
Host-side Interface Configuration

Table of contents

Virtual Ethernet Interface

RShim Support for Multiple DPUs

Multi-board Management Example

Configuring Management Interface on Host

Configuring BlueField DPU Side

Permanently Changing Arm-side MAC Address

OOB Ethernet Interface

OOB Interface MAC Address

Supported ethtool Options for OOB Interface

IP Address Configuration for OOB Interface

Host-side Interface Configuration 1

Table of contents

Virtual Ethernet Interface

RShim Support for Multiple DPUs

Multi-board Management Example

Configuring Management Interface on Host

Configuring BlueField DPU Side

Permanently Changing Arm-side MAC Address

OOB Ethernet Interface

OOB Interface MAC Address

Supported ethtool Options for OOB Interface

IP Address Configuration for OOB Interface

Host-side Interface Configuration 2

The NVIDIA® BlueField® DPU registers on the host OS a "DMA controller" for DPU
management over PCIe. This can be verified by running the following:

A special driver called RShim must be installed and run to expose the various BlueField
management interfaces on the host OS. Refer to section "Install RShim on Host" for
information on how to obtain and install the host-side RShim driver.

When the RShim driver runs properly on the host side, a sysfs device, /dev/rshim0/*, and a
virtual Ethernet interface, tmfifo_net0, become available. The following is an example for
querying the status of the RShim driver on the host side:

If the RShim device does not appear, refer to section "RShim Troubleshooting and How-
Tos".

Virtual Ethernet Interface

lspci -d 15b3: | grep 'SoC Management Interface'
27:00.2 DMA controller: Mellanox Technologies MT42822 BlueField-2 SoC Management Interface (rev
01)

systemctl status rshim
 rshim.service - rshim driver for BlueField SoC

 Loaded: loaded (/lib/systemd/system/rshim.service; disabled; vendor preset: enabled)
 Active: active (running) since Tue 2022-05-31 14:57:07 IDT; 1 day 1h ago
 Docs: man:rshim(8)
 Process: 90322 ExecStart=/usr/sbin/rshim $OPTIONS (code=exited, status=0/SUCCESS)
 Main PID: 90323 (rshim)
 Tasks: 11 (limit: 76853)
 Memory: 3.3M
 CGroup: /system.slice/rshim.service
 90323 /usr/sbin/rshim
May 31 14:57:07 … systemd[1]: Starting rshim driver for BlueField SoC...
May 31 14:57:07 … systemd[1]: Started rshim driver for BlueField SoC.
May 31 14:57:07 … rshim[90323]: Probing pcie-0000:a3:00.2(vfio)
May 31 14:57:07 … rshim[90323]: Create rshim pcie-0000:a3:00.2
May 31 14:57:07 … rshim[90323]: rshim pcie-0000:a3:00.2 enable
May 31 14:57:08 … rshim[90323]: rshim0 attached

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-InstallRShimonHost
file:///networking/display/bluefieldbsp480/RShim+Troubleshooting+and+How-Tos
file:///networking/display/bluefieldbsp480/RShim+Troubleshooting+and+How-Tos

Host-side Interface Configuration 3

On the host, the RShim driver exposes a virtual Ethernet device called tmfifo_net0. This
virtual Ethernet can be thought of as a peer-to-peer tunnel connection between the host
and the DPU OS. The DPU OS also configures a similar device. The DPU OS's BFB images
are customized to configure the DPU side of this connection with a preset IP of
192.168.100.2/30. It is up to the user to configure the host side of this connection.
Configuration procedures vary for different OSs.

The following example configures the host side of tmfifo_net0 with a static IP and enables
IPv4-based communication to the DPU OS:

Logging in from the host to the DPU OS is now possible over the virtual Ethernet. For
example:

RShim Support for Multiple DPUs

Multiple DPUs may connect to the same host machine. When the RShim driver is loaded
and operating correctly, each board is expected to have its own device directory on sysfs,
/dev/rshim<N>, and a virtual Ethernet device, tmfifo_net<N>.

