NVIDIA.

Installation Troubleshooting and How-Tos

Table of contents

BlueField target is stuck inside UEFI menu

BFB does not recognize the BlueField board type
Unable to load BL2, BL2R, or PSC image

CentOS fails into "dracut" mode during installation

How to find the software versions of the running system
How to upgrade the host RShim driver

How to upgrade the boot partition (ATF & UEFI) without re-installation
How to upgrade ConnectX firmware from Arm side

How to configure ConnectX firmware

How to use the UEFI boot menu

How to Use the Kernel Debugger (KGDB)

How to enable/disable SMMU

How to change the default console of the install image

How to change the default network configuration during BFB
installation

Sanitizing DPU eMMC and SSD Storage
Using shred Utility

Using mmc and nvme Utilities

Installation Troubleshooting and How-Tos

BlueField target is stuck inside UEFI menu

Upgrade to the latest stable boot partition images, see "How to upgrade the boot
partition (ATF & UEFI) without re-installation".

BFB does not recognize the BlueField board type

If the .bfb file cannot recognize the BlueField board type, it reverts to low core operation.
The following message will be printed on your screen:

System type can't be determined
Booting as a minimal system

Please contact NVIDIA Support if this occurs.

Unable to load BL2, BL2R, or PSC image

The following errors appear in console if images are corrupted or not signed properly:

Device Error

BlueField ERROR: Failed to load BL2 firmware

BlueField-2 ERROR: Failed to load BL2R firmware
BlueField-3 Failed to load PSC-BL1 Or PSC VERIFY_BCT timeout

CentOS fails into "dracut” mode during installation

This is most likely configuration related.

e If installing through the RShim interface, check whether /var/pxe/centos? is
mounted or not. If not, either manually mount it or re-run the setup.sh script.

e Check the Linux boot message to see whether eMMC is found or not. If not, the
BlueField driver patch is missing. For local installation via RShim, run the setup.sh
script with the absolute path and check if there are any errors. For a corporate PXE

Installation Troubleshooting and How-Tos

server, make sure the BlueField and ConnectX driver disk are patched into the initrd
image.

How to find the software versions of the running
system

Run the following:

/opt/mellanox/scripts/bfvcheck:
root@bluefield:/usr/bin/bfvcheck# ./bfvcheck
Beginning version check...
-RECOMMENDED VERSIONS-

ATF: v1.5(release):BL2.0-1-gf9f7cdd
UEFI: 2.0-6004a6b

FW: 18.25.1010

-INSTALLED VERSIONS-

ATF: v1.5(release):BL2.0-1-gf9f7cdd
UEFI: 2.0-6004a6b

FW: 18.25.1010

Version checked

Also, the version information is printed to the console.

For ATF, a version string is printed as the system boots.

"NOTICE: BL2:v1.3(release):v1.3-554-ga622cde"
For UEFI, a version string is printed as the system boots.

"UEFI firmware (version 0.99-18d57e3 built at 00:55:30 on Apr 13 2018)"
For Yocto, run:

$ cat /etc/bluefield_version

Installation Troubleshooting and How-Tos 3

2.0.0.10817

How to upgrade the host RShim driver

See the readme at <BF_INST_DIR>/src/drivers/rshim/README.

How to upgrade the boot partition (ATF & UEFI) without
re-installation

1. Boot the target through the RShim interface from a host machine:

$ cat <BF_INST_DIR>/sample/install.bfb > /dev/rshim<N>/boot

2. Log into the BlueField target:

$ /opt/minx/scripts/bfrec

How to upgrade ConnectX firmware from Arm side

The mst, mixburn, and flint tools can be used to update firmware.

For Ubuntu, CentOS and Debian, run the following command from the Arm side:

sudo /opt/mellanox/minx-fw-updater/minx_fw_updater.pl

How to configure ConnectX firmware

Configuring ConnectX firmware can be done using the mixconfig tool.

It is possible to configure privileges of both the internal (Arm) and the external host (for
DPUs) from a privileged host. According to the configured privilege, a host may or may

Installation Troubleshooting and How-Tos 4

not perform certain operations related to the NIC (e.g. determine if a certain host is
allowed to read port counters).

For more information and examples please refer to the MFT User Manual which can be
found at the following link.

How to use the UEFI boot menu

Press the "Esc" key when prompted after booting (before the countdown timer runs out)
to enter the UEFI boot menu and use the arrows to select the menu option.

It could take 1-2 minutes to enter the Boot Manager depending on how many devices are
installed or whether the EXPROM is programmed or not.

Once in the boot manager:
e "EFI Network xxx" entries with device path "PciRoot..." are ConnectX interface

e "EFI Network xxx" entries with device path "MAC(..." are for the RShim interface and
the BlueField OOB Ethernet interface

Select the interface and press ENTER will start PXE boot.

