
Initial Configuration

Table of contents

UEFI Menu 3

System Configuration and Services 19

Host-side Interface Configuration 25

Secure Boot 41

UEFI Secure Boot 42

Updating Platform Firmware 64

Default Passwords and Policies 67

Initial Configuration 1

Table of contents

UEFI Menu

System Configuration and Services

Host-side Interface Configuration

Secure Boot

UEFI Secure Boot

Updating Platform Firmware

Default Passwords and Policies

Initial Configuration 2

The following pages provide instructions regarding general configuration of the BlueField
DPU.

UEFI Menu

System Configuration and Services

Host-side Interface Configuration

Secure Boot

Default Passwords and Policies

file:///networking/display/bluefieldbsp480/UEFI+Menu
file:///networking/display/bluefieldbsp480/System+Configuration+and+Services
file:///networking/display/bluefieldbsp480/Host-side+Interface+Configuration
file:///networking/display/bluefieldbsp480/Secure+Boot
file:///networking/display/bluefieldbsp480/Default+Passwords+and+Policies

Initial Configuration 3

UEFI Menu
Unified Extensible Firmware Interface (UEFI) is l ow-level firmware that is part of the
NVIDIA® BlueField® bootloader stack. UEFI acts as an interface between the BlueField's
Arm-trusted firmware (ATF) bootloader and the OS.

UEFI provides a menu which supports certain configuration options. This section lists and
describes configurations supported from the UEFI Device Manager menu.

Info

The UEFI specification is available at UEFI.org.

Info

For more complete information beyond the Device Manager menu
option, please refer to the NVIDIA Networking Server-Side
Documentation of Flexboot & UEFI > User Manual > User Interface >
HII (UEFI) System Settings Configuration Options.

Info

Most of these menu items are also configurable via Redfish (when
enabled).

http://uefi.org/
https://docs.nvidia.com/networking/software/firmware-management/index.html#networking-server-side-flexboot-uefi
https://docs.nvidia.com/networking/software/firmware-management/index.html#networking-server-side-flexboot-uefi
https://docs.nvidia.com/networking/display/bluefieldbsp480/Redfish

Initial Configuration 4

To access the UEFI menu, users must have a connection to the BlueField console either
through a UART serial port or the virtual RShim console device. To enter the UEFI menu,
hit the Esc key twice during the normal boot sequence.

Note

All BlueField platforms ship with a default UEFI menu password,
bluefield. If the password is set to bluefield when you enter the UEFI
menu, users are prompted to change it.

Tip

NVIDIA strongly recommends all DPUs have their UEFI password set
to a non-default value. This can be done using the UEFI menu or
Redfish.

Initial Configuration 5

System Configuration

Lists different system configuration options.

Note

Some configuration options may require a system reset to take
effect.

Initial Configuration 6

Menu
Optio
n

Description

Set
Passw
ord

Set the system password.
Set the UEFI password. All BlueField Platforms ship with a default UEFI menu
password, bluefield. If the password is set to bluefield when you enter the UEFI
menu, users are prompted to change it.

Tip
NVIDIA strongly recommends all DPUs have their UEFI
password set to a non-default value. This can be done using
the UEFI menu or Redfish.

Initial Configuration 7

Menu
Optio
n

Description

Select
SPCR
UART

Choose UART for serial port console redirection [<Disabled>|<UART Port 0> | <UART

Port 1>].
Users may set the SPCR table (ACPI) to point to UART0, UART1, or disable the
feature. The OS can reference this table to steer serial output. For example,
Linux uses this table for its earlycon feature.

Enabl
e
SMM
U

Enable/disable the SMMU.
BlueField Platforms have an integrated SMMU on the SoC. Users may enable or
disable this unit. Enabling it can make the system more secure but, with certain
network flows, the enabled SMMU could cause performance issues.

Disabl
e
SPMI

Enable/disable ACPI server platform management interface table.
Allows users to enable/disable the ACPI SPMI table. This table instructs the OS
on what interface/device to use for the IPMI SSIF.

Warning
Leave this attribute to its default if you are not certain how
to configure it, or you may destabilize your system.

Warning
Leave this attribute to its default if you do not certain how
to configure it.

Warning
Leave this attribute to its default if you do not certain how
to configure it.

Initial Configuration 8

Menu
Optio
n

Description

Enabl
e 2nd
eMM
C

Enable/disable the second eMMC.
Some legacy BlueField systems have 2 eMMC devices. This feature has been
discontinued.

Boot
Partiti
on
Prote
ction

Enable/disable the eMMC boot partition protection. Takes effect after reboot.
There are 2 logical "boot partitions" on the eMMC device used to store ATF/UEFI
code. These are referred to as the primary/secondary boot partitions. Users can
write-protect these partitions using this attribute.

Warning
Leave this attribute to its default (disabled) if you do not
certain how to configure it, or your system will not boot
correctly.

Info
These are separate devices from the flash storage used by
the OS (for file systems). They do not contain file systems
and are only used for storing binary boot code on raw flash.
Do not confuse an eMMC boot partition with an EFI System
Partition (ESP) used to store boot loaders and OS images on
a FAT32 file system.

Info
If secure boot is enabled, these partitions are write-
protected by default.

Note

Initial Configuration 9

Menu
Optio
n

Description

Disabl
e PCIe

Enable/disable PCIe root complex.
Normally, UEFI enumerates the PCIe bus during the boot process and reports
this information to the OS via the ACPI SSDT table. If this attribute is disabled,
UEFI does not populate the SSDT with the PCIe root complex information, so the
OS does not have visibility to devices on the PCIe bus.

Enabl
e OP-
TEE

Enable/disable support for trusted execution environment.

This menu option is not currently supported for BlueField-3.

Note
This attribute is used for diagnostic purposes and should
not be modified.

Warning
Do not enable this feature. More information will be
provided in future releases.

Initial Configuration 10

Menu
Optio
n

Description

Disabl
e
TMFF

Enable/disable the BlueField-specific ACPI TMFIFO table.
This can be used by some OSes to perform console/debugging over the
BlueField TMFIFO interface. It can override the SPCR table.

Disabl
e
Force
Pxe
Retry

If enabled, PXE boot option entries are attempted only once instead of retrying
them in a loop when "ForcePxe" is requested via IPMI interface

Field
Mode

Disable/enable NIC BMC field mode.
Allows users to enable/disable NIC BMC field mode. When the NIC BMC has field
mode enabled, most of its functionality is disabled (beyond the serial console).
The BlueField Platform's OOB interface will also not be functional if field mode is
enabled.

Set
RTC

Allows users to set the time and date for the real-time clock.

BlueFi
eld

Internal CPU Model: [<Separated>|<Embedded>]
Host Privilege Level: [<Restricted>|<Privileged>]
NIC Mode – sets the BlueField to operate in either NIC mode or DPU mode

Warning
Leave this attribute to its default if you do not certain how
to configure it.

Warning
Leave this attribute to its default unless you are certain you
wish to enable field mode on the NIC BMC. Consult the DPU
BMC user manual for more information on field mode.

Initial Configuration 11

Menu
Optio
n

Description

Mode
s

Redfis
h
Confi
gurati
on

Enable/disable Redfish support. If UEFI is unable to discover a Redfish server, it
reverts to using the defined UEFI boot options (i.e., the "normal" UEFI boot
sequence). Disabling Redfish helps improve boot time as the Redfish server
discovery process is skipped.
The RTCSync option syncs RTC time with Redfish time under the Manager
schema.

Passw
ord
Settin
gs

Default Password Policy – mandates the password being set adheres to
the new policy of 12 characters minimum and 64 characters maximum.
The last 5 passwords cannot be reused.
Set Legacy Password – set password with legacy password policy to
accommodate a UEFI firmware downgrade. The new password policy
(default) is not compatible with older versions of UEFI firmware.

Reset
EFI
Varia
bles

This action clears all EFI variables to factory default state. Reset the device to
take effect.

Emmc
Wipe

Clears the eMMC disk. The action is immutable and all data on eMMC is lost
after it is performed.

Note
Any change to this attribute requires device reset to take
effect.

Warning
Only reset the EFI variable store under the advice of NVIDIA
Enterprise Support. Resetting the EFI variable store deletes
all UEFI variables including the boot options and the system
may not boot without setting new boot options.

Initial Configuration 12

Menu
Optio
n

Description

Nvme
Wipe

Clears the NVMe SSD. This action is immutable and all data on NVMe SSD is lost
after it is performed.

Large
ICMC
size

Set the large ICMC size in Hex and MB. Valid value: 0-100000h in 80h
increments.

Secure Boot Configuration

Please refer to section "UEFI Secure Boot" for more information.

RAM Disk Configuration

Provides option to create/delete RAM disks.

