.

Connection Tracking Aging

Aside from the aging of OVS, connection tracking offload has its own aging mechanism
with a default aging time of 30 seconds.

Maximum Tracked Connections

Note

The size of each big flow groups can be calculated according to
formula: size = 4000000/(num_of_groups+1)

$ echo <num_of_groups> > /sys/module/mlx5_core/parameters/num_of_groups

Note

BlueField Operation 44

The OS has a default setting of maximum tracked connections which may be configured
by running:

This changes the maximum tracked connections (both offloaded and non-offloaded)
setting to 1 million.

The following option specifies the limit on the number of offloaded connections. For
example:

This value is set to 1 million by default from BlueFiled. Users may choose a different
number by using the devlink command.

Offloading VLANs

OVS enables VF traffic to be tagged by the virtual switch.

The maximum number for tracked offloaded connections is limited to
1M by default.

$ /sbin/sysctl -w net.netfilter.nf_conntrack_max=1000000

devlink dev param set pci/${pci_dev} name ct_max_offloaded_conns value $max cmode runtime

Note

Make sure net.netfilter.nf_conntrack_tcp_be_liberal=1 when using connection
tracking.

BlueField Operation 45

For BlueField, the OVS can add VLAN tag (VLAN push) to all the packets sent by a network
interface running on the host (either PF or VF) and strip the VLAN tag (VLAN pop) from the
traffic going from the wire to that interface. Here we operate in Virtual Switch Tagging
(VST) mode. This means that the host/VM interface is unaware of the VLAN tagging. Those
rules can also be offloaded to the HW embedded switch.

To configure OVS to push/pop VLAN you need to add the tag=$TAG section for the OVS
command line that adds the representor ports. So if you want to tag all the traffic of VF0
with VLAN ID 52, you should use the following command when adding its representor to
the bridge:

In this scenario all the traffic being sent by VF 0 will have the same VLAN tag. We could set
a VLAN tag by flow when using the TC interface, this is explained in section "Using TC
Interface to Configure Offload Rules".

VXLAN Tunneling Offload

VXLAN tunnels are created on the Arm side and attached to the OVS. VXLAN
decapsulation/encapsulation behavior is similar to normal VXLAN behavior, including
over hw_offload=true.

To allow VXLAN encapsulation, the uplink representor (p0) should have an MTU value at
least 50 bytes greater than that of the host PF/VF. Please refer to "Configuring Uplink
MTU" for more information.

$ ovs-vsctl add-port armbr1 pf0vf0 tag=52

Note

If the virtual port is already connected to the bridge prior to
configuring VLAN, you would need to remove it first:

$ ovs-vsctl del-port pf0vf0

file:///networking/display/bluefieldbsp480/Configuring+Uplink+MTU
file:///networking/display/bluefieldbsp480/Configuring+Uplink+MTU

BlueField Operation 46

Configuring VXLAN Tunnel

1. Consider p0 to be the local VXLAN tunnel interface (or VTEP).

2. Remove p0 from any OVS bridge.

3. Build a VXLAN tunnel over OVS arm-ovs. Run:

4. Connect any host representor (e.g., pf0hpf) for which VXLAN is desired to the same
arm-ovs bridge.

5. Configure the MTU of the VTEP (p0) used by VXLAN to at least 50 bytes larger than
the host representor's MTU.

At this point, the host is unaware of any VXLAN operations done by the BlueField's OVS. If
the remote end of the VXLAN tunnel is properly set, any network traffic traversing arm-
ovs undergoes VXLAN encap/decap.

Querying OVS VXLAN hw_offload Rules

Run the following:

Note

To be consistent with the examples below, it is assumed that p0

is configured with a 1.1.1.1 IPv4 address.

ovs-vsctl add-br arm-ovs -- add-port arm-ovs vxlan11 -- set interface vxlan11 type=vxlan
options:local_ip=1.1.1.1 options:remote_ip=1.1.1.2 options:key=100
options:dst_port=4789

ovs-appctl dpctl/dump-flows type=offloaded

BlueField Operation 47

GRE Tunneling Offload

GRE tunnels are created on the Arm side and attached to the OVS. GRE
decapsulation/encapsulation behavior is similar to normal GRE behavior, including over
hw_offload=true.

To allow GRE encapsulation, the uplink representor (p0) should have an MTU value at
least 50 bytes greater than that of the host PF/VF.

Please refer to "Configuring Uplink MTU" for more information.

Configuring GRE Tunnel

in_port(2),eth(src=ae:fd:f3:31:7e:7b,dst=a2:fb:09:85:84:48),eth_type(0x0800), packets:1, bytes:98,
used:0.900s, actions:set(tunnel(tun_id=0x64,src=1.1.1.1,dst=1.1.1.2,tp_dst=4789,flags(key))),3
tunnel(tun_id=0x64,src=1.1.1.2,dst=1.1.1.1,tp_dst=4789,flags(+key)),in_port(3),eth(src=a2:fb:09:85:84:48,ds
packets:75, bytes:7350, used:0.900s, actions:2

Note

For the host PF, in order for VXLAN to work properly with the default
1500 MTU, follow these steps.

1. Disable host PF as the port owner from Arm (see section "Zero-
trust Mode"). Run:

2. The MTU of the end points (pf0hpf in the example above) of the
VXLAN tunnel must be smaller than the MTU of the tunnel
interfaces (p0) to account for the size of the VXLAN headers. For
example, you can set the MTU of P0 to 2000.

$ mlxprivhost -d /dev/mst/mt41682_pciconf0 --disable_port_owner r

file:///networking/display/bluefieldbsp480/Configuring+Uplink+MTU
file:///networking/display/bluefieldbsp480/Modes+of+Operation
file:///networking/display/bluefieldbsp480/Modes+of+Operation

BlueField Operation 48

1. Consider p0 to be the local GRE tunnel interface. p0 should not be attached to any
OVS bridge.

2. Create an OVS bridge, br0, with a GRE tunnel interface, gre0. Run:

3. Add pf0hpf to br0.

4. At this point, any network traffic sent or received by the host's PF0 undergoes GRE
processing inside the BlueField OS.

Querying OVS GRE hw_offload Rules

Run the following:

Note

To be consistent with the examples below, it is assumed that p0

is configured with a 1.1.1.1 IPv4 address and that the remote
end of the tunnel is 1.1.1.2.

ovs-vsctl add-port br0 gre0 -- set interface gre0 type=gre options:local_ip=1.1.1.1
options:remote_ip=1.1.1.2 options:key=100

ovs-vsctl add-port br0 pf0hpf

ovs-appctl dpctl/dump-flows type=offloaded
recirc_id(0),in_port(3),eth(src=50:6b:4b:2f:0b:74,dst=de:d0:a3:63:0b:30),eth_type(0x0800),ipv4(frag=no),
packets:878, bytes:122802, used:0.440s,
actions:set(tunnel(tun_id=0x64,src=1.1.1.1,dst=1.1.1.2,ttl=64,flags(key))),2

BlueField Operation 49

GENEVE Tunneling Offload

GENEVE tunnels are created on the Arm side and attached to the OVS. GENEVE
decapsulation/encapsulation behavior is similar to normal GENEVE behavior, including
over hw_offload=true.

To allow GENEVE encapsulation, the uplink representor (p0) must have an MTU value at
least 50 bytes greater than that of the host PF/VF.

Please refer to "Configuring Uplink MTU" for more information.

Configuring GENEVE Tunnel

tunnel(tun_id=0x64,src=1.1.1.1,dst=1.1.1.2,flags(+key)),recirc_id(0),in_port(2),eth(src=de:d0:a3:63:0b:30,dst
packets:995, bytes:97510, used:0.440s, actions:3

Note

For the host PF, in order for GRE to work properly with the default
1500 MTU, follow these steps.

1. Disable host PF as the port owner from Arm (see section "Zero-
trust Mode"). Run:

2. The MTU of the end points (pf0hpf in the example above) of the
GRE tunnel must be smaller than the MTU of the tunnel
interfaces (p0) to account for the size of the GRE headers. For
example, you can set the MTU of P0 to 2000.

$ mlxprivhost -d /dev/mst/mt41682_pciconf0 --disable_port_owner r

file:///networking/display/bluefieldbsp480/Configuring+Uplink+MTU
file:///networking/display/bluefieldbsp480/Modes+of+Operation
file:///networking/display/bluefieldbsp480/Modes+of+Operation

BlueField Operation 50

1. Consider p0 to be the local GENEVE tunnel interface. p0 should not be attached to
any OVS bridge.

2. Create an OVS bridge, br0, with a GENEVE tunnel interface, gnv0. Run:

3. Add pf0hpf to br0.

4. At this point, any network traffic sent or received by the host's PF0 undergoes
GENEVE processing inside the BlueField OS.

Options are supported for GENEVE. For example, you may add option 0xea55 to tunnel
metadata, run:

ovs-vsctl add-port br0 gnv0 -- set interface gnv0 type=geneve options:local_ip=1.1.1.1
options:remote_ip=1.1.1.2 options:key=100

ovs-vsctl add-port br0 pf0hpf

ovs-ofctl add-tlv-map geneve_br "{class=0xffff,type=0x0,len=4}->tun_metadata0"
ovs-ofctl add-flow geneve_br ip,actions="set_field:0xea55->tun_metadata0",normal

Note

For the host PF, in order for GENEVE to work properly with the
default 1500 MTU, follow these steps.

