
IPsec Functionality

Table of contents

Transparent IPsec Encryption and Decryption

IPsec Hardware Offload: Crypto Offload

IPsec Hardware Offload: Packet Offload

Enabling IPsec Packet Offload

Configuring IPsec Rules with iproute2

IPsec Packet Offload strongSwan Support

Setting IPSec Packet Offload Using strongSwan

Running strongSwan Example

Building strongSwan

IPsec Packet Offload and OVS Offload

OVS IPsec

Configuring IPsec Tunnel

Authentication Methods

Ensuring IPsec is Configured

Troubleshooting

IPsec Functionality 1

Table of contents

Transparent IPsec Encryption and Decryption

IPsec Hardware Offload: Crypto Offload

IPsec Hardware Offload: Packet Offload

Enabling IPsec Packet Offload

Configuring IPsec Rules with iproute2

IPsec Packet Offload strongSwan Support

Setting IPSec Packet Offload Using strongSwan

Running strongSwan Example

Building strongSwan

IPsec Packet Offload and OVS Offload

OVS IPsec

Configuring IPsec Tunnel

Authentication Methods

Ensuring IPsec is Configured

Troubleshooting

IPsec Functionality 2

Transparent IPsec Encryption and Decryption

NVIDIA® BlueField® networking platforms (DPU or SuperNICs) can offload IPsec
operations transparently from the host CPU. This means that the host does not need to
be aware that network traffic is encrypted before hitting the wire or decrypted after
coming off the wire. IPsec operations can be run on BlueField in software on the Arm
cores or in the accelerator block.

IPsec Hardware Offload: Crypto Offload

IPsec hardware crypto offload, also known as IPsec inline offload or IPsec aware offload,
enables the user to offload IPsec crypto encryption and decryption operations to the
hardware, leaving the encapsulation/decapsulation task to the software.

Please refer to the MLNX_OFED documentation under Features Overview and
Configuration > Ethernet Network > IPsec Crypto Offload for more information on
enabling and configuring this feature.

Please note that to use IPsec crypto offload with OVS, you must disable hardware
offloads.

IPsec Hardware Offload: Packet Offload

IPsec packet offload offloads both IPsec crypto and IPsec encapsulation to the hardware.
IPsec packet offload is configured on the Arm via the uplink netdev. The following figure
illustrates IPsec packet offload operation in hardware.

Note

IPSec packet offload is only supported on Ubuntu BlueField kernel
5.15

https://docs.mellanox.com/category/mlnxofedib

IPsec Functionality 3

Enabling IPsec Packet Offload

Explicitly enable IPsec packet offload on the Arm cores before setting up offload-aware
IPsec tunnels .

Explicitly enable IPsec full offload on the Arm cores.

1. Set IPSEC_FULL_OFFLOAD="yes" in /etc/mellanox/mlnx-bf.conf .

2. Restart IB driver (rebooting also works). Run:

Note

If an OVS VXLAN tunnel configuration already exists, stop openvswitch

service prior to performing the steps below and restart the service
afterwards.

/etc/init.d/openibd restart

Note

IPsec Functionality 4

To configure IPsec rules, please follow the instructions in MLNX_OFED documentation
under Features Overview and Configuration > Ethernet Network > IPsec Crypto Offload >
Configuring Security Associations for IPsec Offloads but, use "offload packet" to achieve
IPsec Packet offload.

If mlx-regex is running:

1. Disable mlx-regex:

2. Restart IB driver according to the command above.

3. Re-enable mlx-regex after the restart has finished:

systemctl stop mlx-regex

systemctl restart mlx-regex

Note

To revert IPsec full offload mode, redo the procedure from step 1,
only difference is to set IPSEC_FULL_OFFLOAD="no" in /etc/mellanox/mlnx-

bf.conf.