Info
This menu option is only relevant for BlueField-3 platforms.

file:///networking/display/bluefieldbsp480/UEFI+Secure+Boot

Initial Configuration 13

Tls Auth Configuration

Provides configuration (enroll/delete) of TLS auth certificates for HTTPS traffic in UEFI.

Note

If TLS Auth certificate is configured then all HTTPS traffic on all
network interfaces will be verified. UEFI only supports Server CA
configuration, Client CA configuration is currently not supported.

Initial Configuration 14

Initial Configuration 15

iSCSI Configuration

Provides configuration options for iSCSI.

Network Device List

Lists the MAC addresses of the available network interfaces in UEFI.

Initial Configuration 16

Users can find more information (Link status, Link speed, PCI ID, Link type, etc.) on each
interface upon selection. Users can also configure the interfaces (IPv4, IPv6, VLAN, HTTP
BOOT) as needed.

Initial Configuration 17

The following menu can be reached by selecting the Nvidia Network Adapter - <mac-address>

menu options:

Initial Configuration 18

Initial Configuration 19

System Configuration and
Services
This page provides information on system services and scripts based on the default DPU
OS (i.e., Ubuntu).

First Boot After BFB Installation

During the first boot, the cloud-init service configures the system based on the data
provided in the following files:

/var/lib/cloud/seed/nocloud-net/network-config – network interface configuration

/var/lib/cloud/seed/nocloud-net/user-data – default users and commands to run on the first
boot

RDMA and ConnectX Driver Initialization

RDMA and NVIDIA® ConnectX® drivers are loaded upon boot by the openibd.service.

One of the kernel modules loaded by the openibd.service, ib_umad, triggers modprobe rule
from /etc/modprobe.d/mlnx-bf.conf file that runs the /sbin/mlnx_bf_configure script. See Default
Ports and OVS Configuration for more information.

Firewall Configuration

Note

The mlx5_core kernel module is loaded automatically by the kernel as a
registered device driver.

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-DefaultPortsandOVSConfiguration
file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-DefaultPortsandOVSConfiguration

Initial Configuration 20

The BFB image includes the following firewall configuration (enabled by default):

$ cat /etc/iptables/rules.v4

*mangle
:PREROUTING ACCEPT [45:3582]
:INPUT ACCEPT [45:3582]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [36:4600]
:POSTROUTING ACCEPT [36:4600]
:KUBE-IPTABLES-HINT - [0:0]
:KUBE-KUBELET-CANARY - [0:0]
COMMIT
*filter
:INPUT ACCEPT [41:3374]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [32:3672]
:DOCKER-USER - [0:0]
:KUBE-FIREWALL - [0:0]
:KUBE-KUBELET-CANARY - [0:0]
:LOGGING - [0:0]
:POSTROUTING - [0:0]
:PREROUTING - [0:0]
-A INPUT -j KUBE-FIREWALL
-A INPUT -p tcp -m tcp --dport 111 -j REJECT --reject-with icmp-port-unreachable
-A INPUT -p udp -m udp --dport 111 -j REJECT --reject-with icmp-port-unreachable
-A INPUT -i lo -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -d 127.0.0.0/8 -m mark --mark 0xb -m comment --comment MD_IPTABLES -j DROP
-A INPUT -m mark --mark 0xb -m state --state RELATED,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp ! --dport 22 ! --tcp-flags FIN,SYN,RST,ACK SYN -m mark --mark 0xb -m state --state
NEW -m comment --comment MD_IPTABLES -j DROP
-A INPUT -f -m mark --mark 0xb -m comment --comment MD_IPTABLES -j DROP
-A INPUT -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,SYN,RST,PSH,ACK,URG -m mark --mark
0xb -m comment --comment MD_IPTABLES -j DROP
-A INPUT -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG NONE -m mark --mark 0xb -m comment --
comment MD_IPTABLES -j DROP
-A INPUT -m mark --mark 0xb -m state --state INVALID -m comment --comment MD_IPTABLES -j DROP
-A INPUT -p tcp -m tcp --tcp-flags RST RST -m mark --mark 0xb -m hashlimit --hashlimit-above 2/sec --
hashlimit-burst 2 --hashlimit-mode srcip --hashlimit-name hashlimit_0 --hashlimit-htable-expire 30000 -
m comment --comment MD_IPTABLES -j DROP
-A INPUT -p tcp -m mark --mark 0xb -m state --state NEW -m hashlimit --hashlimit-above 50/sec --
hashlimit-burst 50 --hashlimit-mode srcip --hashlimit-name hashlimit_1 --hashlimit-htable-expire 30000

Initial Configuration 21

-m comment --comment MD_IPTABLES -j DROP
-A INPUT -p tcp -m mark --mark 0xb -m conntrack --ctstate NEW -m hashlimit --hashlimit-above 60/sec --
hashlimit-burst 20 --hashlimit-mode srcip --hashlimit-name hashlimit_2 --hashlimit-htable-expire 30000
-m comment --comment MD_IPTABLES -j DROP
-A INPUT -m mark --mark 0xb -m recent --rcheck --seconds 86400 --name portscan --mask
255.255.255.255 --rsource -m comment --comment MD_IPTABLES -j DROP
-A INPUT -m mark --mark 0xb -m recent --remove --name portscan --mask 255.255.255.255 --rsource -m
comment --comment MD_IPTABLES
-A INPUT -p tcp -m tcp --dport 22 -m mark --mark 0xb -m conntrack --ctstate NEW -m recent --set --name
DEFAULT --mask 255.255.255.255 --rsource -m comment --comment MD_IPTABLES
-A INPUT -p tcp -m tcp --dport 22 -m mark --mark 0xb -m conntrack --ctstate NEW -m recent --update --
seconds 60 --hitcount 50 --name DEFAULT --mask 255.255.255.255 --rsource -m comment --comment
MD_IPTABLES -j DROP

-A INPUT -p tcp -m tcp --dport 443 -m mark --mark 0xb -m conntrack --ctstate NEW -m recent --set --
name DEFAULT --mask 255.255.255.255 --rsource -m comment --comment MD_IPTABLES
-A INPUT -p tcp -m tcp --dport 443 -m mark --mark 0xb -m conntrack --ctstate NEW -m recent --update --
seconds 60 --hitcount 10 --name DEFAULT --mask 255.255.255.255 --rsource -m comment --comment
MD_IPTABLES -j DROP
-A INPUT -p udp -m udp --dport 161 -m mark --mark 0xb -m conntrack --ctstate NEW -m recent --set --
name DEFAULT --mask 255.255.255.255 --rsource -m comment --comment MD_IPTABLES
-A INPUT -p udp -m udp --dport 161 -m mark --mark 0xb -m conntrack --ctstate NEW -m recent --update
--seconds 60 --hitcount 100 --name DEFAULT --mask 255.255.255.255 --rsource -m comment --comment
MD_IPTABLES -j DROP
-A INPUT -p tcp -m tcp --dport 22 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 443 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 179 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 68 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 122 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 161 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 6306 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 69 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 389 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 389 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT

Initial Configuration 22

-A INPUT -p udp -m udp --dport 1812:1813 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 49 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 49 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --sport 53 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --sport 53 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 500 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 4500 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 1293 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 1293 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 1707 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 1707 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -i lo -p udp -m udp --dport 3786 -m conntrack --ctstate NEW,ESTABLISHED -m comment --
comment MD_IPTABLES -j ACCEPT
-A INPUT -i lo -p udp -m udp --dport 33000 -m conntrack --ctstate NEW,ESTABLISHED -m comment --
comment MD_IPTABLES -j ACCEPT
-A INPUT -p icmp -m mark --mark 0xb -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --sport 5353 --dport 5353 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 33434:33523 -m mark --mark 0xb -m comment --comment
MD_IPTABLES -j REJECT --reject-with icmp-port-unreachable
-A INPUT -p udp -m udp --dport 123 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 514 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 67 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 60102 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment "MD_IPTABLES: Feature HA port" -j ACCEPT
-A INPUT -m mark --mark 0xb -m comment --comment MD_IPTABLES -j LOGGING
-A FORWARD -j DOCKER-USER
-A OUTPUT -o oob_net0 -m comment --comment MD_IPTABLES -j ACCEPT
-A DOCKER-USER -j RETURN

Initial Configuration 23

This configuration is provided by the bf-release package and is installed during the first
boot of the Ubuntu OS after the BFB installation using the cloud-init service and the
/var/lib/cloud/seed/nocloud-net/user-data configuration file.