1. Disable host PF as the port owner from Arm (see section "Zero-
trust Mode"). Run:

$ mlxprivhost -d /dev/mst/mt41682_pciconf0 --disable_port_owner r

file:///networking/display/bluefieldbsp480/Modes+of+Operation
file:///networking/display/bluefieldbsp480/Modes+of+Operation

BlueField Operation 51

Using TC Interface to Configure Offload Rules

Offloading rules can also be added directly, and not just through OVS, using the tc utility.
To enable TC ingress on all the representors (i.e., uplink, PF, and VF).

L2 Rules Example

The rule below drops all packets matching the given source and destination MAC
addresses.

VLAN Rules Example

The following rules push VLAN ID 100 to packets sent from VF0 to the wire (and forward it
through the uplink representor) and strip the VLAN when sending the packet to the VF.

2. The MTU of the end points (pf0hpf in the example above) of the
GENEVE tunnel must be smaller than the MTU of the tunnel
interfaces (p0) to account for the size of the GENEVE headers.
For example, you can set the MTU of P0 to 2000.

$ tc qdisc add dev p0 ingress
$ tc qdisc add dev pf0hpf ingress
$ tc qdisc add dev pf0vf0 ingress

$ tc filter add dev pf0hpf protocol ip parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action drop

BlueField Operation 52

VXLAN Encap/Decap Example

$ tc filter add dev pf0vf0 protocol 802.1Q parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action vlan push id 100 \
 action mirred egress redirect dev p0

$ tc filter add dev p0 protocol 802.1Q parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 vlan_ethtype 0x800 \
 vlan_id 100 \
 vlan_prio 0 \
 action vlan pop \
 action mirred egress redirect dev pf0vf0

$ tc filter add dev pf0vf0 protocol 0x806 parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action tunnel_key set \
 src_ip 20.1.12.1 \
 dst_ip 20.1.11.1 \
 id 100 \
 action mirred egress redirect dev vxlan100

$ tc filter add dev vxlan100 protocol 0x806 parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 enc_src_ip 20.1.11.1 \
 enc_dst_ip 20.1.12.1 \

BlueField Operation 53

VirtIO Acceleration Through Hardware vDPA

For configuration procedure, please refer to the MLNX_OFED documentation under OVS
Offload Using ASAP² Direct > VirtIO Acceleration through Hardware vDPA.

 enc_key_id 100 \
 enc_dst_port 4789 \
 action tunnel_key unset \
 action mirred egress redirect dev pf0vf0

https://docs.mellanox.com/category/mlnxofedib

BlueField Operation 54

Configuring Uplink MTU
To configure the port MTU while operating in DPU mode, users must restrict the external
host port ownership by issuing the following command on the BlueField:

Server cold reboot is required for this restriction to take effect.

Once the host is restricted, the port MTU is configured by changing the MTU of the uplink
representor (p0 or p1).

mlxprivhost -d /dev/mst/<pciconf0 device> r --disable_port_owner

file:///networking/display/bluefieldbsp480/Modes+of+Operation#src-3094733988_ModesofOperation-DPUMode

BlueField Operation 55

Link Aggregation
Network bonding enables combining two or more network interfaces into a single
interface. It increases the network throughput, bandwidth and provides redundancy if
one of the interfaces fails.

NVIDIA ® BlueField ® networking platforms (DPUs or SuperNICs) have an option to
configure network bonding on the Arm side in a manner transparent to the host. Under
such configuration, the host would only see a single PF.

The following diagram describes this configuration:

Note

This functionality is supported when BlueField is set in embedded
function ownership mode for both ports.

Note

While LAG is being configured (starting with step 2 under section
"LAG Configuration"), traffic cannot pass through the physical ports.

BlueField Operation 56

LAG Modes

Two LAG modes are supported on BlueField:

Queue Affinity mode

Hash mode

Queue Affinity Mode

In this mode, packets are distributed according to the QPs.

1. To enable this mode, run:

Example device name: mt41686_pciconf0.

2. Add/edit the following field from /etc/mellanox/mlnx-bf.conf as follows:

$ mlxconfig -d /dev/mst/<device-name> s LAG_RESOURCE_ALLOCATION=0

BlueField Operation 57

3. Perform BlueField system reboot for the mlxconfig settings to take effect.

Hash Mode

In this mode, packets are distributed to ports according to the hash on packet headers.

1. To enable this mode, run:

Example device name: mt41686_pciconf0.

2. Add/edit the following field from /etc/mellanox/mlnx-bf.conf as follows:

3. Perform BlueField system reboot for the mlxconfig settings to take effect.

Prerequisites

1. Set the LAG mode to work with.

LAG_HASH_MODE="no"

Note

For this mode, prerequisite steps 3 and 4 are not required.

$ mlxconfig -d /dev/mst/<device-name> s LAG_RESOURCE_ALLOCATION=1

LAG_HASH_MODE="yes"

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystemRebootBlueFieldSystemReboot
https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystemRebootBlueFieldSystemReboot

BlueField Operation 58

2. (Optional) Hide the second PF on the host. Run:

Example device name: mt41686_pciconf0.

3. Delete any installed Scalable Functions (SFs) on the Arm side.

4. Stop the driver on the host side. Run:

5. The uplink interfaces (p0 and p1) on the Arm side must be disconnected from any
OVS bridge.

LAG Configuration

1. Create the bond interface. Run:

$ mlxconfig -d /dev/mst/<device-name> s HIDE_PORT2_PF=True NUM_OF_PF=1

Note

Perform BlueField system reboot for the mlxconfig settings to
take effect.

$ systemctl stop openibd

$ ip link add bond0 type bond
$ ip link set bond0 down
$ ip link set bond0 type bond miimon 100 mode 4 xmit_hash_policy layer3+4

Note

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystemRebootBlueFieldSystemReboot

BlueField Operation 59

2. Subordinate both the uplink representors to the bond interface. Run:

3. Bring the interfaces up. Run:

The following is an example of LAG configuration in Ubuntu:

While LAG is being configured (starting with the next step),
traffic cannot pass through the physical ports.

$ ip link set p0 down
$ ip link set p1 down
$ ip link set p0 master bond0
$ ip link set p1 master bond0

$ ip link set p0 up
$ ip link set p1 up
$ ip link set bond0 up

cat /etc/network/interfaces

interfaces(5) file used by ifup(8) and ifdown(8)
Include files from /etc/network/interfaces.d:
source /etc/network/interfaces.d/*
auto lo
iface lo inet loopback
#p0
auto p0
iface p0 inet manual
 bond-master bond1
#
#p1
auto p1
iface p1 inet manual
 bond-master bond1
#bond1
auto bond1

BlueField Operation 60

As a result, only the first PF of the BlueFields would be available to the host side for
networking and SR-IOV.

For OVS configuration, the bond interface is the one that needs to be added to the OVS
bridge (interfaces p0 and p1 should not be added). The PF representor for the first port
(pf0hpf) of the LAG must be added to the OVS bridge. The PF representor for the second
port (pf1hpf) would still be visible, but it should not be added to OVS bridge. Consider the
following examples:

iface bond1 inet static
 address 192.168.1.1
 netmask 255.255.0.0
 mtu 1500
 bond-mode 2
 bond-slaves p0 p1
 bond-miimon 100
 pre-up (sleep 2 && ifup p0) &
 pre-up (sleep 2 && ifup p1) &

Warning

When in shared RQ mode (enabled by default), the uplink
interfaces (p0 and p1) must always stay enabled. Disabling them
will break LAG support and VF-to-VF communication on same
host.

ovs-vsctl add-br bf-lag
ovs-vsctl add-port bf-lag bond0
ovs-vsctl add-port bf-lag pf0hpf

Warning

Trying to change bonding configuration in Queue Affinity mode
(including bringing the subordinated interface up/down) while the

file:///networking/display/bluefieldbsp480/Shared+RQ+Mode

BlueField Operation 61

Removing LAG Configuration

1. If Queue Affinity mode LAG is configured (i.e., LAG_RESOURCE_ALLOCATION=0):

1. Delete any installed Scalable Functions (SFs) on the Arm side.

2. Stop driver (openibd) on the host side. Run:

2. Delete the LAG OVS bridge on the Arm side. Run:

This allows for later restoration of OVS configuration for non-LAG networking.

3. Stop OVS service. Run:

host driver is loaded would cause FW syndrome and failure of the
operation. Make sure to unload the host driver before altering
BlueField bonding configuration to avoid this.

Note

When performing driver reload (openibd restart) or reboot, it is required
to remove bond configuration and to reapply the configurations after
the driver is fully up. Refer to steps 1-4 of "Removing LAG
Configuration".

systemctl stop openibd

ovs-vsctl del-br bf-lag

systemctl stop openvswitch-switch.service

BlueField Operation 62

4. Run:

As a result, both of the BlueField's network interfaces would be available to the host
side for networking and SR-IOV.

5. For the host to be able to use BlueField's ports, make sure to attach the ECPF and
host representor in an OVS bridge on the Arm side. Refer to "Virtual Switch on
BlueField" for instructions on how to perform this.

6. Revert from HIDE_PORT2_PF, on the Arm side. Run:

7. Restore default LAG settings in BlueField's firmware. Run:

8. Delete the following line from /etc/mellanox/mlnx-bf.conf on the Arm side:

9. Perform BlueField system reboot for the mlxconfig settings to take effect.

LAG on Multi-host

Only LAG hash mode is supported with BlueField multi-host.

