
Management

Table of contents

Performance Monitoring Counters 3

Intelligent Platform Management Interface 20

Redfish 34

Logging 46

SoC Management Interface 58

BlueField OOB Ethernet Interface 73

Management 1

Table of contents

Performance Monitoring Counters

Intelligent Platform Management Interface

Redfish

Logging

SoC Management Interface

BlueField OOB Ethernet Interface

Management 2

Performance Monitoring Counters

Intelligent Platform Management Interface

Redfish

Logging

SoC Management Interface

BlueField OOB Ethernet Interface

file:///networking/display/bluefieldbsp480/Performance+Monitoring+Counters
file:///networking/display/bluefieldbsp480/Intelligent+Platform+Management+Interface
file:///networking/display/bluefieldbsp480/SoC+Management+Interface
file:///networking/display/bluefieldbsp480/BlueField+OOB+Ethernet+Interface

Management 3

Performance Monitoring
Counters
The performance modules in NVIDIA® BlueField® are present in several hardware blocks
and each block has a certain set of supported events.

The mlx_pmc driver provides access to all of these performance modules through a sysfs
interface. The driver creates a directory under /sys/class/hwmon under which each of the
blocks explained above has a subdirectory. Please note that all directories under
/sys/class/hwmon are named as "hwmon<N>" where N is the hwmon device number
corresponding to the device. This is assigned by Linux and could change with the addition
of more devices to the hwmon class. Each hwmon directory has a "name" node which can be
used to identify the correct device. In this case, reading the "name" file should return
"bfperf".

The hardware blocks that include performance modules are:

Tile (block containing 2 cores and a shared L2 cache) has 2 sets of counters, one set
for HNF and HNF_NET events. These are present as "tile" and "tilenet" directories in
the sysfs interface of the driver.

TRIO (PCIe root complex) has 3 sets of counters, one each for TRIO, SMGEN and
PCIE TLR events. The sysfs directories for these are called "trio", "triogen" and "pcie"
respectively.

MSS (memory sub-system containing the memory controller and L3 cache)

GIC and SMMU with one set of counters each for the SMGEN events. These are
simply labelled "gic" and "smmu" respectively.

The number of Tile, TRIO and MSS blocks depends on the system. There is a maximum of
8 Tile, 3 TRIO and 2 MSS blocks in BlueField, and this is added as a suffix to the sysfs
directory names. For example, this is a list of directories present in a BlueField-2 system:

ubuntu@bf:/$ ls /sys/class/hwmon/hwmon0/

Management 4

The PCIe TLR statistics for each TRIO are under the "pcie" block.

Performance Data Collection Mechanisms

The performance data of the BlueField hardware is collected using two mechanisms:

1. Programming hardware counters to monitor specific events

2. Reading registers that hold performance/event statistics

All blocks except "ecc" and "pcie" use the mechanism 1.

Using Hardware Counters

For blocks that use hardware counters to collect data, each counter present in the block
is represented by "event<N>" and "counter<N>" sysfs files.

For example:

An event<N> and counter<N> pair can be used to program and monitor events. The "event_list"
sysfs file displays the list of events supported by that block along with the hexadecimal
value corresponding to each event.

Use the echo command to write the event number to the event<N> file, and use the cat

command to read the counter value from the corresponding counter (counter<N>).

The counters are enabled individually once the event number is written to the
corresponding event file. However, the L3 cache performance counters cannot be
enabled or disabled individually and can only be triggered or stopped all at the same
time.

device l3cachehalf0 pcie0 smmu0 tile1 tilenet0 tilenet3 triogen0
ecc l3cachehalf1 pcie1 subsystem tile2 tilenet1 trio0 triogen1
gic0 name power tile0 tile3 tilenet2 trio1 uevent

ubuntu@bf:/$ ls /sys/class/hwmon/hwmon0/tile0/
counter0 counter1 counter2 counter3 event0 event1 event2 event3 event_list

Management 5

So in the example provided, all 4 event files may be programmed with the necessary
event numbers and then the "enable" file may be used to start the counters. Writing 0 to
the enable file stops the counters while 1 starts them.