To disable this default firewall configuration after OS is UP, run:

To disable this default firewall configuration during the BFB installation, use bf.cfg with the
following command in the bfb_modify_os function:

-A LOGGING -m mark --mark 0xb -m comment --comment MD_IPTABLES -j NFLOG --nflog-prefix
 "IPTables-Dropped: " --nflog-group 3
-A LOGGING -m mark --mark 0xb -m comment --comment MD_IPTABLES -j DROP
-A PREROUTING -i oob_net0 -m comment --comment MD_IPTABLES -j MARK --set-xmark 0xb/0xffffffff
-A PREROUTING -p tcp -m tcpmss ! --mss 536:65535 -m tcp ! --dport 22 -m mark --mark 0xb -m
conntrack --ctstate NEW -m comment --comment MD_IPTABLES -j DROP
COMMIT
*nat
:PREROUTING ACCEPT [1:320]
:INPUT ACCEPT [1:320]
:OUTPUT ACCEPT [8:556]
:POSTROUTING ACCEPT [8:556]
:KUBE-KUBELET-CANARY - [0:0]
:KUBE-MARK-DROP - [0:0]
:KUBE-MARK-MASQ - [0:0]
:KUBE-POSTROUTING - [0:0]
-A POSTROUTING -m comment --comment "kubernetes postrouting rules" -j KUBE-POSTROUTING
-A KUBE-MARK-DROP -j MARK --set-xmark 0x8000/0x8000
-A KUBE-MARK-MASQ -j MARK --set-xmark 0x4000/0x4000
-A KUBE-POSTROUTING -m mark ! --mark 0x4000/0x4000 -j RETURN
-A KUBE-POSTROUTING -j MARK --set-xmark 0x4000/0x0
-A KUBE-POSTROUTING -m comment --comment "kubernetes service traffic requiring SNAT" -j
MASQUERADE --random-fully
COMMIT

$ rm -f /etc/iptables/rules.v4
$ iptables -F

bfb_modify_os()
{

Initial Configuration 24

 perl -ni -e "if(/^write_files:/../^users/) {next unless m{^users}; print} else {print}"
/mnt/var/lib/cloud/seed/nocloud-net/user-data
}

Initial Configuration 25

Host-side Interface
Configuration
The NVIDIA® BlueField® DPU registers on the host OS a "DMA controller" for DPU
management over PCIe. This can be verified by running the following:

A special driver called RShim must be installed and run to expose the various BlueField
management interfaces on the host OS. Refer to section "Install RShim on Host" for
information on how to obtain and install the host-side RShim driver.

When the RShim driver runs properly on the host side, a sysfs device, /dev/rshim0/*, and a
virtual Ethernet interface, tmfifo_net0, become available. The following is an example for
querying the status of the RShim driver on the host side:

lspci -d 15b3: | grep 'SoC Management Interface'
27:00.2 DMA controller: Mellanox Technologies MT42822 BlueField-2 SoC Management Interface (rev
01)

systemctl status rshim
 rshim.service - rshim driver for BlueField SoC

 Loaded: loaded (/lib/systemd/system/rshim.service; disabled; vendor preset: enabled)
 Active: active (running) since Tue 2022-05-31 14:57:07 IDT; 1 day 1h ago
 Docs: man:rshim(8)
 Process: 90322 ExecStart=/usr/sbin/rshim $OPTIONS (code=exited, status=0/SUCCESS)
 Main PID: 90323 (rshim)
 Tasks: 11 (limit: 76853)
 Memory: 3.3M
 CGroup: /system.slice/rshim.service
 90323 /usr/sbin/rshim
May 31 14:57:07 … systemd[1]: Starting rshim driver for BlueField SoC...
May 31 14:57:07 … systemd[1]: Started rshim driver for BlueField SoC.
May 31 14:57:07 … rshim[90323]: Probing pcie-0000:a3:00.2(vfio)
May 31 14:57:07 … rshim[90323]: Create rshim pcie-0000:a3:00.2

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-InstallRShimonHost

Initial Configuration 26

If the RShim device does not appear, refer to section "RShim Troubleshooting and How-
Tos".

Virtual Ethernet Interface

On the host, the RShim driver exposes a virtual Ethernet device called tmfifo_net0. This
virtual Ethernet can be thought of as a peer-to-peer tunnel connection between the host
and the DPU OS. The DPU OS also configures a similar device. The DPU OS's BFB images
are customized to configure the DPU side of this connection with a preset IP of
192.168.100.2/30. It is up to the user to configure the host side of this connection.
Configuration procedures vary for different OSs.

The following example configures the host side of tmfifo_net0 with a static IP and enables
IPv4-based communication to the DPU OS:

Logging in from the host to the DPU OS is now possible over the virtual Ethernet. For
example:

May 31 14:57:07 … rshim[90323]: rshim pcie-0000:a3:00.2 enable
May 31 14:57:08 … rshim[90323]: rshim0 attached

ip addr add dev tmfifo_net0 192.168.100.1/30

Note

For instructions on persistent IP configuration of the tmfifo_net0
interface, refer to step "Assign a static IP to tmfifo_net0" under
"Updating Repo Package on Host Side".

ssh ubuntu@192.168.100.2

file:///networking/display/bluefieldbsp480/RShim+Troubleshooting+and+How-Tos
file:///networking/display/bluefieldbsp480/RShim+Troubleshooting+and+How-Tos
file:///networking/display/bluefieldbsp480/Installing+Repo+Package+on+Host+Side

Initial Configuration 27

RShim Support for Multiple DPUs

Multiple DPUs may connect to the same host machine. When the RShim driver is loaded
and operating correctly, each board is expected to have its own device directory on sysfs,
/dev/rshim<N>, and a virtual Ethernet device, tmfifo_net<N>.

The following are some guidelines on how to set up the RShim virtual Ethernet interfaces
properly if multiple DPUs are installed in the host system.

There are two methods to manage multiple tmfifo_net interfaces on a Linux platform:

Using a bridge, with all tmfifo_net<N> interfaces on the bridge – the bridge device
bares a single IP address on the host while each DPU has unique IP in the same
subnet as the bridge

Directly over the individual tmfifo_net<N> – each interface has a unique subnet IP and
each DPU has a corresponding IP per subnet

Whichever method is selected, the host-side tmfifo_net interfaces should have different
MAC addresses, which can be:

Configured using ifconfig. For example:

Or saved in configuration via the /udev/rules as can be seen later in this section.

In addition, each Arm-side tmfifo_net interface must have a unique MAC and IP address
configuration, as BlueField OS comes uniformly pre-configured with a generic MAC, and
192.168.100.2. The latter must be configured in each DPU manually or by DPU
customization scripts during BlueField OS installation.

Multi-board Management Example

This example deals with two BlueField DPUs installed on the same server (the process is
similar for more DPUs).

This example assumes that the RShim package has been installed on the host server.

$ ifconfig tmfifo_net0 192.168.100.1/24 hw ether 02:02:02:02:02:02

Initial Configuration 28

Configuring Management Interface on Host

1. Create a bf_tmfifo interface under /etc/sysconfig/network-scripts. Run:

2. Inside ifcfg-br_tmfifo, insert the following content:

3. Create a configuration file for the first BlueField DPU, tmfifo_net0. Run:

4. Inside ifcfg-tmfifo_net0, insert the following content:

Note

This example is relevant for CentOS/RHEL operating systems only.

vim /etc/sysconfig/network-scripts/ifcfg-br_tmfifo

DEVICE="br_tmfifo"
BOOTPROTO="static"
IPADDR="192.168.100.1"
NETMASK="255.255.255.0"
ONBOOT="yes"
TYPE="Bridge"

vim /etc/sysconfig/network-scripts/ifcfg-tmfifo_net0

DEVICE=tmfifo_net0
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br_tmfifo

Initial Configuration 29

5. Create a configuration file for the second BlueField DPU, tmfifo_net1. Run:

6. Create the rules for the tmfifo_net interfaces. Run:

7. Restart the network for the changes to take effect. Run:

Configuring BlueField DPU Side

BlueField DPUs arrive with the following factory default configurations for tmfifo_net0.

Address Value

MAC 00:1a:ca:ff:ff:01

IP 192.168.100.2

Therefore, if you are working with more than one DPU, you must change the default MAC
and IP addresses.

Updating RShim Network MAC Address

DEVICE=tmfifo_net1
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br_tmfifo

vim /etc/udev/rules.d/91-tmfifo_net.rules

/etc/init.d/network restart
Restarting network (via systemctl): [OK]

Note

Initial Configuration 30

1. Use a Linux console application (e.g. screen or minicom) to log into each BlueField.
For example:

2. Create a configuration file for tmfifo_net0 MAC address. Run:

3. Inside bf.cfg, insert the new MAC:

4. Apply the new MAC address. Run:

5. Repeat this procedure for the second BlueField DPU (using a different MAC
address).

This procedure is relevant for Ubuntu/Debian (sudo needed), and
CentOS BFBs. The procedure only affects the tmfifo_net0 on the Arm
side.

sudo screen /dev/rshim<0|1>/console 115200

sudo vi /etc/bf.cfg

NET_RSHIM_MAC=00:1a:ca:ff:ff:03

sudo bfcfg

Info

Initial Configuration 31

Updating IP Address

For Ubuntu:

1. Access the file 50-cloud-init.yaml and modify the tmfifo_net0 IP address:

2. Reboot the Arm. Run:

3. Repeat this procedure for the second BlueField DPU (using a different IP address).

Arm must be rebooted for this configuration to take effect. It is
recommended to update the IP address before you do that to
avoid unnecessary reboots.