LAG Multi-host Prerequisites

1. Enable LAG hash mode.

ip link set bond0 down
modprobe -rv bonding

mlxconfig -d /dev/mst/<device-name> s HIDE_PORT2_PF=False NUM_OF_PF=2

mlxconfig -d /dev/mst/<device-name> s LAG_RESOURCE_ALLOCATION=DEVICE_DEFAULT

LAG_HASH_MODE=...

file:///networking/display/bluefieldbsp480/Virtual+Switch+on+BlueField#src-3094734001_VirtualSwitchonBlueField-OVSbridgeconfig
file:///networking/display/bluefieldbsp480/Virtual+Switch+on+BlueField#src-3094734001_VirtualSwitchonBlueField-OVSbridgeconfig
https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystemRebootBlueFieldSystemReboot

BlueField Operation 63

2. Hide the second PF on the host. Run:

3. Make sure NVME emulation is disabled:

Example device name: mt41686_pciconf0.

4. The uplink interfaces (p0 and p4) on the Arm side, representing port0 and port1,
must be disconnected from any OVS bridge. As a result, only the first PF of BlueField
would be available to the host side for networking and SR-IOV.

LAG Configuration on Multi-host

1. Create the bond interface. Run:

2. Subordinate both the uplink representors to the bond interface. Run:

3. Bring the interfaces up. Run:

$ mlxconfig -d /dev/mst/<device-name> s HIDE_PORT2_PF=True NUM_OF_PF=1

$ mlxconfig -d /dev/mst/<device-name> s NVME_EMULATION_ENABLE=0

$ ip link add bond0 type bond
$ ip link set bond0 down
$ ip link set bond0 type bond miimon 100 mode 4 xmit_hash_policy layer3+4

$ ip link set p0 down
$ ip link set p4 down
$ ip link set p0 master bond0
$ ip link set p4 master bond0

BlueField Operation 64

4. For OVS configuration, the bond interface is the one that must be added to the OVS
bridge (interfaces p0 and p4 should not be added). The PF representor, pf0hpf, must
be added to the OVS bridge with the bond interface. The rest of the uplink
representors must be added to another OVS bridge along with their PF
representors. Consider the following examples:

Removing LAG Configuration on Multi-host

Refer to section "Removing LAG Configuration".

$ ip link set p0 up
$ ip link set p4 up
$ ip link set bond0 up

ovs-vsctl add-br br-lag
ovs-vsctl add-port br-lag bond0
ovs-vsctl add-port br-lag pf0hpf
ovs-vsctl add-br br1
ovs-vsctl add-port br1 p1
ovs-vsctl add-port br1 pf1hpf
ovs-vsctl add-br br2
ovs-vsctl add-port br2 p2
ovs-vsctl add-port br2 pf2hpf
ovs-vsctl add-br br3
ovs-vsctl add-port br3 p3
ovs-vsctl add-port br3 pf3hpf

Note

When performing driver reload (openibd restart) or reboot, you
must remove bond configuration from NetworkManager, and to
reapply the configurations after the driver is fully up.

BlueField Operation 65

BlueField Operation 66

Scalable Functions
A scalable function (SF) is a lightweight function that has a parent PCIe function on which
it is deployed. An mlx5 SF has its own function capabilities and its own resources. This
means that an SF has its own dedicated queues (txq, rxq, cq, eq) which are neither shared
nor stolen from the parent PCIe function.

No special support is needed from system BIOS to use SFs. SFs co-exist with PCIe SR-IOV
virtual functions. SFs do not require enabling PCIe SR-IOV.

Scalable Function Configuration

The following procedure offers a guide on using scalable functions with upstream Linux
kernel.

Device Configuration

BlueField Operation 67

1. Make sure your firmware version supports SFs (20.30.1004 and above).

2. Enable SF support in device. Run:

3. Perform BlueField system reboot for the mlxconfig settings to take effect.

Mandatory Kernel Configuration on Host

Support for Linux kernel mlx5 SFs must be enabled as it is disabled by default.

The following two Kconfig flags must be enabled.

MLX5_ESWITCH

MLX5_SF

Software Control and Commands

SFs use a 4-step process as follows:

Create

Configure

Deploy

Use

SFs are managed using mlxdevm tool. It is located under directory
/opt/mellanox/iproute2/sbin/mlxdevm.

1. Display the physical (i.e. uplink) port of the PF. Run:

$ mlxconfig -d 0000:03:00.0 s PF_BAR2_ENABLE=0 PER_PF_NUM_SF=1 PF_TOTAL_SF=236
PF_SF_BAR_SIZE=10

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystemRebootBlueFieldSystemReboot

BlueField Operation 68

2. Add an SF. Run:

When an SF is added on the external controller (e.g., BlueField) users must supply
the controller number. In a single host BlueField case, there is only one controller
starting with controller number 1.

Example of adding an SF for PF0 of external controller 1:

$ devlink port show
pci/0000:03:00.0/65535: type eth netdev p0 flavour physical port 0 splittable false

$ mlxdevm port add pci/0000:03:00.0 flavour pcisf pfnum 0 sfnum 88
pci/0000:03:00.0/229409: type eth netdev eth0 flavour pcisf controller 0 pfnum 0 sfnum 88
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached trust off

Note

An added SF is still not usable for the end-user application. It
can only be used after configuration and activation.

Note

SF number ≥1 000 is reserved for the virtio-net controller.

$ mlxdevm port add pci/0000:03:00.0 flavour pcisf pfnum 0 sfnum 88 controller 1
pci/0000:03:00.0/32768: type eth netdev eth6 flavour pcisf controller 1 pfnum 0 sfnum 88
splittable false
 function:

file:///networking/display/bluefieldbsp480/Virtio-net+Emulated+Devices#src-3094734034_VirtionetEmulatedDevices-VirtIO-netController

BlueField Operation 69

3. Show the newly added devlink port by its port index or its representor device.

Or:

4. Set the MAC address of the SF. Run:

5. Set SF as trusted (optional). Run:

 hw_addr 00:00:00:00:00:00 state inactive opstate detached

$ mlxdevm port show en3f0pf0sf88
pci/0000:03:00.0/229409: type eth netdev en3f0pf0sf88 flavour pcisf controller 0 pfnum 0 sfnum
88
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached trust off

$ mlxdevm port show pci/0000:03:00.0/229409
pci/0000:03:00.0/229409: type eth netdev en3f0pf0sf88 flavour pcisf controller 0 pfnum 0 sfnum
88
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached trust off

$ mlxdevm port function set pci/0000:03:00.0/229409 hw_addr 00:00:00:00:88:88

$ mlxdevm port function set pci/0000:03:00.0/229409 trust on
pci/0000:03:00.0/229409: type eth netdev en3f0pf0sf88 flavour pcisf controller 0 pfnum 0 sfnum
88
 function:
 hw_addr 00:00:00:00:88:88 state inactive opstate detached trust on

Note

BlueField Operation 70

6. Configure OVS. Run:

7. Activate the SF. Run:

Activating the SF results in creating an auxiliary device and initiating driver load
sequence for netdevice, RDMA, and VDPA devices. Once the operational state is
marked as attached, a driver is attached to this SF and device loading begins.

8. By default, SF is attached to the configuration driver mlx5_core.sf_cfg. Users must
unbind an SF from the configuration and bind it to the mlx5_core.sf driver to make use
of it. Run:

A trusted function has additional privileges like the ability to
update steering database.

$ systemctl start openvswitch
$ ovs-vsctl add-br network1
$ ovs-vsctl add-port network1 ens3f0npf0sf88
$ ip link set dev ens3f0npf0sf88 up

$ mlxdevm port function set pci/0000:03:00.0/229409 state active

Note

An application interested in using the SF netdevice and rdma
device must monitor the RDMA and netdevices either through
udev monitor or poll the sysfs hierarchy of the SF's auxiliary
device.

 $ echo mlx5_core.sf.4 > /sys/bus/auxiliary/devices/mlx5_core.sf.4/driver/unbind

BlueField Operation 71

9. View the new state of the SF. Run:

10. View the auxiliary device of the SF. Run:

There can be hundreds of auxiliary SF devices on the auxiliary bus. Each SF's
auxiliary device contains a unique sfnum and PCI information.

11. View the parent PCI device of the SF. Run:

 $ echo mlx5_core.sf.4 > /sys/bus/auxiliary/drivers/mlx5_core.sf/bind

$ mlxdevm port show en3f0pf0sf88 -jp
{
 "port": {
 "pci/0000:03:00.0/229409": {
 "type": "eth",
 "netdev": "en3f0pf0sf88",
 "flavour": "pcisf",
 "controller": 0,
 "pfnum": 0,
 "sfnum": 88,
 "function": {
 "hw_addr": "00:00:00:00:88:88",
 "state": "active",
 "opstate": "detached",
 "trust": "on"
 }
 }
 }
 }

$ cat /sys/bus/auxiliary/devices/mlx5_core.sf.4/sfnum
88

$ readlink /sys/bus/auxiliary/devices/mlx5_core.sf.1

BlueField Operation 72

12. View the devlink instance of the SF device. Run:

13. View the port and netdevice associated with the SF. Run:

14. View the RDMA device for the SF. Run:

15. Deactivate SF. Run:

Deactivating the SF triggers driver unload in the host system. Once SF is deactivated,
its operational state changes to "detached". An orchestration system should poll for
the operational state to be changed to "detached" before deleting the SF. This
ensures a graceful hot-unplug.