Reading Registers

For "ecc" and "pcie" blocks, the counters cannot be started or stopped by the user,
instead the statistics are automatically collected by HW and stored in registers. These
register names are exposed within the directory and can be read by the user at any time.

List of Supported Events

SMGEN Performance Module

Hex Value Name Description

0x0 AW_REQ Reserved for internal use

0x1 AW_BEATS Reserved for internal use

0x2 AW_TRANS Reserved for internal use

0x3 AW_RESP Reserved for internal use

0x4 AW_STL Reserved for internal use

0x5 AW_LAT Reserved for internal use

0x6 AW_REQ_TBU Reserved for internal use

0x8 AR_REQ Reserved for internal use

0x9 AR_BEATS Reserved for internal use

0xa AR_TRANS Reserved for internal use

0xb AR_STL Reserved for internal use

0xc AR_LAT Reserved for internal use

0xd AR_REQ_TBU Reserved for internal use

Management 6

Hex Value Name Description

0xe TBU_MISS The number of TBU miss

0xf TX_DAT_AF
Mesh Data channel write FIFO almost Full.
This is from the TRIO toward the Arm memory.

0x10 RX_DAT_AF
Mesh Data channel read FIFO almost Full.
This is from the Arm memory toward the TRIO.

0x11 RETRYQ_CRED Reserved for internal use

Tile HNF Performance Module

Hex
Value

Name Description

0x45
HNF_REQUEST
S

Number of REQs that were processed in HNF

0x46 HNF_REJECTS Reserved for internal use

0x47 ALL_BUSY Reserved for internal use

0x48 MAF_BUSY Reserved for internal use

0x49
MAF_REQUEST
S

Reserved for internal use

0x4a
RNF_REQUEST
S

Number of REQs sent by the RN-F selected by HNF_PERF_CTL
register RNF_SEL field

0x4b
REQUEST_TYP
E

Reserved for internal use

0x4c
MEMORY_REA
DS

Number of reads to MSS

0x4d
MEMORY_WRI
TES

Number of writes to MSS

0x4e VICTIM_WRITE Number of victim lines written to memory

0x4f POC_FULL Reserved for internal use

0x50 POC_FAIL Number of times that the POC Monitor sent RespErr Okay

Management 7

Hex
Value

Name Description

status to an Exclusive WriteNoSnp or CleanUnique REQ

0x51 POC_SUCCESS
Number of times that the POC Monitor sent RespErr ExOkay
status to an Exclusive WriteNoSnp or CleanUnique REQ

0x52 POC_WRITES
Number of Exclusive WriteNoSnp or CleanUnique REQs
processed by POC Monitor

0x53 POC_READS
Number of Exclusive ReadClean/ReadShared REQs processed
by POC Monitor

0x54 FORWARD Reserved for internal use

0x55 RXREQ_HNF Reserved for internal use

0x56 RXRSP_HNF Reserved for internal use

0x57 RXDAT_HNF Reserved for internal use

0x58 TXREQ_HNF Reserved for internal use

0x59 TXRSP_HNF Reserved for internal use

0x5a TXDAT_HNF Reserved for internal use

0x5b TXSNP_HNF Reserved for internal use

0x5c INDEX_MATCH Reserved for internal use

0x5d A72_ACCESS
Access requests (Reads, Writes, CopyBack, CMO, DVM) from A72
clusters