Note

For comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

sudo vim /etc/netplan/50-cloud-init.yaml

 tmfifo_net0:
 addresses:
 - 192.168.100.2/30 ===>>> 192.168.100.3/30

sudo reboot

Info

file:///networking/display/bluefieldbsp480/Installation+Troubleshooting+and+How-Tos#src-3094734054_InstallationTroubleshootingandHowTos-bf.cfgParameters

Initial Configuration 32

For CentOS:

1. Access the file ifcfg-tmfifo_net0. Run:

2. Modify the value for IPADDR:

3. Reboot the Arm. Run:

Or perform netplan apply.

4. Repeat this procedure for the second BlueField DPU (using a different IP address).

Arm must be rebooted for this configuration to take effect. It is
recommended to update the MAC address before you do that
to avoid unnecessary reboots.

vim /etc/sysconfig/network-scripts/ifcfg-tmfifo_net0

IPADDR=192.168.100.3

reboot

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the MAC address before you do that
to avoid unnecessary reboots.

Initial Configuration 33

Permanently Changing Arm-side MAC Address

The default MAC address is 00:1a:ca:ff:ff:01. It can be changed using ifconfig or by updating
the UEFI variable as follows:

1. Log into Linux from the Arm console.

2. Run:

3. If not mounted, run:

The printf command sets the MAC address to 00:1a:ca:ff:ff:03 (the last six bytes of the printf

value). Either reboot the device or reload the tmfifo driver for the change to take effect.

The MAC address can also be updated from the server host side while the Arm-side Linux
is running:

Note

It is assumed that the commands in this section are executed with
root (or sudo) permission.

$ "ls /sys/firmware/efi/efivars".

$ mount -t efivarfs none /sys/firmware/efi/efivars
$ chattr -i /sys/firmware/efi/efivars/RshimMacAddr-8be4df61-93ca-11d2-aa0d-00e098032b8c
$ printf "\x07\x00\x00\x00\x00\x1a\xca\xff\xff\x03" > \
 /sys/firmware/efi/efivars/RshimMacAddr-8be4df61-93ca-11d2-aa0d-00e098032b8c

Initial Configuration 34

1. Enable the configuration. Run:

2. Display the current setting. Run:

3. Modify the MAC address. Run:

For more information and an example of the script that covers multiple DPU installation
and configuration, refer to section "Installing Full DOCA Image on Multiple DPUs" of the
NVIDIA DOCA Installation Guide.

OOB Ethernet Interface

The OOB interface is a gigabit Ethernet interface which provides TCP/IP network
connectivity to the Arm cores. This interface is named oob_net0 and is intended to be used
for management traffic (e.g. file transfer protocols, SSH, etc). The Linux driver that
controls this interface is named mlxbf_gige.ko, and is automatically loaded upon boot. This
interface can be configured and monitored by use of standard tools (e.g. ifconfig, ethtool,
etc). The OOB interface is subject to the following design limitations:

echo "DISPLAY_LEVEL 1" > /dev/rshim0/misc

cat /dev/rshim0/misc
DISPLAY_LEVEL 1 (0:basic, 1:advanced, 2:log)
BOOT_MODE 1 (0:rshim, 1:emmc, 2:emmc-boot-swap)
BOOT_TIMEOUT 300 (seconds)
DROP_MODE 0 (0:normal, 1:drop)
SW_RESET 0 (1: reset)
DEV_NAME pcie-0000:04:00.2
DEV_INFO BlueField-2(Rev 1)
PEER_MAC 00:1a:ca:ff:ff:01 (rw)
PXE_ID 0x00000000 (rw)
VLAN_ID 0 0 (rw)

$ echo "PEER_MAC xx:xx:xx:xx:xx:xx" > /dev/rshim0/misc

https://docs.nvidia.com/doca/sdk/installation-guide/index.html#installing-full-doca-image-on-multiple-dpus

Initial Configuration 35

Only supports 1Gb/s full-duplex setting

Only supports GMII access to external PHY device

Supports maximum packet size of 2KB (i.e. no support for jumbo frames)

The OOB interface can also be used for PXE boot. This OOB port is not a path for the boot
stream. Any attempt to push a BFB to this port will not work. Please refer to How to use
the UEFI boot menu for more information about UEFI operations related to the OOB
interface.

OOB Interface MAC Address

The MAC address to be used for the OOB port is burned into Arm-accessible UPVS
EEPROM during the manufacturing process. This EEPROM device is different from the SPI
Flash storage device used for the NIC firmware and associated NIC MACs/GUIDs. The
value of the OOB MAC address is specific to each platform and is visible on the board-
level sticker.

If there is a need to re-configure this MAC for any reason, follow these steps to configure
a UEFI variable to hold new value for OOB MAC.:

Warning

It is not recommended to reconfigure the MAC address from the MAC
configured during manufacturing.

Note

The creation of an OOB MAC address UEFI variable will override the
OOB MAC address defined in EEPROM, but the change can be
reverted.

file:///networking/display/bluefieldbsp480/Installation+Troubleshooting+and+How-Tos#src-3094734054_InstallationTroubleshootingandHowTos-HowtousetheUEFIbootmenu
file:///networking/display/bluefieldbsp480/Installation+Troubleshooting+and+How-Tos#src-3094734054_InstallationTroubleshootingandHowTos-HowtousetheUEFIbootmenu

Initial Configuration 36

1. Log into Linux from the Arm console.

2. Issue the command ls /sys/firmware/efi/efivars to show whether efivarfs is mounted. If it
is not mounted, run:

3. Run:

4. Set the MAC address to 00:1a:ca:ff:ff:03 (the last six bytes of the printf value).

5. Reboot the device for the change to take effect.

To revert this change and go back to using the MAC as programmed during
manufacturing, follow these steps:

1. Log into UEFI from the Arm console, go to "Boot Manager" then "EFI Internal Shell".

2. Delete the OOB MAC UEFI variable. Run:

3. Reboot the device by running "reset" from UEFI.

4. Log into Linux from the Arm console.

5. Issue the command ls /sys/firmware/efi/efivars to show whether efivarfs is mounted. If it
is not mounted, run:

mount -t efivarfs none /sys/firmware/efi/efivars

chattr -i /sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-00e098032b8c

printf "\x07\x00\x00\x00\x00\x1a\xca\xff\xff\x03" > /sys/firmware/efi/efivars/OobMacAddr-
8be4df61-93ca-11d2-aa0d-00e098032b8c

dmpstore -d OobMacAddr

Initial Configuration 37

6. Run:

7. Reconfigure the original MAC address burned by the manufacturer in the format
aa\bb\cc\dd\ee\ff. Run:

8. Reboot the device for the change to take effect.

Supported ethtool Options for OOB Interface

The Linux driver for the OOB port supports the handling of some basic ethtool requests:
get driver info, get/set ring parameters, get registers, and get statistics.

To use the ethtool options available, use the following format:

Where <option> may be:

<no-argument> – display interface link information

-i – display driver general information

-S – display driver statistics

mount -t efivarfs none /sys/firmware/efi/efivars

chattr -i /sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-00e098032b8c

printf "\x07\x00\x00\x00\x00\<original-MAC-address>" > /sys/firmware/efi/efivars/OobMacAddr-
8be4df61-93ca-11d2-aa0d-00e098032b8c

$ ethtool [<option>] <interface>

Initial Configuration 38

-d – dump driver register set

-g – display driver ring information

-G – configure driver ring(s)

-k – display driver offload information

-a – query the specified Ethernet device for pause parameter information

-r – restart auto-negotiation on the specified Ethernet device if auto-negotiation is
enabled

For example:

$ ethtool oob_net0
Settings for oob_net0:
 Supported ports: [TP]
 Supported link modes: 1000baseT/Full
 Supported pause frame use: Symmetric
 Supports auto-negotiation: Yes
 Supported FEC modes: Not reported
 Advertised link modes: 1000baseT/Full
 Advertised pause frame use: Symmetric
 Advertised auto-negotiation: Yes
 Advertised FEC modes: Not reported
 Link partner advertised link modes: 1000baseT/Full
 Link partner advertised pause frame use: Symmetric
 Link partner advertised auto-negotiation: Yes
 Link partner advertised FEC modes: Not reported
 Speed: 1000Mb/s
 Duplex: Full
 Port: Twisted Pair
 PHYAD: 3
 Transceiver: internal
 Auto-negotiation: on
 MDI-X: Unknown
 Link detected: yes