16. Delete SF. Run:

../../../devices/pci0000:00/0000:00:00.0/0000:01:00.0/0000:02:00.0/0000:03:00.0/mlx5_core.sf.1

$ devlink dev show
$ devlink dev show auxiliary/mlx5_core.sf.4

$ devlink port show auxiliary/mlx5_core.sf.4/1
auxiliary/mlx5_core.sf.4/1: type eth netdev enp3s0f0s88 flavour virtual port 0 splittable false

$ rdma dev show
$ ls /sys/bus/auxiliary/devices/mlx5_core.sf.4/infiniband/

$ mlxdevm port function set pci/0000:03:00.0/229409 state inactive

$ mlxdevm port del pci/0000:03:00.0/229409

BlueField Operation 73

Finally, once the state is "inactive" and the operational state is "detached" the user
can safely delete the SF. For faster provisioning, a user can reconfigure and active
the SF again without deletion.

BlueField Operation 74

RDMA Stack Support on
Host and Arm System
Full RDMA stack is pre-installed on the Arm Linux system. RDMA, whether RoCE or
InfiniBand, is supported on NVIDIA® BlueField® networking platforms (DPUs or
SuperNICs) in the configurations listed below.

Separate Host Mode

RoCE is supported from both the host and Arm system.

InfiniBand is supported on the host system.

Embedded CPU Mode

RDMA Support on Host

To use RoCE on a host system's PCIe PF, OVS hardware offloads must be enabled on the
Arm system.

RoCE is not supported by connection tracking offload. Please refer to "Configuring
Connection Tracking Offload" for a workaround for it.

RDMA Support on Arm

RoCE is unsupported on the Arm system on the PCIe PF. However, RoCE is fully supported
using scalable function as explained under "Scalable Functions". Scalable functions are
created by default, allowing RoCE traffic without further configuration.

InfiniBand is supported on the Arm system on the PCIe PF in this mode.

file:///networking/display/bluefieldbsp480/Virtual+Switch+on+BlueField#src-3094734001_VirtualSwitchonBlueField-ConfiguringConnectionTrackingOffload
file:///networking/display/bluefieldbsp480/Virtual+Switch+on+BlueField#src-3094734001_VirtualSwitchonBlueField-ConfiguringConnectionTrackingOffload
file:///networking/display/bluefieldbsp480/Scalable+Functions

BlueField Operation 75

Controlling Host PF and VF
Parameters
NVIDIA® BlueField® networking platforms (DPUs or SuperNICs) allow control over some
of the networking parameters of the PFs and VFs running on the host side.

Setting Host PF and VF Default MAC Address

From the Arm, users may configure the MAC address of the physical function in the host.
After sending the command, users must reload the NVIDIA driver in the host to see the
newly configured MAC address. The MAC address goes back to the default value in the
firmware after system reboot.

Example:

Setting Host PF and VF Link State

vPort state can be configured to Up, Down, or Follow. For example:

Querying Configuration

To query the current configuration, run:

$ echo "c4:8a:07:a5:29:59" > /sys/class/net/p0/smart_nic/pf/mac
$ echo "c4:8a:07:a5:29:61" > /sys/class/net/p0/smart_nic/vf0/mac

$ echo "Follow" > /sys/class/net/p0/smart_nic/pf/vport_state

$ cat /sys/class/net/p0/smart_nic/pf/config

BlueField Operation 76

Zero signifies that the rate limit is unlimited.

Disabling Host Networking PFs

It is possible to not expose networking functions to the host for users interested in using
storage or virtio functions only. When this feature is enabled, the host PF representors
(i.e. pf0hpf and pf1hpf) will not be seen on the Arm.

Without a PF on the host, it is not possible to enable SR-IOV, so VF representors will
not be seen on the Arm either

Without PFs on the host, there can be no SFs on it

To disable host networking PFs, run:

To reactivate host networking PFs:

For single-port BlueFields, run:

For dual-port BlueFields, run:

MAC : e4:8b:01:a5:79:5e
MaxTxRate : 0
State : Follow

mlxconfig -d /dev/mst/mt41686_pciconf0 s NUM_OF_PF=0

mlxconfig -d /dev/mst/mt41686_pciconf0 s NUM_OF_PF=1

mlxconfig -d /dev/mst/mt41686_pciconf0 s NUM_OF_PF=2

Note

BlueField Operation 77

When there are no networking functions exposed on the host, the
reactivation command must be run from the Arm.

Note

Perform BlueField system reboot for the mlxconfig settings to take
effect.

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystemRebootBlueFieldSystemReboot

BlueField Operation 78

DPDK on BlueField
Please refer to "NVIDIA BlueField Board Support Package" in the DPDK documentation.

http://doc.dpdk.org/guides/platform/bluefield.html

BlueField Operation 79

BlueField SNAP
NVIDIA® BlueField® SNAP (Software-defined Network Accelerated Processing)
technology enables hardware-accelerated virtualization of NVMe storage. BlueField SNAP
presents networked storage as a local NVMe SSD, emulating an NVMe drive on the PCIe
bus. The host OS/Hypervisor makes use of its standard NVMe-driver unaware that the
communication is terminated, not by a physical drive, but by the BlueField SNAP. Any
logic may be applied to the data via the BlueField SNAP framework and transmitted over
the network, on either Ethernet or InfiniBand protocol, to a storage target.

BlueField SNAP combines unique hardware-accelerated storage virtualization with the
advanced networking and programmability capabilities of NVIDIA® BlueField®
networking platforms (DPU or SuperNIC). BlueField SNAP together with the DPU enable a
world of applications addressing storage and networking efficiency and performance.

To enable BlueField SNAP, please refer to the NVIDIA BlueField-3 SNAP for NVMe and
Virtio-blk documentation.

https://docs.nvidia.com/networking/dpu-doca/index.html#doca
https://docs.nvidia.com/networking/dpu-doca/index.html#doca

BlueField Operation 80

BlueField SR-IOV
The NVIDIA® BlueField® SR-IOV solution is based on asymmetric VF and enables per-
ECPF and per PF control over number of VF allocation .

ECPF VFs are intended to be used in switchdev mode. Like SFs and host VFs, ECPF VFs
have a representor. Representor naming for ECPF VFs start after the host VFs. For
example, if the host has 32 VFs enabled, then the host VF representors are named pf0vf0-
pf0vf31, and the Arm representors continue at pf0vf32 onward.

To enable BlueField SR-IOV, apply the following configuration in the BlueField OS:

The BlueField should now support setting asymmetric VF configuration per port.

The following are examples for configuring the number of VFs per port:

1. In the BlueField, issue the following commands to configure 32 VFs per port:

mlxconfig -d 03:00.0 -y s PF_NUM_OF_VF_VALID=1

Note

Once PF_NUM_OF_VF_VALID is set, the NUM_OF_VFS mlxconfig option is not
relevant and the user must set PF_NUM_OF_VF for each host and EC
function. It is recommended for the number of VFs for each ECPF and
each host PF be the same.

bf> mlxconfig -d 03:00.0 -y s PF_NUM_OF_VF=32
bf> mlxconfig -d 03:00.1 -y s PF_NUM_OF_VF=32

BlueField Operation 81

2. In the host OS, issue the following commands to configure up to 126 VFs per port:

3. Perform a BlueField system reboot for the mlxconfig settings to take effect.

4. Create ECPF VFs:

Note

The BlueField ECPF driver in the BlueField's Arm OS limits the
number of VFs it supports to 32 per port.

host> mlxconfig -d 03:00.0 -y s PF_NUM_OF_VF=126
host> mlxconfig -d 03:00.1 -y s PF_NUM_OF_VF=126

echo 1 > /sys/class/net/p0/device/sriov_numvfs

Note

BlueField SR-IOV VFs do not support the following legacy SRIOV
functionalities:

Virtual switch tagging (VF VLAN)

Spoof check

VF trust

VF rate

file:///networking/display/bluefieldbsp480/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-3094734045_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystemReboot

BlueField Operation 82

Compression Acceleration
NVIDIA® BlueField® networking platforms (DPUs or SuperNIC) support high-speed
compression acceleration. This feature allows the host to offload multiple
compression/decompression jobs to BlueField.

Compress-class operations are supported in parallel to the net, vDPA, and RegEx class
operations.

Configuring Compression Acceleration

The compression application can run either from the host or Arm.

For more information, please refer to:

The DPDK community documentation about compression

The mlx5 support documentation

http://doc.dpdk.org/guides/prog_guide/compressdev.html
http://doc.dpdk.org/guides/compressdevs/mlx5.html

BlueField Operation 83

Public Key Acceleration
NVIDIA® BlueField® networking platforms (DPUs or SuperNICs) incorporates several
public key acceleration (PKA) engines to offload the processor of the Arm host, providing
high-performance computation of PK algorithms. BlueField's PKA is useful for a wide
range of security applications. It can assist with SSL acceleration, or a secure high-
performance PK signature generator/checker and certificate related operations.

BlueField's PKA software libraries implement a simple, complete framework for crypto
public key infrastructure (PKI) acceleration. It provides direct access to hardware
resources from the user space and makes available a number of arithmetic operations—
some basic (e.g., addition and multiplication), and some complex (e.g., modular
exponentiation and modular inversion)—and high-level operations such as RSA, Diffie-
Hallman, Elliptic Curve Cryptography, and the Federal Digital Signature Algorithm (DSA as
documented in FIPS-186) public-private key systems.

PKA Prerequisites

The BlueField PKA software is intended for BlueField products with HW accelerated
crypto capabilities. To verify whether your BlueField chip has crypto capabilities,
look for CPU flags aes, sha1, and sha2 in the BlueField OS. For example:

BlueField bootloader must enable SMMU support to benefit from the full hardware
and software capabilities. SMMU support may be enabled in UEFI menu through
system configuration options.