The following are some guidelines on how to set up the RShim virtual Ethernet interfaces
properly if multiple DPUs are installed in the host system.

There are two methods to manage multiple tmfifo_net interfaces on a Linux platform:

ip addr add dev tmfifo_net0 192.168.100.1/30

Note

For instructions on persistent IP configuration of the tmfifo_net0
interface, refer to step "Assign a static IP to tmfifo_net0" under
"Updating Repo Package on Host Side".

ssh ubuntu@192.168.100.2

file:///networking/display/bluefieldbsp480/Installing+Repo+Package+on+Host+Side

Host-side Interface Configuration 4

Using a bridge, with all tmfifo_net<N> interfaces on the bridge – the bridge device
bares a single IP address on the host while each DPU has unique IP in the same
subnet as the bridge

Directly over the individual tmfifo_net<N> – each interface has a unique subnet IP and
each DPU has a corresponding IP per subnet

Whichever method is selected, the host-side tmfifo_net interfaces should have different
MAC addresses, which can be:

Configured using ifconfig. For example:

Or saved in configuration via the /udev/rules as can be seen later in this section.

In addition, each Arm-side tmfifo_net interface must have a unique MAC and IP address
configuration, as BlueField OS comes uniformly pre-configured with a generic MAC, and
192.168.100.2. The latter must be configured in each DPU manually or by DPU
customization scripts during BlueField OS installation.

Multi-board Management Example

This example deals with two BlueField DPUs installed on the same server (the process is
similar for more DPUs).

This example assumes that the RShim package has been installed on the host server.

Configuring Management Interface on Host

1. Create a bf_tmfifo interface under /etc/sysconfig/network-scripts. Run:

$ ifconfig tmfifo_net0 192.168.100.1/24 hw ether 02:02:02:02:02:02

Note

This example is relevant for CentOS/RHEL operating systems only.

Host-side Interface Configuration 5

2. Inside ifcfg-br_tmfifo, insert the following content:

3. Create a configuration file for the first BlueField DPU, tmfifo_net0. Run:

4. Inside ifcfg-tmfifo_net0, insert the following content:

5. Create a configuration file for the second BlueField DPU, tmfifo_net1. Run:

6. Create the rules for the tmfifo_net interfaces. Run:

vim /etc/sysconfig/network-scripts/ifcfg-br_tmfifo

DEVICE="br_tmfifo"
BOOTPROTO="static"
IPADDR="192.168.100.1"
NETMASK="255.255.255.0"
ONBOOT="yes"
TYPE="Bridge"

vim /etc/sysconfig/network-scripts/ifcfg-tmfifo_net0

DEVICE=tmfifo_net0
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br_tmfifo

DEVICE=tmfifo_net1
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br_tmfifo

Host-side Interface Configuration 6

7. Restart the network for the changes to take effect. Run:

Configuring BlueField DPU Side

BlueField DPUs arrive with the following factory default configurations for tmfifo_net0.

Address Value

MAC 00:1a:ca:ff:ff:01

IP 192.168.100.2

Therefore, if you are working with more than one DPU, you must change the default MAC
and IP addresses.

Updating RShim Network MAC Address

1. Use a Linux console application (e.g. screen or minicom) to log into each BlueField.
For example:

vim /etc/udev/rules.d/91-tmfifo_net.rules

/etc/init.d/network restart
Restarting network (via systemctl): [OK]

Note

This procedure is relevant for Ubuntu/Debian (sudo needed), and
CentOS BFBs. The procedure only affects the tmfifo_net0 on the Arm
side.

Host-side Interface Configuration 7

2. Create a configuration file for tmfifo_net0 MAC address. Run:

3. Inside bf.cfg, insert the new MAC:

4. Apply the new MAC address. Run:

5. Repeat this procedure for the second BlueField DPU (using a different MAC
address).

sudo screen /dev/rshim<0|1>/console 115200

sudo vi /etc/bf.cfg

NET_RSHIM_MAC=00:1a:ca:ff:ff:03

sudo bfcfg

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the IP address before you do that to
avoid unnecessary reboots.