$ ethtool -i oob_net0
driver: mlxbf_gige

Initial Configuration 39

IP Address Configuration for OOB Interface

The files that control IP interface configuration are specific to the Linux distribution. The
udev rules file (/etc/udev/rules.d/92-oob_net.rules) that renames the OOB interface to oob_net0

and is the same for Yocto, CentOS, and Ubuntu:

version:
firmware-version:
expansion-rom-version:
bus-info: MLNXBF17:00
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: yes
supports-priv-flags: no

Display statistics specific to BlueField-2 design (i.e. statistics that are not shown in the output of
"ifconfig oob0_net")
$ ethtool -S oob_net0
NIC statistics:
 hw_access_errors: 0
 tx_invalid_checksums: 0
 tx_small_frames: 1
 tx_index_errors: 0
 sw_config_errors: 0
 sw_access_errors: 0
 rx_truncate_errors: 0
 rx_mac_errors: 0
 rx_din_dropped_pkts: 0
 tx_fifo_full: 0
 rx_filter_passed_pkts: 5549
 rx_filter_discard_pkts: 4

SUBSYSTEM=="net", ACTION=="add", DEVPATH=="/devices/platform/MLNXBF17:00/net/eth[0-9]",
NAME="oob_net0"

Initial Configuration 40

The files that control IP interface configuration are slightly different for CentOS and
Ubuntu:

CentOS configuration of IP interface:

Configuration file for oob_net0: /etc/sysconfig/network-scripts/ifcfg-oob_net0

For example, use the following to enable DHCP:

For example, to configure static IP use the following:

For Ubuntu configuration of IP interface, refer to section "Default Network Interface
Configuration".

NAME="oob_net0"
DEVICE="oob_net0"
NM_CONTROLLED="yes"
PEERDNS="yes"
ONBOOT="yes"
BOOTPROTO="dhcp"
TYPE=Ethernet

NAME="oob_net0"
DEVICE="oob_net0"
IPV6INIT="no"
NM_CONTROLLED="no"
PEERDNS="yes"
ONBOOT="yes"
BOOTPROTO="static"
IPADDR="192.168.200.2"
PREFIX=30
GATEWAY="192.168.200.1"
DNS1="192.168.200.1"
TYPE=Ethernet

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-NetworkInterfaceConfiguration
file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-NetworkInterfaceConfiguration

Initial Configuration 41

Secure Boot
These pages provide guidelines on how to operate secured NVIDIA® BlueField® DPUs.
They provide UEFI secure boot references for the UEFI portion of the secure boot
process.

Secure boot is a process which verifies each element in the boot process prior to
execution, and halts or enters a special state if a verification step fails at any point during
the boot. It is based on an unmodifiable ROM code which acts as the root-of-trust (RoT)
and uses an off-chip public key, to authenticate the initial code which is loaded from an
external non-volatile storage. The off-chip public key integrity is verified by the ROM code
against an on-chip public key hash value stored in E-FUSEs. Then the authenticated code
and each element in the boot process cryptographically verify the next element prior to
passing execution to it. This extends the chain-of-trust (CoT) by verifying elements that
have their RoT in hardware. In addition, no external intervention in the authentication

Note

This section provides directions for illustration purposes, it does not
intend to enforce or mandate any procedure about managing keys
and/or production guidelines. Platform users are solely responsible
of implementing secure strategies and safe approaches to manage
their boot images and their associated keys and certificates.

Note

Security aspects such as key generation, key management, key
protection, and certificate generation are out of the scope of this
section.

Initial Configuration 42

process is permitted to prevent unauthorized software and firmware from being loaded.
There should be no way to interrupt or bypass the RoT with runtime changes.

Supported BlueField DPUs

Secured BlueField devices have pre-installed software and firmware signed with NVIDIA
signing keys. The on-chip public key hash is programmed into E-FUSEs.

To verify whether the DPU in your possession supports secure boot, run the following
command:

“GA SECURED” indicates that the BlueField device has secure boot enabled.

To verify whether the BlueField Arm has secure boot enabled, run the following
command from the BlueField console:

UEFI Secure Boot

UEFI Secure Boot is a feature of the Unified Extensible Firmware Interface (UEFI)
specification. The feature defines a new interface between the operating system and
firmware/BIOS.

sudo mst start
sudo flint -d /dev/mst/mt41686_pciconf0 q full | grep "Life cycle"
Life cycle: GA SECURED

ubuntu@localhost:~$ sudo mlxbf-bootctl | grep lifecycle
lifecycle state: GA Secured

Note

This feature is available in the NVIDIA® BlueField®-2 and above.

Initial Configuration 43

When enabled and fully configured on the DPU, UEFI Secure Boot helps the Arm=based
software running on top of UEFI resist attacks and infection from malware. UEFI Secure
Boot detects tampering with boot loaders, key operating system files, and unauthorized
option ROMs by validating their digital signatures. Malicious actions are blocked from
running before they can attack or infect the system.

UEFI Secure Boot works as a security gate. Code signed with valid keys (whose public
key/certificates exist in the DPU) gets through the gate and executes while blocking and
rejecting code that has either a bad or no signature.

The DPU enables UEFI secure boot with the Ubuntu OS included in the platform's
software.

Verifying UEFI Secure Boot on DPU

To verify whether UEFI secure boot is enabled, run the following command from the
BlueField console:

As UEFI secure boot is not specific to BlueField platforms, please refer to the Canonical
documentation online for further information on UEFI secure boot:

https://wiki.ubuntu.com/UEFI/SecureBoot

https://wiki.ubuntu.com/UEFI/SecureBoot/Signing

Main Use Cases for UEFI Secure Boot

UEFI secure boot can be used in 2 main cases for the DPU:

Method Pros Cons

Using the default enabled
UEFI secure boot (with
Ubuntu OS or any Microsoft-
signed boot loader)

Relatively easy Limited flexibility; only
allows executing NVIDIA
binary files

ubuntu@localhost:~$ sudo mokutil --sb-state
SecureBoot enabled

https://wiki.ubuntu.com/UEFI/SecureBoot
https://wiki.ubuntu.com/UEFI/SecureBoot/Signing

Initial Configuration 44

Method Pros Cons

See "Using Default Enabled
UEFI Secure Boot" for more.

Dependency on
Microsoft or NVIDIA as
signing entities

Enabling UEFI Secure Boot
with a custom OS (other than
the default Ubuntu)
See "Enabling UEFI Secure
Boot with Custom OS" for
more.

Autonomy, as you control
your own keys (no
dependency on Microsoft or
NVIDIA as signing entities)

You must create your
own capsule files to
enroll and customize
UEFI secure boot

Signing binaries is complex as you must create X.509 certificates and enroll them in UEFI
or shim which requires a fair amount of prior knowledge of how secure boot works. For
that reason, BlueField secured platforms are shipped with all the needed certificates and
signed binaries (which allows working seamlessly with the first use case in the table
above).

NVIDIA strongly recommends utilizing UEFI secure boot in any case due the increased
security it enables.

Verifying UEFI Secure Boot on DPU

To verify whether UEFI secure boot is enabled, run the following command from the
BlueField console:

As UEFI secure boot is not specific to BlueField platforms, refer to the Canonical
documentation online for further information on UEFI secure boot to familiarize yourself
with the UEFI secure boot concept:

https://wiki.ubuntu.com/UEFI/SecureBoot

https://wiki.ubuntu.com/UEFI/SecureBoot/Signing

ubuntu@localhost:~$ sudo mokutil --sb-state
SecureBoot enabled

https://wiki.ubuntu.com/UEFI/SecureBoot
https://wiki.ubuntu.com/UEFI/SecureBoot/Signing

Initial Configuration 45

Using Default Enabled UEFI Secure Boot

As part of the default settings of the DPU, UEFI secure boot is enabled and requires no
special configuration from the user to use it with the bundled Ubuntu OS.

Disabling UEFI Secure Boot

UEFI secure boot can be disabled per device from the UEFI menu as part of the DPU boot
process which requires access to the BlueField console.

To disable UEFI secure boot, reboot the platform and stop at the UEFI menu.

From the UEFI menu screen, select "Device Manager" then "Secure Boot Configuration". If
"Attempt Secure Boot" is checked, then uncheck it and reboot.

Note

On BlueField devices with UEFI secure boot enabled, the UEFI menu is
password-protected to prevent unwanted changes to the UEFI
settings. The default password is bluefield .

Initial Configuration 46

It is also possible to disable UEFI secure boot using Redfish API for BlueField devices with
an on-board BMC:

Warning

Disabling secure boot permanently is not recommended in
production environments.

curl -k -u root:<password> -H "Content-Type: application/octet-stream" -X GET https://<BF-BMC-
IP>/redfish/v1/Systems/Bluefield/SecureBoot
{
 "@odata.id": "/redfish/v1/Systems/Bluefield/SecureBoot",
 "@odata.type": "#SecureBoot.v1_1_0.SecureBoot",
 "Description": "The UEFI Secure Boot associated with this system.",
 "Id": "SecureBoot",
 "Name": "UEFI Secure Boot",
 "SecureBootCurrentBoot": "Enabled",
 "SecureBootEnable": true,
 "SecureBootMode": "SetupMode"

Initial Configuration 47

After running this command, the BlueField Arm OS must be rebooted twice. The first
reboot is for the UEFI redfish client to read the request from the BMC and apply it; the
second reboot is for the setting to take effect.