PKA Use Cases

Some of the use cases for the BlueField PKA involve integrating OpenSSL software
applications with BlueField's PKA hardware. The BlueField PKA dynamic engine for

lscpu
...
Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid

file:///networking/display/bluefieldbsp480/Installation+Troubleshooting+and+How-Tos#src-3094734054_InstallationTroubleshootingandHowTos-HowtoenabledisableSMMU
file:///networking/display/bluefieldbsp480/Installation+Troubleshooting+and+How-Tos#src-3094734054_InstallationTroubleshootingandHowTos-HowtoenabledisableSMMU

BlueField Operation 84

OpenSSL allows applications integrated with OpenSSL (e.g., StrongSwan) to accomplish a
variety of security-related goals and to accelerate the cryptographic processing with the
BlueField PKA hardware. OpenSSL versions ≥1.0.0, ≤1.1.1, and 3.0.2 are supported.

The engine supports the following operations:

RSA

DH

DSA

ECDSA

ECDH

Random number generation that is cryptographically secure.

Up to 4096-bit keys for RSA, DH, and DSA operations are supported. Elliptic Curve
Cryptography support of (nist) prime curves for 160, 192, 224, 256, 384 and 521 bits.

For example, to sign a file using BlueField's PKA engine:

To verify the signature, execute:

Note

With CentOS 7.6, only OpenSSL 1.1 (not 1.0) works with PKA engine
and keygen. Use openssl11 with PKA engine and keygen.

$ openssl dgst -engine pka -sha256 -sign <privatekey> -out <signature> <filename>

$ openssl dgst -engine pka -sha256 -verify <publickey> -signature <signature> <filename>

BlueField Operation 85

For further details on BlueField PKA, please refer to "PKA Driver Design and
Implementation Architecture Document" and/or "PKA Programming Guide". Directions
and instructions on how to integrate the BlueField PKA software libraries are provided in
the README files on the Mellanox PKA GitHub.

https://github.com/Mellanox/pka

BlueField Operation 86

IPsec Functionality
Transparent IPsec Encryption and Decryption

NVIDIA® BlueField® networking platforms (DPU or SuperNICs) can offload IPsec
operations transparently from the host CPU. This means that the host does not need to
be aware that network traffic is encrypted before hitting the wire or decrypted after
coming off the wire. IPsec operations can be run on BlueField in software on the Arm
cores or in the accelerator block.

IPsec Hardware Offload: Crypto Offload

IPsec hardware crypto offload, also known as IPsec inline offload or IPsec aware offload,
enables the user to offload IPsec crypto encryption and decryption operations to the
hardware, leaving the encapsulation/decapsulation task to the software.

Please refer to the MLNX_OFED documentation under Features Overview and
Configuration > Ethernet Network > IPsec Crypto Offload for more information on
enabling and configuring this feature.

Please note that to use IPsec crypto offload with OVS, you must disable hardware
offloads.

IPsec Hardware Offload: Packet Offload

IPsec packet offload offloads both IPsec crypto and IPsec encapsulation to the hardware.
IPsec packet offload is configured on the Arm via the uplink netdev. The following figure

Note

IPSec packet offload is only supported on Ubuntu BlueField kernel
5.15

https://docs.mellanox.com/category/mlnxofedib

BlueField Operation 87

illustrates IPsec packet offload operation in hardware.

Enabling IPsec Packet Offload

Explicitly enable IPsec packet offload on the Arm cores before setting up offload-aware
IPsec tunnels .

Explicitly enable IPsec full offload on the Arm cores.

1. Set IPSEC_FULL_OFFLOAD="yes" in /etc/mellanox/mlnx-bf.conf .

2. Restart IB driver (rebooting also works). Run:

Note

If an OVS VXLAN tunnel configuration already exists, stop openvswitch

service prior to performing the steps below and restart the service
afterwards.

/etc/init.d/openibd restart

BlueField Operation 88

To configure IPsec rules, please follow the instructions in MLNX_OFED documentation
under Features Overview and Configuration > Ethernet Network > IPsec Crypto Offload >

Note

If mlx-regex is running:

1. Disable mlx-regex:

2. Restart IB driver according to the command above.

3. Re-enable mlx-regex after the restart has finished:

systemctl stop mlx-regex

systemctl restart mlx-regex

Note

To revert IPsec full offload mode, redo the procedure from step 1,
only difference is to set IPSEC_FULL_OFFLOAD="no" in /etc/mellanox/mlnx-

bf.conf.

Note

To use IPsec packet packet with strongSwan, refer to section "IPsec
Packet Offload strongSwan Support".

https://docs.mellanox.com/category/mlnxofedib

BlueField Operation 89

Configuring Security Associations for IPsec Offloads but, use "offload packet" to achieve
IPsec Packet offload.

Configuring IPsec Rules with iproute2

The following example configures IPsec packet offload rules with local address
192.168.1.64 and remote address 192.168.1.65:

Note

If you are working directly with the ip xfrm tool, you must use the
/opt/mellanox/iproute2/sbin/ip to benefit from IPsec packet offload
support.

ip xfrm state add src 192.168.1.64/24 dst 192.168.1.65/24 proto esp spi 0x4834535d reqid 0x4834535d
mode transport aead 'rfc4106(gcm(aes))'
0xc57f6f084ebf8c6a71dd9a053c2e03b94c658a9bf00dd25780e73948931d10d08058a27c 128 offload
packet dev p0 dir out sel src 192.168.1.64 dst 192.168.1.65
ip xfrm state add src 192.168.1.65/24 dst 192.168.1.64/24 proto esp spi 0x2be60844 reqid 0x2be60844
mode transport aead 'rfc4106(gcm(aes))'
0xacca06b66489011d3c1c21f1a36d925cf7449d3aeaa6fe534446c3a8f8bd5f5fdc266589 128 offload
packet dev p0 dir in sel src 192.168.1.65 dst 192.168.1.64
sudo ip xfrm policy add src 192.168.1.64 dst 192.168.1.65 offload packet dev p0 dir out tmpl src
192.168.1.64/24 dst 192.168.1.65/24 proto esp reqid 0x4834535d mode transport
sudo ip xfrm policy add src 192.168.1.65 dst 192.168.1.64 offload packet dev p0 dir in tmpl src
192.168.1.65/24 dst 192.168.1.64/24 proto esp reqid 0x2be60844 mode transport

Note

The numbers used by the spi, reqid, or aead algorithms are random.
These same numbers are also used in the configuration of peer Arm.

BlueField Operation 90

IPsec Packet Offload strongSwan Support

BlueField supports configuring IPsec rules using strongSwan 5.9.10—appears as 5.9.10bf
in the BFB which is based on upstream 5.9.10 version—which supports new fields in the
swanctl.conf file.

The following figure illustrates an example with two BlueField devices , Left and Right,
operating with a secured VXLAN channel .

Support for strongSwan IPsec packet HW offload requires using VXLAN together with
IPSec as shown here .

1. Follow the procedure under section "Enabling IPsec Packet Offload".

2. Follow the procedure under section "VXLAN Tunneling Offload" to configure VXLAN
on Arm.

Do not confuse these numbers with source and destination IPs. The
connection may fail if they are not consistent.

Note

file:///networking/display/bluefieldbsp480/Virtual+Switch+on+BlueField#src-3094734001_VirtualSwitchonBlueField-VXLANTunnelingOffload

BlueField Operation 91

3. Enable tc offloading. Run:

Setting IPSec Packet Offload Using strongSwan

strongSwan configures IPSec HW packet offload using a new value added to its
configuration file swanctl.conf (as of strongSwan version 5.9.10).

The file should be placed under "sysconfdir" which by default can be found at
/etc/swanctl/swanctl.conf.

The terms Left (BFL) and Right (BFR) are used to identify the two nodes that communicate
(corresponding with the figure under section "IPsec Packet Offload strongSwan Support").

In this example, 192.168.50.1 is used for the left PF uplink and 192.168.50.2 for the right
PF uplink.

Make sure the MTU of the PF used by VXLAN is at least 50 bytes
larger than VXLAN-REP MTU.

ethtool -K <PF> hw-tc-offload on

Note

Do not add the PF itself using "ovs-vsctl add-port" to the OVS.

connections {
 BFL-BFR {
 local_addrs = 192.168.50.1
 remote_addrs = 192.168.50.2

 local {
 auth = psk
 id = host1

BlueField Operation 92

 }
 remote {
 auth = psk
 id = host2
 }

children {
 bf-out {
 local_ts = 192.168.50.1/24 [udp]
 remote_ts = 192.168.50.2/24 [udp/4789]
 esp_proposals = aes128gcm128-x25519-esn
 mode = transport
 policies_fwd_out = yes
 hw_offload = packet
 }
 bf-in {
 local_ts = 192.168.50.1/24 [udp/4789]
 remote_ts = 192.168.50.2/24 [udp]
 esp_proposals = aes128gcm128-x25519-esn
 mode = transport
 policies_fwd_out = yes
 hw_offload = packet
 }
 }
 version = 2
 mobike = no
 reauth_time = 0
 proposals = aes128-sha256-x25519
 }
}

secrets {
 ike-BF {
 id-host1 = host1
 id-host2 = host2
 secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
 }
}

Note

BlueField Operation 93

Note that:

"hw_offload = packet" is responsible for configuring IPsec packet offload

Packet offload support has been added to the existing hw_offload field and preserves
backward compatibility.