Note

To use IPsec packet packet with strongSwan, refer to section "IPsec
Packet Offload strongSwan Support".

https://docs.mellanox.com/category/mlnxofedib

IPsec Functionality 5

Configuring IPsec Rules with iproute2

The following example configures IPsec packet offload rules with local address
192.168.1.64 and remote address 192.168.1.65:

Note

If you are working directly with the ip xfrm tool, you must use the
/opt/mellanox/iproute2/sbin/ip to benefit from IPsec packet offload
support.

ip xfrm state add src 192.168.1.64/24 dst 192.168.1.65/24 proto esp spi 0x4834535d reqid 0x4834535d
mode transport aead 'rfc4106(gcm(aes))'
0xc57f6f084ebf8c6a71dd9a053c2e03b94c658a9bf00dd25780e73948931d10d08058a27c 128 offload
packet dev p0 dir out sel src 192.168.1.64 dst 192.168.1.65
ip xfrm state add src 192.168.1.65/24 dst 192.168.1.64/24 proto esp spi 0x2be60844 reqid 0x2be60844
mode transport aead 'rfc4106(gcm(aes))'
0xacca06b66489011d3c1c21f1a36d925cf7449d3aeaa6fe534446c3a8f8bd5f5fdc266589 128 offload
packet dev p0 dir in sel src 192.168.1.65 dst 192.168.1.64
sudo ip xfrm policy add src 192.168.1.64 dst 192.168.1.65 offload packet dev p0 dir out tmpl src
192.168.1.64/24 dst 192.168.1.65/24 proto esp reqid 0x4834535d mode transport
sudo ip xfrm policy add src 192.168.1.65 dst 192.168.1.64 offload packet dev p0 dir in tmpl src
192.168.1.65/24 dst 192.168.1.64/24 proto esp reqid 0x2be60844 mode transport

Note

The numbers used by the spi, reqid, or aead algorithms are random.
These same numbers are also used in the configuration of peer Arm.
Do not confuse these numbers with source and destination IPs. The
connection may fail if they are not consistent.

IPsec Functionality 6

IPsec Packet Offload strongSwan Support

BlueField supports configuring IPsec rules using strongSwan 5.9.10—appears as 5.9.10bf
in the BFB which is based on upstream 5.9.10 version—which supports new fields in the
swanctl.conf file.

The following figure illustrates an example with two BlueField devices , Left and Right,
operating with a secured VXLAN channel .

Support for strongSwan IPsec packet HW offload requires using VXLAN together with
IPSec as shown here .

1. Follow the procedure under section "Enabling IPsec Packet Offload".

2. Follow the procedure under section "VXLAN Tunneling Offload" to configure VXLAN
on Arm.

Note

Make sure the MTU of the PF used by VXLAN is at least 50 bytes
larger than VXLAN-REP MTU.

file:///networking/display/bluefieldbsp480/Virtual+Switch+on+BlueField#src-3094734001_VirtualSwitchonBlueField-VXLANTunnelingOffload

IPsec Functionality 7

3. Enable tc offloading. Run:

Setting IPSec Packet Offload Using strongSwan

strongSwan configures IPSec HW packet offload using a new value added to its
configuration file swanctl.conf (as of strongSwan version 5.9.10).

The file should be placed under "sysconfdir" which by default can be found at
/etc/swanctl/swanctl.conf.

The terms Left (BFL) and Right (BFR) are used to identify the two nodes that communicate
(corresponding with the figure under section "IPsec Packet Offload strongSwan Support").

In this example, 192.168.50.1 is used for the left PF uplink and 192.168.50.2 for the right
PF uplink.

ethtool -K <PF> hw-tc-offload on

Note

Do not add the PF itself using "ovs-vsctl add-port" to the OVS.