From the BlueField BMC using Redfish:

From RShim:

From the BlueField Arm OS:

Existing DPU Certificates

As part of having UEFI secure boot enabled, the UEFI databases are populated with
NVIDIA self-signed X.509 certificates. The Microsoft certificate is also installed into the
UEFI database to ensure that the Ubuntu distribution can boot while UEFI secure boot is
enabled (and generally any suitable OS loader signed by Microsoft).

The pre-installed certificate files are:

}
curl -k -u root:<BF-BMC-PASSWORD> -X PATCH https://<BF-BMC-
IP>/redfish/v1/Systems/Bluefield/SecureBoot -H 'Content-Type: application/json' -d
'{"SecureBootEnable": false}'

curl -k -u root:<BF-BMC-PASSWORD> -X POST https://<BF-BMC-
IP>/redfish/v1/Systems/Bluefield/Actions/ComputerSystem.Reset -H 'Content-Type:
application/json' -d '{"ResetType":"ForceRestart"}'

echo 'SW_RESET 1' > /dev/rshim0/misc

reboot

Initial Configuration 48

NVIDIA PK key certificate

NVIDIA KEK key certificate

NVIDIA db certificate

Microsoft db certificate

Enabling UEFI Secure Boot with Custom OS

This section lists the required steps to enable using UEFI secure boot with a custom OS
(other than the default Ubuntu).

Options for Enabling UEFI Secure Boot

There are 3 main ways for signing custom binaries and running them on the DPU with
UEFI secure boot enabled:

Method Pros Cons

1

Sign OS loader (e.g.,
Shim) by Microsoft.
See "Signing OS
Loader by Microsoft"
for more.

Does not require
access to the
BlueField console

Dependency on Microsoft as signing
entity

2 Shim – enroll a
machine owner key
(MOK) certificate in the

Easy Limited flexibility: Only allows
executing a custom kernel or
load a custom module. It does

Note

All processes described in the following subsections require some
level of testing and knowledge in how operating system boot flows
and bootloaders work.

Initial Configuration 49

Method Pros Cons

shim and use the
private part to sign
your files.
See "Enrolling MOK
Key" for more.

not allow executing UEFI
applications, UEFI drivers, or OS
loaders.
Dependency on Microsoft or
NVIDIA as signing entities
Not scalable: Requires access to
BlueField console per device (i.e.,
UART console required)

3

UEFI – enroll your own
key certificate in the
UEFI database and use
the private part to sign
your files.
See "Enrolling Your
Own Key to UEFI DB"
for more.

Autonomy, as you
control your keys
(not dependent on
Microsoft or NVIDIA
as signing entities)

Requires adding your key
certificate to database manually
Requires access to BlueField
console per device (i.e., UART
console required)
Not scalable: Requires access to
BlueField console per device (i.e.,
UART console required)

For generation of custom keys and certificates, see section "Generation of Custom Keys
and Certificates".

Signing binaries for UEFI secure boot is complex as you must create X.509 certificates and
enroll them in UEFI or shim which requires a fair amount of prior knowledge of how
secure boot works. See the processes used to enroll keys and to sign UEFI binaries in the
rest of this document.

Secure booting binaries for executing a UEFI application, UEFI driver, OS loader, custom
kernel, or loading a custom module depends on the certificates and public keys available
in the UEFI database and the shim's MOK list.

Signing OS Loader by Microsoft

Custom Kernel Images

One option to boot custom binaries on a DPU is to sign the OS loader (shim) by Microsoft
following the Microsoft guidelines which are updated and maintained by Microsoft. The

https://techcommunity.microsoft.com/t5/hardware-dev-center/updated-uefi-signing-requirements/ba-p/1062916

Initial Configuration 50

certificates/keys must be embedded within the shim OS loader so it may boot, in addition
the custom Kernel binary image and the custom Kernel modules must be signed
accordingly.

NVIDIA Kernel Modules

In this option, the NVIDIA db certificates should remain enrolled. This is due to the out-of-
tree kernel modules and drivers (e.g., OFED) provided by NVIDIA which are signed by
NVIDIA and authenticated by this NVIDIA certificate in the UEFI.

Enrolling MOK Key

To boot a custom kernel or load a custom module, you must create a MOK key pair. The
newly created MOK key must be an RSA 2048-bit. The private part is used for signing
operations and must be kept safe. The public X.509 key certificate in DER format must be
enrolled within the shim MOK list.

Once the public key certificate is enrolled within the shim, the MOK key is accepted as a
valid signing key.

Note that kernel module signing requires a special configuration. For example, the
extendedKeyUsage field must show an OID of 1.3.6.1.4.1.2312.16.1.2. That OID informs shim
that this is meant to be a module signing certificate.

The following is an example of OpenSSL configuration file for illustration purposes:

Note

Signing binaries with Microsoft is a process the involves lead time
which must be taken into consideration. This course of action
requires testing to making sure the complied BFB image including the
signed Microsoft bootloader works properly.

Initial Configuration 51

To enroll the MOK key certificate, download the associated key certificate to the BlueField
file system and run the following command:

You must follow the prompts to enter a password to be used to make sure you really do
want to enroll the key certificate.

Note that the key certificate is not enrolled yet. It will be enrolled by the shim upon the
next reboot. To list the imported certificate file to enroll:

HOME = .
RANDFILE = $ENV::HOME/.rnd
[req]
distinguished_name = req_distinguished_name
x509_extensions = v3
string_mask = utf8only
prompt = no

[req_distinguished_name]
countryName = US
stateOrProvinceName = Westborough
localityName = Massachusetts
0.organizationName = CampanyX
commonName = Secure Boot Signing
emailAddress = example@example.com

[v3]
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer
basicConstraints = critical,CA:FALSE
extendedKeyUsage = codeSigning,1.3.6.1.4.1.311.10.3.6,1.3.6.1.4.1.2312.16.1.2
nsComment = "OpenSSL Generated Certificate"

ubuntu@localhost:~$ sudo mokutil --import mok.der
input password:
input password again:

ubuntu@localhost:~$ sudo mokutil --list-new

Initial Configuration 52

A reboot must be performed.

Just before loading GRUB, shim displays a blue screen which is actually another piece of
the shim project called "MokManager". You may ignore the blue screen showing the error
message. Press "OK" to enter the "Shim UEFI key management" screen.

Select "Enroll MOK" and follow the menus to finish the enrolling process.

Initial Configuration 53

You may look at the properties of the key you are adding to make sure it is indeed correct
using "View key". MokManager will ask for the same password you typed in earlier when
running mokutil before reboot. MokManager will save the key and you will need to
reboot again.

To list the enrolled certificate files, run the following command:

Generation of Custom Keys and Certificates

To boot binaries not signed with the existing public keys and certificates in the UEFI
database (like the Microsoft certificate and key described in "Signing OS Loader by
Microsoft"), create an X.509 certificate (which includes the public key part of the public–
private key pair) that can be imported either directly though the UEFI or, more easily, via
shim.

Creating a certificate and public key for use in the UEFI secure boot is relatively simple.
OpenSSL can do it by running the command req.

ubuntu@localhost:~$ sudo mokutil --list-enrolled

https://confluence.nvidia.com/display/BlueFieldUEFISecBootUGDEV/Signing+OS+Loader+by+Microsoft
https://confluence.nvidia.com/display/BlueFieldUEFISecBootUGDEV/Signing+OS+Loader+by+Microsoft

Initial Configuration 54

For illustration purposes only, this example shows how to create a 2048-bit RSA MOK key
and its associated certificate file in DER format:

An OpenSSL configuration file may be used for key generation. It may be specified using --
config path/to/openssl.cnf.

The following sections refer to the db private key as key.priv and its DER certificate as
cert.der. Similarly, the MOK private key is referred to as mok.priv and its DER certificate as
mok.der.

Enrolling Your Own Key to UEFI DB

Some users may need to generate their own keys. For convenience, the processes used
to enroll keys into UEFI db as well as to sign UEFI binaries are provided in this document.

To execute your binaries while UEFI secure boot is enabled, you need your own pair of
private and public key certificates. The supported keys are RSA 2048-bit and ECDSA 384-
bit.

The private part is used for signing operations and must be kept safe. The public part
X.509 key certificate in DER format must be enrolled within the UEFI db.

A prerequisite for the following steps is having UEFI secure boot temporarily disabled on
the DPU. After temporarily disabling UEFI secure boot per device as in section "Existing

$ openssl req -new -x509 -newkey rsa:2048 -nodes -days 36500 -outform DER -keyout "mok.priv" -out
"mok.der"

Note

Detailed key and certificate generation are beyond the scope of this
document. Any organization should choose the proper way to
generate keys and certificates based on their security policy.