For your reference:

Val
ue

Description

no Do not configure HW offload

cryp
to

Configure crypto HW offload if supported by the kernel and hardware, fail if
not supported

yes Same as crypto (considered legacy)

pack
et

Configure packet HW offload if supported by the kernel and hardware, fail if
not supported

auto
Configure packet HW offload if supported by the kernel and hardware, do
not fail (perform fallback to crypto or no as necessary)

[udp/4789] is crucial for instructing strongSwan to IPSec only VXLAN communication

BFB installation will place two example swanctl.conf files for both Left
and Right nodes (BFL.swanctl.conf and BFR.swanctl.conf respectively)
in the strongSwan conf.d directory. Please move one of them
manually to the other machine and edit it according to your
configuration.

Note

Whenever the value of hw_offload is changed, strongSwan
configuration must be reloaded.

BlueField Operation 94

Mind the following limitations:

Field Limitation

reauth_time Ignored if set

rekey_time Do not use. Ignored if set.

rekey_bytes Do not use. Not supported and will fail if it is set.

rekey_packets Use for rekeying

Running strongSwan Example

Notes:

IPsec daemons are started by systemd strongswan.service, users must avoid using
strongswan-starter.service as it is a legacy service and using both services at the same
time leads to anomalous behavior

Use systemctl [start | stop | restart] to control IPsec daemons through strongswan.service.
For example, to restart, the command systemctl restart strongswan.service will effectively
do the same thing as ipsec restart.

Note

Packet HW offload can only be done on what is streamed over
VXLAN.

Warning

Do not use ipsec script to restart/stop/start.

If you are using the ipsec script, then, in order to restart or start
the daemons, openssl.cnf.orig must be copied to openssl.cnf
before performing ipsec restart or ipsec start. Then openssl.cnf.mlnx

BlueField Operation 95

The strongSwan package installs openssl.cnf config files to enable hardware offload of
PK and RNG operations via the OpenSSL plugin

The OpenSSL dynamic engine is used to carry out the offload to hardware. OpenSSL
dynamic engine ID is "pka".

Procedure:

1. Perform the following on Left and Right devices (corresponding with the figure
under section "IPsec Packet Offload strongSwan Support").

The following should appear.

2. Perform the actual connection on one side only (client, Left in this case).

can be copied to openssl.cnf after restart or start. Failing to do so
can result in errors since openssl.cnf.mlnx allows IPsec PK and RNG
hardware offload via the OpenSSL plugin.

On Ubuntu/Debian/Yocto, openssl.cnf* can be found under
/etc/ssl/

On CentOS, openssl.cnf* can be found under /etc/pki/tls/

systemctl start strongswan.service
swanctl --load-all

Starting strongSwan 5.9.10bf IPsec [starter]...
no files found matching '/etc/ipsec.d/*.conf'
deprecated keyword 'plutodebug' in config setup
deprecated keyword 'virtual_private' in config setup
loaded ike secret 'ike-BF'
no authorities found, 0 unloaded
no pools found, 0 unloaded
loaded connection 'BFL-BFR'
successfully loaded 1 connections, 0 unloaded

BlueField Operation 96

The following should appear.

You may now send encrypted data over the HOST VF interface (192.168.70.[1|2])
configured for VXLAN.

Building strongSwan

Do this only if you want to build your own BFB and would like to rebuild strongSwan.

swanctl -i --child bf-in bf-out

[IKE] initiating IKE_SA BFL-BFR[1] to 192.168.50.2
[ENC] generating IKE_SA_INIT request 0 [SA KE No N(NATD_S_IP) N(NATD_D_IP) N(FRAG_SUP)
N(HASH_ALG) N(REDIR_SUP)]
[NET] sending packet: from 192.168.50.1[500] to 192.168.50.2[500] (240 bytes)
[NET] received packet: from 192.168.50.2[500] to 192.168.50.1[500] (273 bytes)
[ENC] parsed IKE_SA_INIT response 0 [SA KE No N(NATD_S_IP) N(NATD_D_IP) CERTREQ
N(FRAG_SUP) N(HASH_ALG) N(CHDLESS_SUP) N(MULT_AUTH)]
[CFG] selected proposal:
IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/CURVE_25519
[IKE] received 1 cert requests for an unknown ca
[IKE] authentication of 'host1' (myself) with pre-shared key
[IKE] establishing CHILD_SA bf{1}
[ENC] generating IKE_AUTH request 1 [IDi N(INIT_CONTACT) IDr AUTH N(USE_TRANSP) SA TSi TSr
N(MULT_AUTH) N(EAP_ONLY) N(MSG_ID_SYN_SUP)]
[NET] sending packet: from 192.168.50.1[500] to 192.168.50.2[500] (256 bytes)
[NET] received packet: from 192.168.50.2[500] to 192.168.50.1[500] (224 bytes)
[ENC] parsed IKE_AUTH response 1 [IDr AUTH N(USE_TRANSP) SA TSi TSr N(AUTH_LFT)]
[IKE] authentication of 'host2' with pre-shared key successful
[IKE] IKE_SA BFL-BFR[1] established between 192.168.50.1[host1]...192.168.50.2[host2]
[IKE] scheduling reauthentication in 10027s
[IKE] maximum IKE_SA lifetime 11107s
[CFG] selected proposal: ESP:AES_GCM_16_128/NO_EXT_SEQ
[IKE] CHILD_SA bf{1} established with SPIs ce543905_i c60e98a2_o and TS 192.168.50.1/32 ===
192.168.50.2/32
initiate completed successfully

BlueField Operation 97

1. Install dependencies mentioned here. libgmp-dev is missing from that list, so make
sure to install that as well.

2. Git clone https://github.com/Mellanox/strongswan.git.

3. Git checkout BF-5.9.10. This branch is based on the official strongSwan 5.9.10
branch with added packaging and support for DOCA IPsec plugin (check the NVIDIA
DOCA IPsec Security Gateway Application Guide for more information regarding the
strongSwan DOCA plugin).

4. Run autogen.sh within the strongSwan repo.

5. Run the following:

Note:

--enable-systemd enables the systemd service for strongSwan present inside the
GitHub repo (see step 3) at init/systemd-starter/strongswan.service.in.

When building strongSwan on your own, the openssl.cnf.mlnx file, required for PK and
RNG HW offload via OpenSSL plugin, is not installed. It must be copied over
manually from github repo inside the openssl-conf directory. See section "Running
Strongswan Example" for important notes.

configure --enable-openssl --disable-random --prefix=/usr/local --sysconfdir=/etc --enable-
systemd
make
make install

Note

The openssl.cnf.mlnx file references PKA engine shared objects.
libpka (version 1.3 or later) and openssl (version 1.1.1) must be
installed for this to work.

https://wiki.strongswan.org/projects/strongswan/repository/entry/HACKING
https://github.com/Mellanox/strongswan.git
https://github.com/strongswan/strongswan/tree/5.9.10
https://github.com/strongswan/strongswan/tree/5.9.10
https://docs.nvidia.com/doca/sdk/ipsec-security-gateway/
https://docs.nvidia.com/doca/sdk/ipsec-security-gateway/

BlueField Operation 98

IPsec Packet Offload and OVS Offload

IPsec packet offload configuration works with and is transparent to OVS offload. This
means all packets from OVS offload are encrypted by IPsec rules.

The following figure illustrates the interaction between IPsec packet offload and OVS
VXLAN offload.

OVS IPsec

To start the service, run:

Note

OVS offload and IPsec IPv6 do not work together.

BlueField Operation 99

Refer to section "Enabling IPsec Packet Offload" for information to prepare the IPsec
packet offload environment.

Configuring IPsec Tunnel

For the sake of example, if you want to build an IPsec tunnel between two hosts with the
following external IP addresses:

host1 – 1.1.1.1

host2 – 1.1.1.2

You have to first make sure host1 and host2 can ping each other via these external IPs.

This example will set up some variables on both hosts, set ip1 and ip2:

1. Set up OVS bridges in both hosts.

1. On Arm_1:

2. On Arm_2:

systemctl start openvswitch-ipsec.service

ip1=1.1.1.1
ip2=1.1.1.2
REP=eth5
PF=p0

ovs-vsctl add-br ovs-br
ovs-vsctl add-port ovs-br $REP
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

ovs-vsctl add-br ovs-br

BlueField Operation 100

2. Set up IPsec tunnel. Three authentication methods are possible. Follow the steps
relevant for the method that works best for your environment.

3. Make sure the MTU of the PF used by tunnel is at least 50 bytes larger than VXLAN-
REP MTU.

1. Disable host PF as the port owner from Arm (see section "Zero-trust Mode").
Run:

ovs-vsctl add-port ovs-br $REP
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

Note

Configuring other_config:hw-offload=true sets IPsec packet
offload. Setting it to false sets software IPsec. Make sure
that IPsec devlink's mode is set back to none for software
IPsec.

Note

Do not try to use more than 1 authentication method.

Note

After the IPsec tunnel is set up, strongSwan configuration will be
automatically done.

file:///networking/display/bluefieldbsp480/Modes+of+Operation

BlueField Operation 101

2. The MTU of the end points (pf0hpf in the example above) of the tunnel must be
smaller than the MTU of the tunnel interfaces (p0) to account for the size of the
tunnel headers. For example, you can set the MTU of P0 to 2000.

Authentication Methods

Using Pre-shared Key

1. On Arm_1, run:

$ mlxprivhost -d /dev/mst/mt41682_pciconf0 --disable_port_owner r

Note

The following example uses tun type=gre and dst_port=1723. Depending
on your configuration, tun type can be vxlan or geneve with dst_port 4789
or 6081 respectively.