0x5e IO_ACCESS Accesses requests (Reads, Writes) from DMA IO devices

0x5f TSO_WRITE Total Store Order write Requests from DMA IO devices

0x60
TSO_CONFLIC
T

Reserved for internal use

0x61 DIR_HIT Requests that hit in directory

0x62 HNF_ACCEPTS Reserved for internal use

0x63
REQ_BUF_EMP
TY

Number of cycles when request buffer is empty

0x64
REQ_BUF_IDLE
_MAF

Reserved for internal use

Management 8

Hex
Value

Name Description

0x65 TSO_NOARB Reserved for internal use

0x66
TSO_NOARB_C
YCLES

Reserved for internal use

0x67
MSS_NO_CRE
DIT

Number of cycles that a Request could not be sent to MSS due
to lack of credits

0x68
TXDAT_NO_LC
RD

Reserved for internal use

0x69
TXSNP_NO_LC
RD

Reserved for internal use

0x6a
TXRSP_NO_LC
RD

Reserved for internal use

0x6b
TXREQ_NO_LC
RD

Reserved for internal use

0x6c
TSO_CL_MATC
H

Reserved for internal use

0x6d
MEMORY_REA
DS_BYPASS

Number of reads to MSS that bypass Home Node

0x6e
TSO_NOARB_T
IMEOUT

Reserved for internal use

0x6f ALLOCATE Number of times that Directory entry was allocated

0x70 VICTIM
Number of times that Directory entry allocation did not find an
Invalid way in the set

0x71 A72_WRITE Write requests from A72 clusters

0x72 A72_Read Read requests from A72 clusters

0x73 IO_WRITE Write requests from DMA IO devices

0x74 IO_Reads Read requests from DMA IO devices

0x75 TSO_Reject Reserved for internal use

0x80 TXREQ_RN Reserved for internal use

0x81 TXRSP_RN Reserved for internal use

Management 9

Hex
Value

Name Description

0x82 TXDAT_RN Reserved for internal use

0x83 RXSNP_RN Reserved for internal use

0x84 RXRSP_RN Reserved for internal use

0x85 RXDAT_RN Reserved for internal use

TRIO Performance Module

Hex
Value

Name Description

0xa0 TPIO_DATA_BEAT Data beats from Arm PIO to TRIO

0xa1 TDMA_DATA_BEAT Data beats from Arm memory to PCI completion

0xa2 MAP_DATA_BEAT Reserved for internal use

0xa3 TXMSG_DATA_BEAT Reserved for internal use

0xa4 TPIO_DATA_PACKET Data packets from Arm PIO to TRIO

0xa5 TDMA_DATA_PACKET Data packets from Arm memory to PCI completion

0xa6 MAP_DATA_PACKET Reserved for internal use

0xa7 TXMSG_DATA_PACKET Reserved for internal use

0xa8 TDMA_RT_AF
The in-flight PCI DMA READ request queue is almost
full

0xa9 TDMA_PBUF_MAC_AF
Indicator of the buffer of Arm memory reads is too full
awaiting PCIe access

0xaa
TRIO_MAP_WRQ_BUF
_EMPTY

PCIe write transaction buffer is empty

0xab
TRIO_MAP_CPL_BUF_
EMPTY

Arm PIO request completion queue is empty

0xac
TRIO_MAP_RDQ0_BUF
_EMPTY

The buffer of MAC0's read transaction is empty

Management 10

Hex
Value

Name Description

0xad
TRIO_MAP_RDQ1_BUF
_EMPTY

The buffer of MAC1's read transaction is empty

0xae
TRIO_MAP_RDQ2_BUF
_EMPTY

The buffer of MAC2's read transaction is empty

0xaf
TRIO_MAP_RDQ3_BUF
_EMPTY

The buffer of MAC3's read transaction is empty

0xb0
TRIO_MAP_RDQ4_BUF
_EMPTY

The buffer of MAC4's read transaction is empty

0xb1
TRIO_MAP_RDQ5_BUF
_EMPTY

The buffer of MAC5's read transaction is empty

0xb2
TRIO_MAP_RDQ6_BUF
_EMPTY

The buffer of MAC6's read transaction is empty

0xb3
TRIO_MAP_RDQ7_BUF
_EMPTY

The buffer of MAC7's read transaction is empty

L3 Cache Performance Module

Hex
Value

Name Description

0x00 DISABLE Reserved for internal use

0x01 CYCLES Timestamp counter

Note

The L3 cache interfaces with the Arm cores via the SkyMesh. The CDN
is used for control data. The NDN is used for responses. The DDN is
for the actual data transfer.