Initial Configuration 55

DPU Certificates", it is possible to override all the key certificate files of the UEFI database.
This allows you to enroll your PK key certificate, KEK key certificate, and db certificates.

The following subsections detail how enrolling can be done.

Using a Capsule

To enroll your key certificates, create a capsule file by way of tools and scripts provided
along with the BlueField software.

To create the capsule files, execute the mlx-mkcap script. After BlueField software
installation, the script can be found under /lib/firmware/mellanox/boot/capsule/scripts. This
script generates a capsule file to supply the key certificates to UEFI and enables UEFI
secure boot:

Note that you may specify as many db certificates as needed using the --db-key flag. In this
example, only a single db certificate is specified.

To set the UEFI password, you may specify the --uefi-passwd flag. For example, to set the
UEFI password to bluefield, run:

The resulting capsule file, EnrollYourKeysCap, can be downloaded to the BlueField file system
to initiate the key enrollment process. From the the BlueField console execute the
following command then reboot:

On the next reboot, the capsule file is processed and the UEFI database is populated with
the keys extracted from the capsule file.

$./mlx-mkcap --pk-key pk.cer --kek-key kek.cer --db-key db.cer EnrollYourKeysCap

$./mlx-mkcap --pk-key pk.cer --kek-key kek.cer --db-key db.cer --uefi-passwd "bluefield"
EnrollYourKeysCap

ubuntu@localhost:~$ bfrec --capsule EnrollYourKeysCap

Initial Configuration 56

Enroll Certificate into UEFI DB

As mentioned, the public part of the X.509 key certificate in DER format must be enrolled
within the UEFI db. The X.509 DER certificate file must be installed into the EFI system
partition (ESP).

Download the certificate file to BlueField file system and place it into the ESP:

To enroll the certificate into the UEFI db, you must to reboot and log in again into the
UEFI menu. From the "UEFI menu", select "Device Manager" entry then "Secure Boot
Configuration". Navigate to "Secure Boot Mode" and select "Custom Mode" setup.

The secure boot "Custom Mode" setup feature allows a physically present user to modify
the UEFI database.

Note

Enrolling the PK key certificate file enables the UEFI secure boot.

ubuntu@localhost:~$ sudo cp path/to/cert.der /boot/efi/

Initial Configuration 57

Once the platform is in "Custom Mode", a "Custom Secure Boot Options" menu entry
appears which allows you to manipulate the UEFI database keys and certificates.

To enroll your DER certificate file, select "DB Options" and enter the "Enroll Signature"
menu. Select "Enroll Signature Using File" and navigate within the EFI System Partition

Initial Configuration 58

(ESP) to the db DER certificate file.

The ESP path is shown below as "system-boot, [VenHw(*)/HD(*)]".

Initial Configuration 59

While enrolling the certificate file, you may enter a GUID along with the key certificate file.
The GUID is the platform's way of identifying the key. It serves no purpose other than for
you to tell which key is which when you delete it (it is not used at all in signature
verification).

This value must be in the following format: 11111111-2222-3333-4444-1234567890ab. If
nothing is entered, a GUID of 00000000-0000-0000-0000-000000000000 is created.

Finally, commit the changes and exit. You may be asked to reboot.

Signing Binaries

Signing Custom Kernel and UEFI Binaries

To sign a custom kernel or any other EFI binary (UEFI application, UEFI driver or OS
loader) you want to have loaded by shim, you need the private part of the key and the
certificate in PEM format.

To convert the certificate into PEM, run:

Now, to sign your EFI binary, run:

If you are using your db key, use the private part of the key and its associated certificate
converted into PEM format for binary signing.

If the X.509 key certificate is enrolled in UEFI db or by way of shim, the binary should be
loaded without an issue.

$ openssl x509 -in mok.der -inform DER -outform PEM -out mok.pem

$ sbsign --key mok.priv --cert mok.pem binary.efi --output binary.efi.signed

Initial Configuration 60

Signing Kernel Modules

The X.509 certificate you added must be visible to the kernel. To verify the keys visible to
the kernel, run:

For a straightforward result, run:

If the X.509 certificate attributes (commonName, etc.) are configured properly, you should
see your key certificate information in the result output. In this example, two custom keys
are visible to the kernel:

YourSigningMokKey – registered with the shim as a MOK

YourSigningDbKey – registered with UEFI as db

ubuntu@localhost:~$ sudo cat /proc/keys

ubuntu@localhost:~$ dmesg | grep -i "X.509"
[1.869521] Loading compiled-in X.509 certificates
[1.875441] Loaded X.509 cert 'Build time autogenerated kernel key:
b1a3fbd0178bdb7190387a4187e8e4b0eb476cdc'
[1.941752] integrity: Loading X.509 certificate: UEFI:db
[1.947636] integrity: Loaded X.509 cert 'YourSigningDbKey:
a109f01707ba6769c4d546530ba1592c7daedc3b'
[1.958736] integrity: Loading X.509 certificate: UEFI:db
[1.964170] integrity: Loaded X.509 cert 'Microsoft Corporation UEFI CA 2011:
13adbf4309bd82709c8cd54f316ed522988a1bd4'
[2.023740] integrity: Loading X.509 certificate: UEFI:MokListRT
[2.030090] integrity: Loaded X.509 cert 'YourSingingMokKey:
2012e5122669ffc0cc28827c6134329a6bec0b88'
[2.040796] integrity: Loading X.509 certificate: UEFI:MokListRT
[2.046830] integrity: Loaded X.509 cert 'SomeOrg: shim:
331c1c8963538e327d6e39346f4f53b200987015'
[2.055796] integrity: Loading X.509 certificate: UEFI:MokListRT
[2.062114] integrity: Loaded X.509 cert 'Canonical Ltd. Master Certificate Authority:
ad91990bc22ab1f517048c23b6655a268e345a63'

Initial Configuration 61

You may sign kernel modules using either of these approaches:

kmodsign command

Linux kernel script sign-file

Signing Kernel Modules Using kmodsign

If you are using the kmodsign command to sign kernel modules, run:

The signature is appended to the kernel module by kmodsign.

But if you rather keep the original kernel module unchanged, run:

Refer to kmosign --help for more information.

Signing Kernel Modules Using Sign File

To sign the kernel module using the Linux kernel script sign-file, please refer to Linux
kernel documentation.

Note

This example is for illustration purposes only. The actual output
might differ from the output shown in this example depending on
what key was previously enrolled and how it was enrolled.

ubuntu@localhost:~$ sudo cat /proc/keys

ubuntu@localhost:~$ kmodsign sha512 mok.priv mok.der module.ko module-signed.ko

https://www.kernel.org/doc/html/v5.4/admin-guide/module-signing.html#manually-signing-modules
https://www.kernel.org/doc/html/v5.4/admin-guide/module-signing.html#manually-signing-modules

Initial Configuration 62

If you are using your db key, use the private part of the key and its associated certificate
for binary signing.

To validate that the module is signed, check that it includes the string ~Module signature

appended~:

Ongoing Updates

Update Key Certificates

While UEFI secure boot is enabled, it is possible to update your keys using a capsule file.

To create a capsule intended to update the UEFI secure boot keys, generate a new set of
keys and then run:

ubuntu@localhost:~$ hexdump -Cv module.ko | tail -n 5
00002c20 10 14 08 cd eb 67 a8 3d ac 82 e1 1d 46 b5 5c 91 |.....g.=....F.\.|
00002c30 9c cb 47 f7 c9 77 00 00 02 00 00 00 00 00 00 00 |..G..w..........|
00002c40 02 9e 7e 4d 6f 64 75 6c 65 20 73 69 67 6e 61 74 |..~Module signat|
00002c50 75 72 65 20 61 70 70 65 6e 64 65 64 7e 0a |ure appended~.|
00002c5e

Note

This requires UEFI secure boot to have been enabled using your own
keys, which means that you own the signing keys.

$./mlx-mkcap --pk-key new_pk.cer --kek-key new_kek.cer --db-key new_db1.cer --db-key new_db2.cer --
db-key new_db3.cer --signer-key db.key --signer-cert db.pem EnrollYourNewKeysCap

Initial Configuration 63

Note that --signer-key and --signer-cert are set so the capsule is signed. When UEFI secure
boot is enabled, the capsule is verified using the key certificates previously enrolled in the
UEFI database. It is important to use the old signing keys associated with the certificates
in the UEFI database to sign the capsule. The new key certificates are intended to replace
the existing key certificates after capsule processing. Once the UEFI database is updated,
the new keys must be used to sign the newly created capsule files.

To enroll the new set of keys, download the capsule file to the BlueField console and use
bfrec to initiate the capsule update.