Note

The following example uses ovs-br as the bridge name. However, this
value can be any string you have chosen to create the bridge
previously.

ovs-vsctl add-port ovs-br tun -- \
 set interface tun type=gre \
 options:local_ip=$ip1 \
 options:remote_ip=$ip2 \
 options:key=100 \
 options:dst_port=1723 \

BlueField Operation 102

2. On Arm_2, run:

Using Self-signed Certificate

1. Generate self-signed certificates in both host1 and host2, then copy the certificate of
host1 to host2, and the certificate of host2 to host1.

2. Move both host1-cert.pem and host2-cert.pem to /etc/swanctl/x509/, if on Ubuntu, or
/etc/strongswan/swanctl/x509/, if on CentOS.

3. Move the local private key to /etc/swanctl/private, if on Ubuntu, or
/etc/strongswan/swanctl/private, if on CentOS. For example, for host1:

4. Set up OVS other_config on both sides.

1. On Arm_1:

2. On Arm_2:

 options:psk=swordfish

ovs-vsctl add-port ovs-br tun -- \
 set interface tun type=gre \
 options:local_ip=$ip2 \
 options:remote_ip=$ip1 \
 options:key=100 \
 options:dst_port=1723 \
 options:psk=swordfish

mv host1-privkey.pem /etc/swanctl/private

ovs-vsctl set Open_vSwitch . other_config:certificate=/etc/swanctl/x509/host1-cert.pem \
 other_config:private_key=/etc/swanctl/private/host1-privkey.pem

BlueField Operation 103

5. Set up the tunnel.

1. On Arm_1:

2. On Arm_2:

Using CA-signed Certificate

1. For this method, you need all the certificates and the requests to be in the same
directory during the certificate generating and signing. This example refers to this
directory as certsworkspace.

1. On Arm_1:

ovs-vsctl set Open_vSwitch . other_config:certificate=/etc/swanctl/x509/host2-cert.pem \
 other_config:private_key=/etc/swanctl/private/host2-privkey.pem

ovs-vsctl add-port ovs-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip1 \
 options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
 options:remote_cert=/etc/swanctl/x509/host2-cert.pem
service openvswitch-switch restart

ovs-vsctl add-port ovs-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip2 \
 options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
 options:remote_cert=/etc/swanctl/x509/host1-cert.pem
service openvswitch-switch restart

ovs-pki init --force
cp /var/lib/openvswitch/pki/controllerca/cacert.pem <path_to>/certsworkspace
ovs-pki req -u host1

BlueField Operation 104

2. On Arm_2:

2. Move both host1-cert.pem and host2-cert.pem to /etc/ swanctl/x509/, if on Ubuntu, or
/etc/strongswan/swanctl/x509/, if on CentOS.

3. Move the local private key to /etc/swanctl/private, if on Ubuntu, or
/etc/strongswan/swanctl/private, if on CentOS. For example, for host1:

4. Copy cacert.pem to the x509ca directory under /etc/swanctl/x509ca/, if on Ubuntu, or
/etc/strongswan/swanctl/x509ca/, if on CentOS.

5. Set up OVS other_config on both sides.

1. On Arm_1:

2. On Arm_2:

ovs-pki sign host1 switch

ovs-pki init --force
cp /var/lib/openvswitch/pki/controllerca/cacert.pem <path_to>/certsworkspace
ovs-pki req -u host2
ovs-pki sign host2 switch

mv host1-privkey.pem /etc/swanctl/private

ovs-vsctl set Open_vSwitch . \
 other_config:certificate=/etc/strongswan/swanctl/x509/host1.pem \
 other_config:private_key=/etc/strongswan/swanctl/private/host1-privkey.pem \
 other_config:ca_cert=/etc/strongswan/swanctl/x509ca/cacert.pem

ovs-vsctl set Open_vSwitch . \
 other_config:certificate=/etc/strongswan/swanctl/x509/host2.pem \
 other_config:private_key=/etc/strongswan/swanctl/private/host2-privkey.pem \

BlueField Operation 105

6. Set up the tunnel:

1.

1. On Arm_1:

2. On Arm_2:

Ensuring IPsec is Configured

Use /opt/mellanox/iproute2/sbin/ip xfrm state show. You should be able to see IPsec states with
the keyword in mode packet.

Troubleshooting

For troubleshooting information, refer to Open vSwitch's official documentation.

 other_config:ca_cert=/etc/strongswan/swanctl/x509ca/cacert.pem

ovs-vsctl add-port ovs-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip1 \
options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
options:remote_name=host2
 #service openvswitch-switch restart

ovs-vsctl add-port ovs-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip2 \
options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
options:remote_name=host1
#service openvswitch-switch restart

https://docs.openvswitch.org/en/latest/tutorials/ipsec/

BlueField Operation 106

BlueField Operation 107

fTPM over OP-TEE

The Trusted Computing Group (TCG) is responsible for the specifications governing the
trusted platform module (TPM). In many systems, the TPM provides integrity
measurements, health checks and authentication services.

Attributes of a TPM:

Support for bulk (symmetric) encryption in the platform

High quality random numbers

Cryptographic services

Protected persistent store for small amounts of data, sticky bits, monotonic
counters, and extendible registers

Protected pseudo-persistent store for unlimited amounts of keys and data

Extensive choice of authorization methods to access protected keys and data

Platform identities

Support for platform privacy

Signing and verifying digital signatures

Certifying the properties of keys and data

Note

fTMP over OP-TEE is supported on NVIDIA® BlueField®-3 DPUs and
higher only on host OS Ubuntu 22.04 or Oracle Linux.

BlueField Operation 108

Auditing the usage of keys and data

With TPM 2.0., the TCG creates a library specification describing all the commands or
features that could be implemented and may be necessary in servers, laptops, or
embedded systems. Each platform can select the features needed and the level of
security or assurance required. This flexibility allows the newest TPMs to be applied to
many embedded applications.

Firmware TPM (fTPM) is implemented in protected software. The code runs on the main
CPU so that a separate chip is not required. While running like any other program, the
code is in a protected execution environment called a trusted execution environment
(TEE) which is separate from the rest of the programs running on the CPU. By doing this,
secrets (e.g., private keys perhaps needed by the TPM but should not be accessed by
others) can be kept in the TEE creating a more secure environment.

Characteristics of an fTPM:

Emulated TPM using an isolated hardware environment

Executes in an open-source trusted execution environment (OP-TEE)

Info

fTPM provides similar functionality to a chip-based TPM, but does not
require extra hardware. It complies with the official TCG reference
implementation of the TPM 2.0 specification . The source code of this
implementation is located here.

Info

fTPM f ully supports TPM2 Tools and the TCG TPM2 Software Stack
(TSS).

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftrustedcomputinggroup.org%2Fwp-content%2Fuploads%2FPC-Client-Specific-Platform-TPM-Profile-for-TPM-2p0-v1p05p_r14_pub.pdf&data=05%7C01%7Camirn%40nvidia.com%7Cb10a1b42ef9c42e03c6408dbec4dc011%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638363590913828498%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=DZ%2B75rGawGJX8VYpXN069ELRRNZ4L6z2eXXHMCYhEZo%3D&reserved=0
https://github.com/microsoft/ms-tpm-20-ref
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftpm2-tools.readthedocs.io%2Fen%2Flatest%2Fman%2Ftpm2_create.1%2F&data=05%7C01%7Camirn%40nvidia.com%7Cb10a1b42ef9c42e03c6408dbec4dc011%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638363590913828498%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=cNQ5fkjqwCh%2BFs9UF5iL49x0rYapZ4i0se1AM65AfKY%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftpm2-software%2Ftpm2-tss&data=05%7C01%7Camirn%40nvidia.com%7Cb10a1b42ef9c42e03c6408dbec4dc011%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638363590913828498%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=TYLGKHmIok4Q74QPL8d7vWa%2FDaV6sb9Gmk0BzD2XeQM%3D&reserved=0

BlueField Operation 109

fTPM trusted application (TA) is part of the OP-TEE binary. This allows early access
on bootup, runs only in secure DRAM.

fTPM is not a task waiting to be woken up. It only executes when TPM primitives are
forwarded to it from the user space. It is guaranteed shielded execution via the TEE
OS and, when invoked via the TEE Dispatcher, runs to completion.

The fTPM TA is the only TA BlueField-3 currently supports. Any TA loaded by OP-TEE must
be signed (signing done externally) and then authenticated by OP-TEE before being
allowed to load and execute.

A replay-protected memory block (RPMB) is provided as a means for a system to store
data to the specific memory area in an authenticated and replay-protected manner,
making it readable and writable only after a successful authentication read/write
accesses. The RPMB is a dedicated partition available on the eMMC, which makes it
possible to store and retrieve data with integrity and authenticity support. A signed
access to an RPMB is supported by first programming authentication key information to

Info

Currently, the only TA supported is fTPM.

BlueField Operation 110

the eMMC memory (shared secret). The RPMB authentication key is programmed into
BlueField at manufacturing time.

There is no eMMC controller driver in OP-TEE. All device operations have to go through
the normal world via the TEE-supplicant daemon, which relies on the Linux kernel's ioctl
interface to access the device. All writes to the RPMB are atomic, authenticated, and
encrypted. The RPMB partition stores data in an authenticated, replay-protected manner,
making it a perfect complement to fTPM for storing and protecting data.

Info

RPMB features a 4MB partition secure storage for BlueField-3.