Management 11

Hex
Value

Name Description

0x02 TOTAL_RD_REQ_IN
Read Transaction control request from the CDN of
the SkyMesh

0x03 TOTAL_WR_REQ_IN
Write transaction control request from the CDN of
the SkyMesh

0x04 TOTAL_WR_DBID_ACK
Write transaction control responses from the NDN
of the SkyMesh

0x05 TOTAL_WR_DATA_IN
Write transaction data from the DDN of the
SkyMesh

0x06 TOTAL_WR_COMP
Write completion response from the NDN of the
SkyMesh

0x07 TOTAL_RD_DATA_OUT Read transaction data from the DDN

0x08
TOTAL_CDN_REQ_IN_BAN
K0

CHI CDN Transactions Bank 0

0x09
TOTAL_CDN_REQ_IN_BAN
K1

CHI CDN Transactions Bank 1

0x0a
TOTAL_DDN_REQ_IN_BAN
K0

CHI DDN Transactions Bank 0

0x0b
TOTAL_DDN_REQ_IN_BAN
K1

CHI DDN Transactions Bank 1

0x0c
TOTAL_EMEM_RD_RES_IN
_BANK0

Total EMEM Read Response Bank 0

0x0d
TOTAL_EMEM_RD_RES_IN
_BANK1

Total EMEM Read Response Bank 1

0x0e
TOTAL_CACHE_RD_RES_IN
_BANK0

Total Cache Read Response Bank 0

0x0f
TOTAL_CACHE_RD_RES_IN
_BANK1

Total Cache Read Response Bank 1

0x10
TOTAL_EMEM_RD_REQ_B
ANK0

Total EMEM Read Request Bank 0

Management 12

Hex
Value

Name Description

0x11
TOTAL_EMEM_RD_REQ_B
ANK1

Total EMEM Read Request Bank 1

0x12
TOTAL_EMEM_WR_REQ_B
ANK0

Total EMEM Write Request Bank 0

0x13
TOTAL_EMEM_WR_REQ_B
ANK1

Total EMEM Write Request Bank 1

0x14 TOTAL_RD_REQ_OUT EMEM Read Transactions Out

0x15 TOTAL_WR_REQ_OUT EMEM Write Transactions Out

0x16 TOTAL_RD_RES_IN EMEM Read Transactions In

0x17 HITS_BANK0 Number of Hits Bank 0

0x18 HITS_BANK1 Number of Hits Bank 1

0x19 MISSES_BANK0 Number of Misses Bank 0

0x1a MISSES_BANK1 Number of Misses Bank 1

0x1b ALLOCATIONS_BANK0 Number of Allocations Bank 0

0x1c ALLOCATIONS_BANK1 Number of Allocations Bank 1

0x1d EVICTIONS_BANK0 Number of Evictions Bank 0

0x1e EVICTIONS_BANK1 Number of Evictions Bank 1

0x1f DBID_REJECT Reserved for internal use

0x20 WRDB_REJECT_BANK0 Reserved for internal use

0x21 WRDB_REJECT_BANK1 Reserved for internal use

0x22 CMDQ_REJECT_BANK0 Reserved for internal use

0x23 CMDQ_REJECT_BANK1 Reserved for internal use

0x24 COB_REJECT_BANK0 Reserved for internal use

0x25 COB_REJECT_BANK1 Reserved for internal use

0x26 TRB_REJECT_BANK0 Reserved for internal use

0x27 TRB_REJECT_BANK1 Reserved for internal use

Management 13

Hex
Value

Name Description

0x28 TAG_REJECT_BANK0 Reserved for internal use

0x29 TAG_REJECT_BANK1 Reserved for internal use

0x2a ANY_REJECT_BANK0 Reserved for internal use

0x2b ANY_REJECT_BANK1 Reserved for internal use

PCIe TLR Statistics

Hex Value Name Description

0x0 PCIE_TLR_IN_P_PKT_CNT Incoming posted packets