Disable UEFI Secure Boot Using a Capsule

It is possible to disable UEFI secure boot through a capsule update. This requires an
empty PK key when creating the capsule file.

To create a capsule intended to disable UEFI secure boot:

1. Create a dummy empty PK certificate:

2. Create the capsule file:

Note

This requires UEFI secure boot to have been enabled using your own
keys, which means that you own the signing keys.

$ touch null_pk.cer

$./mlx-mkcap --pk-key null_pk.cer --signer-key db.key --signer-cert db.pem DeletePkCap

Initial Configuration 64

--signer-key and --signer-cert must be specified with the appropriate private keys and
certificates associated with the actual key certificates in the UEFI database.

To enroll the empty PK certificate, download the capsule file to the BlueField console and
use bfrec to initiate the capsule update.

Updating Platform Firmware
To update the platform firmware on secured devices, download the latest NVIDIA®
BlueField® software images from NVIDIA.com.

Updating eMMC Boot Partitions Image

The capsule file /lib/firmware/mellanox/boot/capsule/MmcBootCap is used to update the eMMC
boot partition and update the Arm pre-boot code (i.e., Arm trusted firmware and UEFI).

The capsule file is signed with NVIDIA keys. If UEFI secure boot is enabled, make sure the
NVIDIA certificate files are enrolled into the UEFI database. Please refer to "UEFI Secure
Boot" for more information on how to update the UEFI database key certificates.

To initiate the update of the eMMC boot partitions, run the following command:

After the command completes, reboot the system to process the capsule file. On the next
reboot, UEFI will verify the capsule signature. If verified, UEFI will process the capsule file,

Warning

Deleting the PK certificate will result in UEFI secure boot to be
disabled which is not recommended in a production environment.

ubuntu@localhost:~$ sudo bfrec --capsule /lib/firmware/mellanox/boot/capsule/MmcBootCap

https://developer.nvidia.com/networking/doca
file:///networking/display/bluefieldbsp480/UEFI+Secure+Boot
file:///networking/display/bluefieldbsp480/UEFI+Secure+Boot

Initial Configuration 65

extract the pre-boot image and burn it into the eMMC boot partitions.

Note that the pre-boot code is signed with the NVIDIA key. The bootloader images are
installed into the eMMC with their associated certificate files. The public key is derived
from the certificate file and its integrity is verified by the ROM code against an on-chip
public key hash value stored in E-FUSEs. If the verification fails, then the pre-boot code
will not be allowed to execute.

Recovering eMMC Boot Partition

If the system cannot boot from the eMMC boot partitions for any reason, it is
recommended to download a valid BFB image and boot it over the BlueField platform.

The recovery path relies on the platform to be configured to boot solely from the RShim
interface (either RShim USB or RShim PCIe). With this configuration there must not be a
way to interrupt or bypass the RoT when secure booting.

You will need to append a capsule file to the BFB prior to booting. Run:

Then boot the recovery_install.bfb using the RShim interface. Run:

The capsule file will be processed by UEFI upon boot.

Updating SPI Flash FS4 Image

The SPI flash contains the firmware image of the DPU firmware in FS4 format. The
firmware image is provided along with the software.

There are two different ways to install the firmware image:

From the BlueField console, using the following command:

$ mlx-mkbfb --capsule MmcBootCap install.bfb recovery_install.bfb

$ cat recovery_install.bfb > /dev/rshim0/boot

Initial Configuration 66

From the PCIe host console, using the following command:

ubuntu@localhost:~$ /opt/mellanox/mlnx-fw-
updater/firmware/mlxfwmanager_sriov_dis_aarch64_<bf-dev>

flint -d /dev/mst/mt<bf-dev>_pciconf0 -i firmware.bin b

Info

bf-dev is 41686 for BlueField-2 or 41692 for BlueField-3.

Initial Configuration 67

Default Passwords and
Policies
BMC Passwords

The BMC password must comply with the following policy parameters:

Using ASCII and Unicode characters is permitted

Minimum length: 12

Maximum length: 20

Maximum number of consecutive character pairs: 4

The following is a valid example password:

HelloNvidia3D!

Info

Two characters are consecutive if |hex(char_1)-hex(char_2)|=1.

Examples of passwords with 5 consecutive character pairs
(invalid): DcBa123456AbCd!; ab1XbcYcdZdeGef!; Testing_123abcgh!.

Note

Initial Configuration 68

UEFI Menu Password

A password is required to enter the UEFI menu during BlueField bootup. The UEFI menu
contains various settings which impact BlueField behavior. Therefore, it is very important
to keep that password secure.

Default Password

1. A first-time user accessing the UEFI menu must enter the default password for the
UEFI menu, bluefield:

2. The user is prompted to provide a new password:

A user account is locked for 10 minutes after 10 consecutive failed
attempts.

Note

The new password entered above must be in compliance with
the password policy:

The password must be between 12 and 64 characters
(inclusive)

There are no requirements for upper/lower case, or
special characters. Spaces are allowed.

Initial Configuration 69

3. The user is prompted to confirm the new password:

Default Password Policy

The user can enable/disable the UEFI password policy. The default password policy is
enabled by default using a checkbox in the UEFI menu.

The user can browse the UEFI menu and disable as follows:

1. Navigate to "Device Configuration" > "System Configuration" > "Password Settings":

2. The "Default Password Policy" checkbox controls whether the more secure
password policy is enabled:

Initial Configuration 70

3. The user must hit ESC ESC and answer "Y" to save the configuration change.

Info

To disable the Default Password Policy, hit the spacebar to clear
the checkbox.

Initial Configuration 71

Disabling Default Password Policy

To disable the Default Password Policy, hit the spacebar to clear the checkbox.

Initial Configuration 72

Software Downgrade

The UEFI's password policy is not backward compatible. Although downgrade is not
recommended, users are allowed to downgrade their software while their password is
set. But , if and only if the password is set, users must configure the legacy password
prior to performing any downgrade.

For BSP 4.6.0 (DOCA 2.6.0) or higher, users must change the UEFI password saved to the
older "Legacy" format.

In the UEFI menu:

1. Navigate to "Device Manager" > "System Configuration" >"Password Settings" >" Set
Legacy Password".

2. Select " Set Legacy Password ".

3. Enter your current password:

Info

If the Default Password Policy is disabled, the password entered must
be between 1 and 64 characters.

Warning

If this procedure is not followed before performing a software
downgrade, users would not be able to enter the UEFI menu.

Initial Configuration 73

4. Type in a new legacy password between 1 and 20 characters:

Note

The password format allows up to 64 characters but anything
greater than 20 characters is not backward compatible.

Initial Configuration 74

5. Confirm the new password:

Now, you may downgrade your BlueField image.

Password Reset

Initial Configuration 75

To reset the UEFI menu password, users may use the ready to use capsule file
EnrollKeysCap installed under /lib/firmware/mellanox/boot/capsule/EnrollKeysCap on the BlueField
DPU file system. From the BlueField console, execute the following command, then
reboot:

On the next reboot, the capsule file is processed, and the UEFI password is reset to
bluefield.

GRUB Password

GRUB menu entries are protected by a username and password to prevent unwanted
changes to the default boot options or parameters.

The default credentials are as follows:

Username admin

Password BlueField

The password can be changed during BFB installation by providing a new
grub_admin_PASSWORD parameter in bf.cfg:

To get a new encrypted password value use the command grub-mkpasswd-pbkdf2.

After the installation, the password can be updated by editing the file /etc/grub.d/40_custom

and then running the command update-grub which updates the file /boot/grub/grub.cfg.

Ubuntu Password Policy

ubuntu@localhost:~$ bfrec --capsule /lib/firmware/mellanox/boot/capsule/EnrollKeysCap

vim bf.cfg
grub_admin_PASSWORD='
grub.pbkdf2.sha512.10000.5EB1FF92FDD89BDAF3395174282C77430656A6DBEC1F9289D5F5DAD17811A

Initial Configuration 76

Upon first login, the username ubuntu must enter the default password ubuntu if this was
not changed during the OS installation process. Users are then required to change the
default password according to the following password policy:

The following table details the password policy parameters:

Config File Path
Param
eter

Value Description

/etc/security/pwqu
ality.conf

minlen 12 Minimum password length

/etc/pam.d/commo
n-password

rememb
er 3

The number of previous passwords which cannot
be reused

/etc/security/failloc
k.conf

silent
Uncomm
ented

Prevents printing informative messages to the
user

deny 10
The number of authentication attempts
permitted before the user is locked out

unlock_ti
me 600 The duration of the lockout period, in seconds

Copyright 2024. PDF Generated on 08/20/2024

Info

Each of these parameters is configurable in its respective config file
indicated in the "Config File Path" column.

	UEFI Menu
	System Configuration and Services
	Host-side Interface Configuration
	Secure Boot
	UEFI Secure Boot
	Updating Platform Firmware

	Default Passwords and Policies