connections {
 BFL-BFR {
 local_addrs = 192.168.50.1
 remote_addrs = 192.168.50.2

 local {
 auth = psk
 id = host1
 }
 remote {
 auth = psk
 id = host2
 }

children {

IPsec Functionality 8

 bf-out {
 local_ts = 192.168.50.1/24 [udp]
 remote_ts = 192.168.50.2/24 [udp/4789]
 esp_proposals = aes128gcm128-x25519-esn
 mode = transport
 policies_fwd_out = yes
 hw_offload = packet
 }
 bf-in {
 local_ts = 192.168.50.1/24 [udp/4789]
 remote_ts = 192.168.50.2/24 [udp]
 esp_proposals = aes128gcm128-x25519-esn
 mode = transport
 policies_fwd_out = yes
 hw_offload = packet
 }
 }
 version = 2
 mobike = no
 reauth_time = 0
 proposals = aes128-sha256-x25519
 }
}

secrets {
 ike-BF {
 id-host1 = host1
 id-host2 = host2
 secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
 }
}

Note

BFB installation will place two example swanctl.conf files for both Left
and Right nodes (BFL.swanctl.conf and BFR.swanctl.conf respectively)
in the strongSwan conf.d directory. Please move one of them

IPsec Functionality 9

Note that:

"hw_offload = packet" is responsible for configuring IPsec packet offload

Packet offload support has been added to the existing hw_offload field and preserves
backward compatibility.

For your reference:

Val
ue

Description

no Do not configure HW offload

cryp
to

Configure crypto HW offload if supported by the kernel and hardware, fail if
not supported

yes Same as crypto (considered legacy)

pack
et

Configure packet HW offload if supported by the kernel and hardware, fail if
not supported

auto
Configure packet HW offload if supported by the kernel and hardware, do
not fail (perform fallback to crypto or no as necessary)

[udp/4789] is crucial for instructing strongSwan to IPSec only VXLAN communication

manually to the other machine and edit it according to your
configuration.

Note

Whenever the value of hw_offload is changed, strongSwan
configuration must be reloaded.

Note

IPsec Functionality 10

Mind the following limitations:

Field Limitation

reauth_time Ignored if set

rekey_time Do not use. Ignored if set.

rekey_bytes Do not use. Not supported and will fail if it is set.

rekey_packets Use for rekeying

Running strongSwan Example

Notes:

IPsec daemons are started by systemd strongswan.service, users must avoid using
strongswan-starter.service as it is a legacy service and using both services at the same
time leads to anomalous behavior

Use systemctl [start | stop | restart] to control IPsec daemons through strongswan.service.
For example, to restart, the command systemctl restart strongswan.service will effectively
do the same thing as ipsec restart.

Packet HW offload can only be done on what is streamed over
VXLAN.

Warning

Do not use ipsec script to restart/stop/start.

If you are using the ipsec script, then, in order to restart or start
the daemons, openssl.cnf.orig must be copied to openssl.cnf
before performing ipsec restart or ipsec start. Then openssl.cnf.mlnx

can be copied to openssl.cnf after restart or start. Failing to do so
can result in errors since openssl.cnf.mlnx allows IPsec PK and RNG
hardware offload via the OpenSSL plugin.

IPsec Functionality 11

The strongSwan package installs openssl.cnf config files to enable hardware offload of
PK and RNG operations via the OpenSSL plugin

The OpenSSL dynamic engine is used to carry out the offload to hardware. OpenSSL
dynamic engine ID is "pka".

Procedure:

1. Perform the following on Left and Right devices (corresponding with the figure
under section "IPsec Packet Offload strongSwan Support").

The following should appear.

2. Perform the actual connection on one side only (client, Left in this case).

On Ubuntu/Debian/Yocto, openssl.cnf* can be found under
/etc/ssl/

On CentOS, openssl.cnf* can be found under /etc/pki/tls/

systemctl start strongswan.service
swanctl --load-all

Starting strongSwan 5.9.10bf IPsec [starter]...
no files found matching '/etc/ipsec.d/*.conf'
deprecated keyword 'plutodebug' in config setup
deprecated keyword 'virtual_private' in config setup
loaded ike secret 'ike-BF'
no authorities found, 0 unloaded
no pools found, 0 unloaded
loaded connection 'BFL-BFR'
successfully loaded 1 connections, 0 unloaded

swanctl -i --child bf-in bf-out

IPsec Functionality 12

The following should appear.

You may now send encrypted data over the HOST VF interface (192.168.70.[1|2])
configured for VXLAN.