0x10 PCIE_TLR_IN_NP_PKT_CNT Incoming non-posted packets

0x18 PCIE_TLR_IN_C_PKT_CNT Incoming completion packets

0x20 PCIE_TLR_OUT_P_PKT_CNT Outgoing posted packets

0x28 PCIE_TLR_OUT_NP_PKT_CNT Outgoing non-posted packets

0x30 PCIE_TLR_OUT_C_PKT_CNT Outgoing completion packets

0x38 PCIE_TLR_IN_P_BYTE_CNT Incoming posted bytes

0x40 PCIE_TLR_IN_NP_BYTE_CNT Incoming non-posted bytes

0x48 PCIE_TLR_IN_C_BYTE_CNT Incoming completion bytes

0x50 PCIE_TLR_OUT_C_BYTE_CNT Outgoing posted bytes

0x58 PCIE_TLR_OUT_NP_BYTE_CNT Outgoing non-posted bytes

0x60 PCIE_TLR_OUT_C_BYTE_CNT Outgoing completion bytes

Tile HNFNET Performance Module

Management 14

Hex
Value

Name Description

0x12 CDN_REQ The number of CDN requests

0x13 DDN_REQ The number of DDN requests

0x14 NDN_REQ The number of NDN requests

0x15
CDN_DIAG_N_OUT_
OF_CRED

Number of cycles that north input port FIFO runs out of
credits in the CDN network

0x16
CDN_DIAG_S_OUT_
OF_CRED

Number of cycles that south input port FIFO runs out of
credits in the CDN network

0x17
CDN_DIAG_E_OUT_
OF_CRED

Number of cycles that east input port FIFO runs out of
credits in the CDN network

0x18
CDN_DIAG_W_OUT_
OF_CRED

Number of cycles that west input port FIFO runs out of
credits in the CDN network

0x19
CDN_DIAG_C_OUT_
OF_CRED

Number of cycles that core input port FIFO runs out of
credits in the CDN network

0x1a
CDN_DIAG_N_EGRE
SS

Packets sent out from north port in the CDN network

0x1b
CDN_DIAG_S_EGRES
S

Packets sent out from south port in the CDN network

0x1c
CDN_DIAG_E_EGRES
S

Packets sent out from east port in the CDN network

0x1d
CDN_DIAG_W_EGRE
SS

Packets sent out from west port in the CDN network

0x1e
CDN_DIAG_C_EGRES
S

Packets sent out from core port in the CDN network

0x1f
CDN_DIAG_N_INGRE
SS

Packets received by north port in the CDN network

0x20
CDN_DIAG_S_INGRE
SS

Packets received by south port in the CDN network

0x21
CDN_DIAG_E_INGRE
SS

Packets received by east port in the CDN network

Management 15

Hex
Value

Name Description

0x22
CDN_DIAG_W_INGR
ESS

Packets received by west port in the CDN network

0x23
CDN_DIAG_C_INGRE
SS

Packets received by core port in the CDN network

0x24
CDN_DIAG_CORE_SE
NT

Packets completed from core port in the CDN network

0x25
DDN_DIAG_N_OUT_
OF_CRED

Number of cycles that north input port FIFO runs out of
credits in the DDN network

0x26
DDN_DIAG_S_OUT_
OF_CRED

Number of cycles that south input port FIFO runs out of
credits in the DDN network

0x27
DDN_DIAG_E_OUT_
OF_CRED

Number of cycles that east input port FIFO runs out of
credits in the DDN network