Note

Host-side Interface Configuration 8

Updating IP Address

For Ubuntu:

1. Access the file 50-cloud-init.yaml and modify the tmfifo_net0 IP address:

2. Reboot the Arm. Run:

3. Repeat this procedure for the second BlueField DPU (using a different IP address).

For CentOS:

For comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

sudo vim /etc/netplan/50-cloud-init.yaml

 tmfifo_net0:
 addresses:
 - 192.168.100.2/30 ===>>> 192.168.100.3/30

sudo reboot

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the MAC address before you do that
to avoid unnecessary reboots.

file:///networking/display/bluefieldbsp480/Installation+Troubleshooting+and+How-Tos#src-3094734054_InstallationTroubleshootingandHowTos-bf.cfgParameters

Host-side Interface Configuration 9

1. Access the file ifcfg-tmfifo_net0. Run:

2. Modify the value for IPADDR:

3. Reboot the Arm. Run:

Or perform netplan apply.

4. Repeat this procedure for the second BlueField DPU (using a different IP address).

Permanently Changing Arm-side MAC Address

vim /etc/sysconfig/network-scripts/ifcfg-tmfifo_net0

IPADDR=192.168.100.3

reboot

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the MAC address before you do that
to avoid unnecessary reboots.

Note

Host-side Interface Configuration 10

The default MAC address is 00:1a:ca:ff:ff:01. It can be changed using ifconfig or by updating
the UEFI variable as follows:

1. Log into Linux from the Arm console.

2. Run:

3. If not mounted, run:

The printf command sets the MAC address to 00:1a:ca:ff:ff:03 (the last six bytes of the printf

value). Either reboot the device or reload the tmfifo driver for the change to take effect.

The MAC address can also be updated from the server host side while the Arm-side Linux
is running:

1. Enable the configuration. Run:

2. Display the current setting. Run:

It is assumed that the commands in this section are executed with
root (or sudo) permission.

$ "ls /sys/firmware/efi/efivars".

$ mount -t efivarfs none /sys/firmware/efi/efivars
$ chattr -i /sys/firmware/efi/efivars/RshimMacAddr-8be4df61-93ca-11d2-aa0d-00e098032b8c
$ printf "\x07\x00\x00\x00\x00\x1a\xca\xff\xff\x03" > \
 /sys/firmware/efi/efivars/RshimMacAddr-8be4df61-93ca-11d2-aa0d-00e098032b8c

echo "DISPLAY_LEVEL 1" > /dev/rshim0/misc

cat /dev/rshim0/misc

Host-side Interface Configuration 11

3. Modify the MAC address. Run:

For more information and an example of the script that covers multiple DPU installation
and configuration, refer to section "Installing Full DOCA Image on Multiple DPUs" of the
NVIDIA DOCA Installation Guide.

OOB Ethernet Interface

The OOB interface is a gigabit Ethernet interface which provides TCP/IP network
connectivity to the Arm cores. This interface is named oob_net0 and is intended to be used
for management traffic (e.g. file transfer protocols, SSH, etc). The Linux driver that
controls this interface is named mlxbf_gige.ko, and is automatically loaded upon boot. This
interface can be configured and monitored by use of standard tools (e.g. ifconfig, ethtool,
etc). The OOB interface is subject to the following design limitations:

Only supports 1Gb/s full-duplex setting

Only supports GMII access to external PHY device

Supports maximum packet size of 2KB (i.e. no support for jumbo frames)

The OOB interface can also be used for PXE boot. This OOB port is not a path for the boot
stream. Any attempt to push a BFB to this port will not work. Please refer to How to use
the UEFI boot menu for more information about UEFI operations related to the OOB
interface.