Building strongSwan

Do this only if you want to build your own BFB and would like to rebuild strongSwan.

1. Install dependencies mentioned here. libgmp-dev is missing from that list, so make
sure to install that as well.

2. Git clone https://github.com/Mellanox/strongswan.git.

[IKE] initiating IKE_SA BFL-BFR[1] to 192.168.50.2
[ENC] generating IKE_SA_INIT request 0 [SA KE No N(NATD_S_IP) N(NATD_D_IP) N(FRAG_SUP)
N(HASH_ALG) N(REDIR_SUP)]
[NET] sending packet: from 192.168.50.1[500] to 192.168.50.2[500] (240 bytes)
[NET] received packet: from 192.168.50.2[500] to 192.168.50.1[500] (273 bytes)
[ENC] parsed IKE_SA_INIT response 0 [SA KE No N(NATD_S_IP) N(NATD_D_IP) CERTREQ
N(FRAG_SUP) N(HASH_ALG) N(CHDLESS_SUP) N(MULT_AUTH)]
[CFG] selected proposal:
IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/CURVE_25519
[IKE] received 1 cert requests for an unknown ca
[IKE] authentication of 'host1' (myself) with pre-shared key
[IKE] establishing CHILD_SA bf{1}
[ENC] generating IKE_AUTH request 1 [IDi N(INIT_CONTACT) IDr AUTH N(USE_TRANSP) SA TSi TSr
N(MULT_AUTH) N(EAP_ONLY) N(MSG_ID_SYN_SUP)]
[NET] sending packet: from 192.168.50.1[500] to 192.168.50.2[500] (256 bytes)
[NET] received packet: from 192.168.50.2[500] to 192.168.50.1[500] (224 bytes)
[ENC] parsed IKE_AUTH response 1 [IDr AUTH N(USE_TRANSP) SA TSi TSr N(AUTH_LFT)]
[IKE] authentication of 'host2' with pre-shared key successful
[IKE] IKE_SA BFL-BFR[1] established between 192.168.50.1[host1]...192.168.50.2[host2]
[IKE] scheduling reauthentication in 10027s
[IKE] maximum IKE_SA lifetime 11107s
[CFG] selected proposal: ESP:AES_GCM_16_128/NO_EXT_SEQ
[IKE] CHILD_SA bf{1} established with SPIs ce543905_i c60e98a2_o and TS 192.168.50.1/32 ===
192.168.50.2/32
initiate completed successfully

https://wiki.strongswan.org/projects/strongswan/repository/entry/HACKING
https://github.com/Mellanox/strongswan.git

IPsec Functionality 13

3. Git checkout BF-5.9.10. This branch is based on the official strongSwan 5.9.10
branch with added packaging and support for DOCA IPsec plugin (check the NVIDIA
DOCA IPsec Security Gateway Application Guide for more information regarding the
strongSwan DOCA plugin).

4. Run autogen.sh within the strongSwan repo.

5. Run the following:

Note:

--enable-systemd enables the systemd service for strongSwan present inside the
GitHub repo (see step 3) at init/systemd-starter/strongswan.service.in.

When building strongSwan on your own, the openssl.cnf.mlnx file, required for PK and
RNG HW offload via OpenSSL plugin, is not installed. It must be copied over
manually from github repo inside the openssl-conf directory. See section "Running
Strongswan Example" for important notes.

IPsec Packet Offload and OVS Offload

configure --enable-openssl --disable-random --prefix=/usr/local --sysconfdir=/etc --enable-
systemd
make
make install

Note

The openssl.cnf.mlnx file references PKA engine shared objects.
libpka (version 1.3 or later) and openssl (version 1.1.1) must be
installed for this to work.

https://github.com/strongswan/strongswan/tree/5.9.10
https://github.com/strongswan/strongswan/tree/5.9.10
https://docs.nvidia.com/doca/sdk/ipsec-security-gateway/
https://docs.nvidia.com/doca/sdk/ipsec-security-gateway/

IPsec Functionality 14

IPsec packet offload configuration works with and is transparent to OVS offload. This
means all packets from OVS offload are encrypted by IPsec rules.