0x28
DDN_DIAG_W_OUT_
OF_CRED

Number of cycles that west input port FIFO runs out of
credits in the DDN network

0x29
DDN_DIAG_C_OUT_
OF_CRED

Number of cycles that core input port FIFO runs out of
credits in the DDN network

0x2a
DDN_DIAG_N_EGRE
SS

Packets sent out from north port in the DDN network

0x2b
DDN_DIAG_S_EGRES
S

Packets sent out from south port in the DDN network

0x2c
DDN_DIAG_E_EGRES
S

Packets sent out from east port in the DDN network

0x2d
DDN_DIAG_W_EGRE
SS

Packets sent out from west port in the DDN network

0x2e
DDN_DIAG_C_EGRES
S

Packets sent out from core port in the DDN network

0x2f
DDN_DIAG_N_INGR
ESS

Packets received by north port in the DDN network

0x30
DDN_DIAG_S_INGRE
SS

Packets received by south port in the DDN network

Management 16

Hex
Value

Name Description

0x31
DDN_DIAG_E_INGRE
SS

Packets received by east port in the DDN network

0x32
DDN_DIAG_W_INGR
ESS

Packets received by west port in the DDN network

0x33
DDN_DIAG_C_INGRE
SS

Packets received by core port in the DDN network

0x34
DDN_DIAG_CORE_S
ENT

Packets completed from core port in the DDN network

0x35
NDN_DIAG_N_OUT_
OF_CRED

Number of cycles that north input port FIFO runs out of
credits in the NDN network

0x36
NDN_DIAG_S_OUT_
OF_CRED

Number of cycles that south input port FIFO runs out of
credits in the NDN network

0x37
NDN_DIAG_E_OUT_
OF_CRED

Number of cycles that east input port FIFO runs out of
credits in the NDN network

0x38
NDN_DIAG_W_OUT_
OF_CRED

Number of cycles that west input port FIFO runs out of
credits in the NDN network

0x39
NDN_DIAG_C_OUT_
OF_CRED

Number of cycles that core input port FIFO runs out of
credits in the NDN network

0x3a
NDN_DIAG_N_EGRE
SS

Packets sent out from north port in the NDN network

0x3b
NDN_DIAG_S_EGRES
S

Packets sent out from south port in the NDN network

0x3c
NDN_DIAG_E_EGRES
S

Packets sent out from east port in the NDN network

0x3d
NDN_DIAG_W_EGRE
SS

Packets sent out from west port in the NDN network

0x3e
NDN_DIAG_C_EGRE
SS

Packets sent out from core port in the NDN network

0x3f
NDN_DIAG_N_INGR
ESS

Packets received by north port in the NDN network

Management 17

Hex
Value

Name Description

0x40
NDN_DIAG_S_INGRE
SS

Packets received by south port in the NDN network

0x41
NDN_DIAG_E_INGRE
SS

Packets received by east port in the NDN network

0x42
NDN_DIAG_W_INGR
ESS

Packets received by west port in the NDN network

0x43
NDN_DIAG_C_INGRE
SS

Packets received by core port in the NDN network

0x44
NDN_DIAG_CORE_S
ENT

Packets completed from core port in the NDN network

Programming Counter to Monitor Events

To program a counter to monitor one of the events from the event list, the event name or
number needs to be written to the corresponding event file.

Let us call the /sys/class/hwmon/hwmon<N> folder corresponding to this driver as BFPERF_DIR.

For example, to monitor the event HNF_REQUESTS (0x45) on tile2 using counter 3:

Or:

Once this is done, counter3 resets the counter and starts monitoring the number of
HNF_REQUESTS.

To read the counter value, run:

$ echo 0x45 > <BFPERF_DIR>/tile2/event3

$ echo HNF_REQUESTS > <BFPERF_DIR>/tile2/event3

Management 18

To see what event is currently being monitored by a counter, just read the corresponding
event file to get the event name and number.