DISPLAY_LEVEL 1 (0:basic, 1:advanced, 2:log)
BOOT_MODE 1 (0:rshim, 1:emmc, 2:emmc-boot-swap)
BOOT_TIMEOUT 300 (seconds)
DROP_MODE 0 (0:normal, 1:drop)
SW_RESET 0 (1: reset)
DEV_NAME pcie-0000:04:00.2
DEV_INFO BlueField-2(Rev 1)
PEER_MAC 00:1a:ca:ff:ff:01 (rw)
PXE_ID 0x00000000 (rw)
VLAN_ID 0 0 (rw)

$ echo "PEER_MAC xx:xx:xx:xx:xx:xx" > /dev/rshim0/misc

https://docs.nvidia.com/doca/sdk/installation-guide/index.html#installing-full-doca-image-on-multiple-dpus
file:///networking/display/bluefieldbsp480/Installation+Troubleshooting+and+How-Tos#src-3094734054_InstallationTroubleshootingandHowTos-HowtousetheUEFIbootmenu
file:///networking/display/bluefieldbsp480/Installation+Troubleshooting+and+How-Tos#src-3094734054_InstallationTroubleshootingandHowTos-HowtousetheUEFIbootmenu

Host-side Interface Configuration 12

OOB Interface MAC Address

The MAC address to be used for the OOB port is burned into Arm-accessible UPVS
EEPROM during the manufacturing process. This EEPROM device is different from the SPI
Flash storage device used for the NIC firmware and associated NIC MACs/GUIDs. The
value of the OOB MAC address is specific to each platform and is visible on the board-
level sticker.

If there is a need to re-configure this MAC for any reason, follow these steps to configure
a UEFI variable to hold new value for OOB MAC.:

1. Log into Linux from the Arm console.

2. Issue the command ls /sys/firmware/efi/efivars to show whether efivarfs is mounted. If it
is not mounted, run:

3. Run:

Warning

It is not recommended to reconfigure the MAC address from the MAC
configured during manufacturing.

Note

The creation of an OOB MAC address UEFI variable will override the
OOB MAC address defined in EEPROM, but the change can be
reverted.

mount -t efivarfs none /sys/firmware/efi/efivars

Host-side Interface Configuration 13

4. Set the MAC address to 00:1a:ca:ff:ff:03 (the last six bytes of the printf value).

5. Reboot the device for the change to take effect.

To revert this change and go back to using the MAC as programmed during
manufacturing, follow these steps:

1. Log into UEFI from the Arm console, go to "Boot Manager" then "EFI Internal Shell".

2. Delete the OOB MAC UEFI variable. Run:

3. Reboot the device by running "reset" from UEFI.

4. Log into Linux from the Arm console.

5. Issue the command ls /sys/firmware/efi/efivars to show whether efivarfs is mounted. If it
is not mounted, run:

6. Run:

chattr -i /sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-00e098032b8c

printf "\x07\x00\x00\x00\x00\x1a\xca\xff\xff\x03" > /sys/firmware/efi/efivars/OobMacAddr-
8be4df61-93ca-11d2-aa0d-00e098032b8c

dmpstore -d OobMacAddr

mount -t efivarfs none /sys/firmware/efi/efivars

chattr -i /sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-00e098032b8c

Host-side Interface Configuration 14

7. Reconfigure the original MAC address burned by the manufacturer in the format
aa\bb\cc\dd\ee\ff. Run:

8. Reboot the device for the change to take effect.

Supported ethtool Options for OOB Interface

The Linux driver for the OOB port supports the handling of some basic ethtool requests:
get driver info, get/set ring parameters, get registers, and get statistics.