The following figure illustrates the interaction between IPsec packet offload and OVS
VXLAN offload.

OVS IPsec

To start the service, run:

Note

OVS offload and IPsec IPv6 do not work together.

systemctl start openvswitch-ipsec.service

IPsec Functionality 15

Refer to section "Enabling IPsec Packet Offload" for information to prepare the IPsec
packet offload environment.

Configuring IPsec Tunnel

For the sake of example, if you want to build an IPsec tunnel between two hosts with the
following external IP addresses:

host1 – 1.1.1.1

host2 – 1.1.1.2

You have to first make sure host1 and host2 can ping each other via these external IPs.

This example will set up some variables on both hosts, set ip1 and ip2:

1. Set up OVS bridges in both hosts.

1. On Arm_1:

2. On Arm_2:

ip1=1.1.1.1
ip2=1.1.1.2
REP=eth5
PF=p0

ovs-vsctl add-br ovs-br
ovs-vsctl add-port ovs-br $REP
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

ovs-vsctl add-br ovs-br
ovs-vsctl add-port ovs-br $REP
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

IPsec Functionality 16

2. Set up IPsec tunnel. Three authentication methods are possible. Follow the steps
relevant for the method that works best for your environment.

3. Make sure the MTU of the PF used by tunnel is at least 50 bytes larger than VXLAN-
REP MTU.

1. Disable host PF as the port owner from Arm (see section "Zero-trust Mode").
Run:

2. The MTU of the end points (pf0hpf in the example above) of the tunnel must be
smaller than the MTU of the tunnel interfaces (p0) to account for the size of the

Note

Configuring other_config:hw-offload=true sets IPsec packet
offload. Setting it to false sets software IPsec. Make sure
that IPsec devlink's mode is set back to none for software
IPsec.

Note

Do not try to use more than 1 authentication method.

Note

After the IPsec tunnel is set up, strongSwan configuration will be
automatically done.

$ mlxprivhost -d /dev/mst/mt41682_pciconf0 --disable_port_owner r

file:///networking/display/bluefieldbsp480/Modes+of+Operation

IPsec Functionality 17

tunnel headers. For example, you can set the MTU of P0 to 2000.

Authentication Methods

Using Pre-shared Key

1. On Arm_1, run:

2. On Arm_2, run:

Note

The following example uses tun type=gre and dst_port=1723. Depending
on your configuration, tun type can be vxlan or geneve with dst_port 4789
or 6081 respectively.

Note

The following example uses ovs-br as the bridge name. However, this
value can be any string you have chosen to create the bridge
previously.

ovs-vsctl add-port ovs-br tun -- \
 set interface tun type=gre \
 options:local_ip=$ip1 \
 options:remote_ip=$ip2 \
 options:key=100 \
 options:dst_port=1723 \
 options:psk=swordfish

ovs-vsctl add-port ovs-br tun -- \

IPsec Functionality 18

Using Self-signed Certificate

1. Generate self-signed certificates in both host1 and host2, then copy the certificate of
host1 to host2, and the certificate of host2 to host1.

2. Move both host1-cert.pem and host2-cert.pem to /etc/swanctl/x509/, if on Ubuntu, or
/etc/strongswan/swanctl/x509/, if on CentOS.

3. Move the local private key to /etc/swanctl/private, if on Ubuntu, or
/etc/strongswan/swanctl/private, if on CentOS. For example, for host1:

4. Set up OVS other_config on both sides.

1. On Arm_1:

2. On Arm_2:

5. Set up the tunnel.

 set interface tun type=gre \
 options:local_ip=$ip2 \
 options:remote_ip=$ip1 \
 options:key=100 \
 options:dst_port=1723 \
 options:psk=swordfish

mv host1-privkey.pem /etc/swanctl/private

ovs-vsctl set Open_vSwitch . other_config:certificate=/etc/swanctl/x509/host1-cert.pem \
 other_config:private_key=/etc/swanctl/private/host1-privkey.pem

ovs-vsctl set Open_vSwitch . other_config:certificate=/etc/swanctl/x509/host2-cert.pem \
 other_config:private_key=/etc/swanctl/private/host2-privkey.pem

IPsec Functionality 19

1. On Arm_1:

2. On Arm_2:

Using CA-signed Certificate

1. For this method, you need all the certificates and the requests to be in the same
directory during the certificate generating and signing. This example refers to this
directory as certsworkspace.