The following are several useful commands under UEFI shell:

Shell> Is FSO: # display file

Shell> Is FSO:\EFI # display file

Shell> cls # clear screen

Shell> ifconfig -I # show interfaces

Shell> ifconfig -s eth0 dhcp # request DHCP

Shell> ifconfig -l ethO # show one interface

Shell> tftp 192.168.100.1 grub.cfg FSO:\grub.cfg # tftp download a file
Shell> bcfg boot dump # dump boot variables

Shell> bcfg boot add 0 FSO:\EFI\centos\shim.efi "CentOS" # create an entry

How to Use the Kernel Debugger (KGDB)

The default Yocto kernel has CONFIG_KGDB and CONFIG_KGDB_SERIAL_CONSOLE enabled. This
allows the Linux kernel on BlueField to be debugged over the serial port. A single serial

Installation Troubleshooting and How-Tos 5

https://www.mellanox.com/page/management_tools

port cannot be used both as a console and by KGDB at the same time. It is recommended
to use the RShim for console access (/dev/rshim0/console) and the UART port (/dev/ttyAMAO or
/dev/ttyAMA1) for KGDB. Kernel GDB over console (KGDBOC) does not work over the RShim
console. If the RShim console is not available, there are open-source packages such as
KGDB demux and agent-proxy which allow a single serial port to be shared.

There are two ways to configure KGDBOC. If the OS is already booted, then write the
name of the serial device to the KGDBOC module parameter. For example:

$ echo ttyAMA1 > /sys/module/kgdboc/parameters/kgdboc

To attach GDB to the kernel, it must be stopped first. One way to do that is to send a "g"
to /proc/sysrg-trigger.

$ echo g > /proc/sysrg-trigger

To debug incidents that occur at boot time, kernel boot parameters must be configured.
Add "kgdboc=ttyAMA1,115200 kgdwait" to the boot arguments to use UART1 for debugging and
force it to wait for GDB to attach before booting.

Once the KGDBOC module is configured and the kernel stopped, run the Arm64 GDB on
the host machine connected to the serial port, then set the remote target to the serial
device on the host side.

<BF_INST_DIR>/sdk/sysroots/x86_64-pokysdk-linux/usr/bin/aarch64-poky-linux/aarch64-poky-linux-gdb
<BF_INST_DIR>/sample/vmlinux

(gdb) target remote /dev/ttyUSB3

Remote debugging using /dev/ttyUSB3

arch_kgdb_breakpoint () at /labhome/dwoods/src/bf/linux/arch/armé4/include/asm/kgdb.h:32
32 asm ("brk %0" : : "I" (KGDB_COMPILED_DBG_BRK_IMM));

(gdb)

<BF_INST_DIR> is the directory where the BlueField software is installed. It is assumed that
the SDK has been unpacked in the same directory.

Installation Troubleshooting and How-Tos 6

How to enable/disable SMMU

SMMU could affect performance for certain applications. By default, it is enabled on
BlueField-3 and disabled on BlueField-2, and can be configured in different ways.

e Enable/disable SMMU in the UEFI System Configuration

e Setitin bf.cfg and push it together with the install.bfb (see section "Installing Popular
Linux Distributions on BlueField")

e |n BlueField Linux, create a file with one line with SYS_ENABLE_SMMU=TRUE, then run
bfcfg.

The configuration change will take effect after reboot. The configuration value is stored in
a persistent UEFI variable. It is not modified by OS installation.

See section "UEFI System Configuration" for information on how to access the UEFI
System Configuration menu.

How to change the default console of the install image

On UARTO:

$ echo "console=ttyAMAQ earlycon=pl011,0x01000000 initrd=initramfs" > bootarg
$ <BF_INST_DIR>/bin/mIx-mkbfb --boot-args bootarg \
<BF_INST_DIR>/sample/ install.bfb

On UART1:

$ echo "console=ttyAMA1 earlycon=pl011,0x01000000 initrd=initramfs" > bootarg
$ <BF_INST_DIR>/bin/mIx-mkbfb --boot-args bootarg \
<BF_INST_DIR>/sample/install.bfb

On RShim:
$ echo "console=hvcO0 initrd=initramfs" > bootarg

Installation Troubleshooting and How-Tos 7

file:///networking/display/bluefieldbsp480/Installing+Popular+Linux+Distributions+on+BlueField
file:///networking/display/bluefieldbsp480/Installing+Popular+Linux+Distributions+on+BlueField
file:///networking/display/bluefieldbsp480/Upgrading+Boot+Software#src-3094733907_UpgradingBootSoftware-UEFISystemConfiguration

$ <BF_INST_DIR>/bin/mIx-mkbfb --boot-args bootarg \
<BF_INST_DIR>/sample/install.bfb

How to change the default network configuration
during BFB installation

On Ubuntu OS, the default network configuration for tmfifo_netdo and oob_net0 interfaces is
set by the cloud-init service upon first boot after BFB installation.