BlueField Operation 111

Enabling OP-TEE on BlueField-3

Enable OP-TEE in the UEFI menu:

1. ESC into the UEFI on BlueField boot.

2. Navigate to Device Manager > System Configuration.

3. Check "Enable OP-TEE".

4. Save the change and reset/reboot.

5. Upon reboot OP-TEE is enabled.

Verifying BlueField-3 is Running OP-TEE

Users can see the OP-TEE version during BlueField-3 boot:

Note

OP-TEE is essentially dormant (does not have an OS scheduler) and
reacts to external inputs.

BlueField Operation 112

The following indicators should all be present if fTPM over OP-TEE is enabled:

Check "dmesg" for the OP-TEE driver initializing

Verify that the following kernel modules are loaded (running):

Verify that the proper devices are created/available (4 in total):

Verify that the required processes are running (3 in total):

root@localhost ~]# dmesg | grep tee
[5.646578] optee: probing for conduit method.
[5.653282] optee: revision 3.10 (450b24ac)
[5.653991] optee: initialized driver

[root@localhost ~]# lsmod | grep tee
tpm_ftpm_tee 16384 0
optee 49152 1
tee 49152 3 optee,tpm_ftpm_tee

[root@localhost ~]# ls -l /dev/tee*
crw------- 1 root root 234, 0 Sep 8 18:24 /dev/tee0
crw------- 1 root root 234, 16 Sep 8 18:24 /dev/teepriv0

[root@localhost ~]# ls -l /dev/tpm*
crw-rw---- 1 tss root 10, 224 Sep 8 18:24 /dev/tpm0
crw-rw---- 1 tss tss 252, 65536 Sep 8 18:24 /dev/tpmrm0

[root@localhost ~]# ps axu | grep tee
root 707 0.0 0.0 76208 1372 ? Ssl 14:42 0:00 /usr/sbin/tee-supplicant
root 715 0.0 0.0 0 0 ? I< 14:42 0:00 [optee_bus_scan]

[root@localhost ~]# ps axu | grep tpm
root 124 0.0 0.0 0 0 ? I< 18:24 0:00 [tpm_dev_wq]

BlueField Operation 113

QoS Configuration

This section explains how to configure QoS group and settings using devlink located
under /opt/mellanox/iproute2/sbin/. It is applicable to host PF/VF and Arm side SFs. The
following uses VF as example.

The settings of a QoS group include creating/deleting a QoS group and modifying its
tx_max and tx_share values. The settings of VF QoS include modifying its tx_max and tx_share

Note

To learn more about port QoS configuration, refer to this community
post.

Warning

When working in Embedded Host mode, using mlnx_qos on both the
host and Arm will result with undefined behavior. Users must only
use mlnx_qos from the Arm. After changing the QoS settings from Arm,
users must restart the mlx5 driver on host.

Note

When configuring QoS using DCBX, the lldpad service from the
NVIDIA® BlueField® networking platform's (DPU or SuperNIC) side
must be disabled if the configurations are not done using tools other
than lldpad.

https://support.mellanox.com/s/article/mlnx-qos

BlueField Operation 114

values, assigning a VF to a QoS group, and unassigning a VF from a QoS group. This
section focuses on the configuration syntax.

Please refer to section "Limit and Bandwidth Share Per VF" in the MLNX_OFED User
Manual for detailed explanation on vPort QoS behaviors.

devlink port function rate add

devlink port function rate add <DEV>/<GROUP_NAME>
Adds a QoS group.

Syntax
Description

DEV/GROUP_NAME Specifies group name in string format

Example

This command adds a new QoS group named 12_group under device
pci/0000:03:00.0:

Notes

devlink port function rate del

devlink port function rate del <DEV>/<GROUP_NAME>
Deletes a QoS group.

Syntax
Description

DEV/GROUP_NAME Specifies group name in string format

Example

This command deletes QoS group 12_group from device
pci/0000:03:00.0:

Notes

devlink port function rate set tx_max tx_share

devlink port function rate set {<DEV>/<GROUP_NAME> | <DEV>/<PORT_INDEX>} tx_max
<TX_MAX> [tx_share <TX_SHARE>]

devlink port function rate add pci/0000:03:00.0/12_group

devlink port function rate del pci/0000:03:00.0/12_group

BlueField Operation 115

Sets tx_max and tx_share for QoS group or devlink port.

Syntax
Description

DEV/GROUP_NAME Specifies the group name to operate on

DEV/PORT_INDEX Specifies the devlink port to operate on

TX_MAX tx_max bandwidth in MB/s

TX_SHARE tx_share bandwidth in MB/s

Example

This command sets tx_max to 2000MB/s and tx_share to 500MB/s for the
12_group QoS group:

This command sets tx_max to 2000MB/s and tx_share to 500MB/s for the VF
represented by port index 196609:

This command displays a mapping between VF devlink ports and netdev
names:

In the output of this command, VFs are indicated by flavour pcivf.

Notes

devlink port function rate set parent

devlink port function rate set <DEV>/<PORT_INDEX> {parent
<PARENT_GROUP_NAME>}
Assigns devlink port to a QoS group.

Syntax
Description

DEV/PORT_INDEX Specifies the devlink port to operate on

PARENT_GROUP_NAME parent group name in string format

Example This command assigns this function to the QoS group 12_group:

devlink port function rate set pci/0000:03:00.0/12_group tx_max 2000MBps
tx_share 500MBps

devlink port function rate set pci/0000:03:00.0/196609 tx_max 200MBps tx_share
50MBps

$ devlink port

BlueField Operation 116

Notes

devlink port function rate set noparent

devlink port function rate set <DEV>/<PORT_INDEX> noparent
Ungroups a devlink port.

Syntax Description DEV/PORT_INDEX Specifies the devlink port to operate on

Example

This command ungroups this function:

Notes

devlink port function rate show

devlink port function rate show [<DEV>/<GROUP_NAME> | <DEV>/<PORT_INDEX>]
Displays QoS information QoS group or devlink port.

Syntax
Description

DEV/GROUP_NAME Specifies the group name to display

DEV/PORT_INDEX Specifies the devlink port to display

Example

This command displays the QoS info of all QoS groups and devlink ports
on the system:

This command displays QoS info of 12_group:

devlink port function rate set pci/0000:03:00.0/196609 parent 12_group

devlink port function rate set pci/0000:03:00.0/196609 noparent

devlink port function rate show
pci/0000:03:00.0/12_group type node tx_max 2000MBps tx_share 500MBps
pci/0000:03:00.0/196609 type leaf tx_max 200MBps tx_share 50MBps parent
12_group

devlink port function rate show pci/0000:03:00.0/12_group
pci/0000:03:00.0/12_group type node tx_max 2000MBps tx_share 500MBps

BlueField Operation 117

Notes
If a QoS group name or devlink port are not specified, all QoS groups
and devlink ports are displayed.

BlueField Operation 118

Virtio-net Emulated Devices
For information on virtio-net emulation, please refer to NVIDIA BlueField Virtio-net
documentation.

https://docs.nvidia.com/networking/display/bluefieldvirtionetv2407

BlueField Operation 119

Shared RQ Mode
When creating 1 send queue (SQ) and 1 receive queue (RQ), each representor consumes
~3MB memory per single channel. Scaling this to the desired 1024 representors (SFs
and/or VFs) would require ~3GB worth of memory for single channel. A major chunk of
the 3MB is contributed by RQ allocation (receive buffers and SKBs). Therefore, to make
efficient use of memory, shared RQ mode is implemented so PF/VF/SF representors
share receive queues owned by the uplink representor.

The feature is enabled by default. To disable it:

1. Edit the field ALLOW_SHARED_RQ in /etc/mellanox/mlnx-bf.conf as follows:

2. Restart the driver. Run:

To connect from the host to NVIDIA® BlueField® networking platform (DPU or SuperNIC)
in shared RQ mode, please refer to section Verifying Connection from Host to BlueField.

The following behavior is observed in shared RQ mode:

ALLOW_SHARED_RQ="no"

/etc/init.d/openibd restart

Note

PF/VF representor to PF/VF communication on the host is not
possible.

file:///networking/display/bluefieldbsp480/Virtual+Switch+on+BlueField#src-3094734001_VirtualSwitchonBlueField-VerifyingConnectionfromHosttoBlueField

BlueField Operation 120

It is expected to see a 0 in the rx_bytes and rx_packets and valid vport_rx_packets and
vport_rx_bytes after running traffic. Example output:

Ethtool usage – in this mode, it is not possible to change/set the ring or coalesce
parameters for the RX side using ethtool. Changing channels also only affects the TX
side.

Copyright 2024. PDF Generated on 08/20/2024

ethtool -S pf0hpf
NIC statistics:
 rx_packets: 0
 rx_bytes: 0
 tx_packets: 66946
 tx_bytes: 8786869
 vport_rx_packets: 546093
 vport_rx_bytes: 321100036
 vport_tx_packets: 549449
 vport_tx_bytes: 321679548

	Functional Diagram
	Modes of Operation
	Kernel Representors Model
	Multi-host
	Virtual Switch on BlueField
	Configuring Uplink MTU
	Link Aggregation
	Scalable Functions
	RDMA Stack Support on Host and Arm System
	Controlling Host PF and VF Parameters
	DPDK on BlueField
	BlueField SNAP
	BlueField SR-IOV
	Compression Acceleration
	Public Key Acceleration
	IPsec Functionality
	fTPM over OP-TEE
	QoS Configuration
	Virtio-net Emulated Devices
	Shared RQ Mode