1. On Arm_1:

2. On Arm_2:

ovs-vsctl add-port ovs-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip1 \
 options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
 options:remote_cert=/etc/swanctl/x509/host2-cert.pem
service openvswitch-switch restart

ovs-vsctl add-port ovs-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip2 \
 options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
 options:remote_cert=/etc/swanctl/x509/host1-cert.pem
service openvswitch-switch restart

ovs-pki init --force
cp /var/lib/openvswitch/pki/controllerca/cacert.pem <path_to>/certsworkspace
ovs-pki req -u host1
ovs-pki sign host1 switch

ovs-pki init --force
cp /var/lib/openvswitch/pki/controllerca/cacert.pem <path_to>/certsworkspace

IPsec Functionality 20

2. Move both host1-cert.pem and host2-cert.pem to /etc/ swanctl/x509/, if on Ubuntu, or
/etc/strongswan/swanctl/x509/, if on CentOS.

3. Move the local private key to /etc/swanctl/private, if on Ubuntu, or
/etc/strongswan/swanctl/private, if on CentOS. For example, for host1:

4. Copy cacert.pem to the x509ca directory under /etc/swanctl/x509ca/, if on Ubuntu, or
/etc/strongswan/swanctl/x509ca/, if on CentOS.

5. Set up OVS other_config on both sides.

1. On Arm_1:

2. On Arm_2:

6. Set up the tunnel:

1.

1. On Arm_1:

ovs-pki req -u host2
ovs-pki sign host2 switch

mv host1-privkey.pem /etc/swanctl/private

ovs-vsctl set Open_vSwitch . \
 other_config:certificate=/etc/strongswan/swanctl/x509/host1.pem \
 other_config:private_key=/etc/strongswan/swanctl/private/host1-privkey.pem \
 other_config:ca_cert=/etc/strongswan/swanctl/x509ca/cacert.pem

ovs-vsctl set Open_vSwitch . \
 other_config:certificate=/etc/strongswan/swanctl/x509/host2.pem \
 other_config:private_key=/etc/strongswan/swanctl/private/host2-privkey.pem \
 other_config:ca_cert=/etc/strongswan/swanctl/x509ca/cacert.pem

IPsec Functionality 21

2. On Arm_2:

Ensuring IPsec is Configured

Use /opt/mellanox/iproute2/sbin/ip xfrm state show. You should be able to see IPsec states with
the keyword in mode packet.

Troubleshooting

For troubleshooting information, refer to Open vSwitch's official documentation.

© Copyright 2024, NVIDIA. PDF Generated on 08/20/2024

ovs-vsctl add-port ovs-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip1 \
options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
options:remote_name=host2
 #service openvswitch-switch restart

ovs-vsctl add-port ovs-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip2 \
options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
options:remote_name=host1
#service openvswitch-switch restart

https://docs.openvswitch.org/en/latest/tutorials/ipsec/

	Transparent IPsec Encryption and Decryption
	IPsec Hardware Offload: Crypto Offload
	IPsec Hardware Offload: Packet Offload
	Enabling IPsec Packet Offload
	Configuring IPsec Rules with iproute2
	IPsec Packet Offload strongSwan Support
	Setting IPSec Packet Offload Using strongSwan
	Running strongSwan Example
	Building strongSwan
	IPsec Packet Offload and OVS Offload

	OVS IPsec
	Configuring IPsec Tunnel
	Authentication Methods
	Ensuring IPsec is Configured
	Troubleshooting