The default content of /var/lib/cloud/seed/nocloud-net/network-config as follows:

cat /var/lib/cloud/seed/nocloud-net/network-config
version: 2
renderer: NetworkManager
ethernets:
tmfifo_netO:
dhcp4: false
addresses:
-192.168.100.2/30
nameservers:
addresses: [192.168.100.1]
routes:
- to: 0.0.0.0/0
via: 192.168.100.1
metric: 1025
oob_net0:
dhcp4: true

This content can be modified during BFB installation using bf.cfg. For example:

cat bf.cfg
bfb_modify_os()
{

sed -i -e '/oob_net0/,+1d' /mnt/var/lib/cloud/seed/nocloud-net/network-config
cat >> /mnt/var/lib/cloud/seed/nocloud-net/network-config << EOF
oob_net0:
dhcp4: false
addresses:

Installation Troubleshooting and How-Tos

-10.0.0.1/24
EOF

}

bfb-install -c bf.cfg -r rshim0 -b <BFB>

() Note

Using the same technique, any configuration file on the BlueField
DPU side can be updated during the BFB installation process.

Sanitizing DPU eMMC and SSD Storage

During the BFB installation process, NVIDIA® BlueField® networking platform (DPU or
SuperNIC) storage can be securely sanitized either using the shred or the mmc and nvme
utilities in the bf.cfg configuration file as illustrated in the following subsections.

() Note

By default, only the installation target storage is formatted using the
Linux mkfs utility.

Using shred Utility

cat bf.cfg
SANITIZE_DONE=${SANITIZE_DONE:-0}
export SANITIZE_DONE
if [$SANITIZE_DONE -eq 0 J; then
sleep 3m
/sbin/modprobe nvme

Installation Troubleshooting and How-Tos

if [-e /dev/mmcblkO J; then
echo Sanitizing /dev/mmcblk0 | tee /dev/kmsg
echo Sanitizing /dev/mmcblk0 > /tmp/sanitize.emmc.log
mmc sanitize /dev/mmcblk0 >> /tmp/sanitize.emmc.log 2>&1
fi
if [-e /dev/nvmeOn1 J; then
echo Sanitizing /dev/nvmeOn1 | tee /dev/kmsg
echo Sanitizing /dev/nvmeOn1 > /tmp/sanitize.ssd.log
nvme sanitize /dev/nvme0On1 -a 2 >> /tmp/sanitize.ssd.log 2>&
nvme sanitize-log /dev/nvme0On1 >> /tmp/sanitize.ssd.log 2>&1
fi
SANITIZE_DONE=1

echo ===================== Sanitize_|og —==================== I tee /dev/kmsg

cat /tmp/sanitize.*.log | tee /dev/kmsg

sync
fi
bfb_modify_os()
{
echo ===================== pfb_modify_os =====================
if (/bin/ls -1 /tmp/sanitize.*.log > /dev/null 2>&1); then
cat /tmp/sanitize.*.log > /mnt/root/sanitize.log
fi
}

Using mmc and nvme Utilities

cat bf.cfg
SANITIZE_DONE=${SANITIZE_DONE:-0}
export SANITIZE_DONE
if [$SANITIZE_DONE -eq 0 J; then
sleep 3m
/sbin/modprobe nvme

if [-e /dev/mmcblkO]; then
echo Sanitizing /dev/mmcblkO | tee /dev/kmsg
echo Sanitizing /dev/mmcblk0 > /tmp/sanitize.emmc.log
mmc sanitize /dev/mmcblk0 >> /tmp/sanitize.emmc.log 2>&1
fi
if [-e /dev/nvmeOn1]; then
echo Sanitizing /dev/nvmeOn1 | tee /dev/kmsg

Installation Troubleshooting and How-Tos

| tee /dev/kmsg

10

echo Sanitizing /dev/nvmeOn1 > /tmp/sanitize.ssd.log
nvme sanitize /dev/nvmeOn1 -a 2 >> /tmp/sanitize.ssd.log 2>&1
nvme sanitize-log /dev/nvme0On1 >> /tmp/sanitize.ssd.log 2>&1

fi
SANITIZE_DONE=1
echo ===================== sanitize.log =====================
cat /tmp/sanitize.*.log | tee /dev/kmsg
sync
fi
bfb_modify_os()
{
echo ===================== hfb_modify_os ===================
if (/bin/ls -1 /tmp/sanitize.*.log > /dev/null 2>&1); then
cat /tmp/sanitize.*.log > /mnt/root/sanitize.log
fi
}

Installation Troubleshooting and How-Tos

| tee /dev/kmsg

== | tee /dev/kmsg

11

	BlueField target is stuck inside UEFI menu
	BFB does not recognize the BlueField board type
	Unable to load BL2, BL2R, or PSC image
	CentOS fails into "dracut" mode during installation
	How to find the software versions of the running system
	How to upgrade the host RShim driver
	How to upgrade the boot partition (ATF & UEFI) without re-installation
	How to upgrade ConnectX firmware from Arm side
	How to configure ConnectX firmware
	How to use the UEFI boot menu
	How to Use the Kernel Debugger (KGDB)
	How to enable/disable SMMU
	How to change the default console of the install image
	How to change the default network configuration during BFB installation
	Sanitizing DPU eMMC and SSD Storage
	Using shred Utility
	Using mmc and nvme Utilities