To use the ethtool options available, use the following format:

Where <option> may be:

<no-argument> – display interface link information

-i – display driver general information

-S – display driver statistics

-d – dump driver register set

-g – display driver ring information

-G – configure driver ring(s)

-k – display driver offload information

-a – query the specified Ethernet device for pause parameter information

printf "\x07\x00\x00\x00\x00\<original-MAC-address>" > /sys/firmware/efi/efivars/OobMacAddr-
8be4df61-93ca-11d2-aa0d-00e098032b8c

$ ethtool [<option>] <interface>

Host-side Interface Configuration 15

-r – restart auto-negotiation on the specified Ethernet device if auto-negotiation is
enabled

For example:

$ ethtool oob_net0
Settings for oob_net0:
 Supported ports: [TP]
 Supported link modes: 1000baseT/Full
 Supported pause frame use: Symmetric
 Supports auto-negotiation: Yes
 Supported FEC modes: Not reported
 Advertised link modes: 1000baseT/Full
 Advertised pause frame use: Symmetric
 Advertised auto-negotiation: Yes
 Advertised FEC modes: Not reported
 Link partner advertised link modes: 1000baseT/Full
 Link partner advertised pause frame use: Symmetric
 Link partner advertised auto-negotiation: Yes
 Link partner advertised FEC modes: Not reported
 Speed: 1000Mb/s
 Duplex: Full
 Port: Twisted Pair
 PHYAD: 3
 Transceiver: internal
 Auto-negotiation: on
 MDI-X: Unknown
 Link detected: yes

$ ethtool -i oob_net0
driver: mlxbf_gige
version:
firmware-version:
expansion-rom-version:
bus-info: MLNXBF17:00
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: yes
supports-priv-flags: no

Host-side Interface Configuration 16

IP Address Configuration for OOB Interface

The files that control IP interface configuration are specific to the Linux distribution. The
udev rules file (/etc/udev/rules.d/92-oob_net.rules) that renames the OOB interface to oob_net0

and is the same for Yocto, CentOS, and Ubuntu:

The files that control IP interface configuration are slightly different for CentOS and
Ubuntu:

CentOS configuration of IP interface:

Configuration file for oob_net0: /etc/sysconfig/network-scripts/ifcfg-oob_net0

For example, use the following to enable DHCP:

Display statistics specific to BlueField-2 design (i.e. statistics that are not shown in the output of
"ifconfig oob0_net")
$ ethtool -S oob_net0
NIC statistics:
 hw_access_errors: 0
 tx_invalid_checksums: 0
 tx_small_frames: 1
 tx_index_errors: 0
 sw_config_errors: 0
 sw_access_errors: 0
 rx_truncate_errors: 0
 rx_mac_errors: 0
 rx_din_dropped_pkts: 0
 tx_fifo_full: 0
 rx_filter_passed_pkts: 5549
 rx_filter_discard_pkts: 4

SUBSYSTEM=="net", ACTION=="add", DEVPATH=="/devices/platform/MLNXBF17:00/net/eth[0-9]",
NAME="oob_net0"

NAME="oob_net0"

Host-side Interface Configuration 17

For example, to configure static IP use the following:

For Ubuntu configuration of IP interface, refer to section "Default Network Interface
Configuration".

© Copyright 2024, NVIDIA. PDF Generated on 08/20/2024

DEVICE="oob_net0"
NM_CONTROLLED="yes"
PEERDNS="yes"
ONBOOT="yes"
BOOTPROTO="dhcp"
TYPE=Ethernet

NAME="oob_net0"
DEVICE="oob_net0"
IPV6INIT="no"
NM_CONTROLLED="no"
PEERDNS="yes"
ONBOOT="yes"
BOOTPROTO="static"
IPADDR="192.168.200.2"
PREFIX=30
GATEWAY="192.168.200.1"
DNS1="192.168.200.1"
TYPE=Ethernet

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-NetworkInterfaceConfiguration
file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-NetworkInterfaceConfiguration

	Virtual Ethernet Interface
	RShim Support for Multiple DPUs
	Multi-board Management Example
	Configuring Management Interface on Host
	Configuring BlueField DPU Side

	Permanently Changing Arm-side MAC Address
	OOB Ethernet Interface
	OOB Interface MAC Address
	Supported ethtool Options for OOB Interface
	IP Address Configuration for OOB Interface