In this case, reading the event3 file returns "0x45: HNF_REQUESTS".

To clear the counter, write 0 to the counter file.

This resets the accumulator and the counter continues monitoring the same event that
has previously been programmed, but starts the count from 0 again. Writing non-zero
values to the counter files is not allowed.

To stop monitoring an event, write 0xff to the corresponding event file.

This is slightly different for the l3cache blocks due to the restriction that all counters can
only be enabled, disabled, or reset together. So once the event is written to the event file,
the counters will have to be enabled to start monitoring their respective events by writing
"1" to the "enable" file. Writing "0" to this file will stop all the counters. The most reliable
way to get accurate counter values would be by disabling the counters after a certain
time period and then proceeding to read the counter values.

$ cat <BFPERF_DIR>/tile2/counter3

$ cat <BFPERF_DIR>/tile2/event3

$ echo 0 > <BFPERF_DIR>/tile2/counter3

Note

Programming a counter to monitor a new event automatically stops
all the counters. Also, enabling the counters resets the counters to 0
first.

Management 19

For blocks that have performance statistics registers (mechanism 2), all of these statistics
are directly made available to be read or reset.

For example, to read the number of incoming posted packets to TRIO2:

The count can be reset to 0 by writing 0 to the same file. Again, non-zero writes to these
files are not allowed.

$ cat <BFPERF_DIR>/pcie2/IN_P_PKT_CNT

Management 20

Intelligent Platform
Management Interface
IPMB requests can be initiated in 2 directions:

BlueField BMC-to-BlueField

BlueField-to-BlueField BMC

BlueField BMC IPMI Commands

The BlueField BMC is able to retrieve data from BlueField software over its Intelligent
Platform Management Bus (IPMB).

Note

The NVIDIA® BlueField® networking platform's (DPU or SuperNIC)
ipmb_dev_int driver is registered at the 7-bit I2C address 0x30 by
default. The I2C address of the BlueField can be changed in the file
/usr/bin/set_emu_param.sh.

BlueField Controller cards provide connection from the host
server BMC to BlueField Arm I2C bus

BlueField devices provide connection from the host server BMC
to the BlueField NC-SI port

BlueField Reference Platforms provide connection from its on-
board BMC to BlueField Arm I2C bus

Management 21

The BlueField BMC may request information about itself using the following command
format:

Issue a command with the following format from the BlueField BMC to retrieve
information from the BlueField:

The following table provides a list of supported ipmitool command arguments:

Command
Description

Ipmitool Command

Relevant
IPMI 2.0
Rev 1.1
Spec
Section

Get device ID mc info 20.1

Broadcast
“Get Device
ID”

Part of "mc info" 20.9

Get BMC
global enables

mc getenables 22.2

Get device
SDR info

sdr info 35.2

Get device
SDR

"sdr get", "sdr list" or
"sdr elist"

35.3

Get sensor
hysteresis

sdr get <sensor-id> 35.7

Set sensor
threshold

sensor thresh <sensor-id> <threshold> <setting>

sensor-id – name of the sensor for which a threshold
is to be set

35.8

$ ipmitool <ipmitool command>

ipmitool -I ipmb <ipmitool command>

Management 22

Command
Description

Ipmitool Command

Relevant
IPMI 2.0
Rev 1.1
Spec
Section

threshold – which threshold to set
ucr – upper critical
unc – upper non-critical
lnc – lower non-critical
lcr – lower critical

setting – the value to set the threshold to

To configure all lower thresholds, use : sensor thresh
<sensor-id> lower <lnr> <lcr> <lnc>

To configure all upper thresholds, use: sensor thresh
<sensor-id> upper <unc> <ucr> <unr>

Get sensor
threshold

sdr get <sensor-id> 35.9

Get sensor
event enable

sdr get <sensor-id> 35.11

Get sensor
reading

sensor reading <sensor-id> 35.14

Note
The lower non-recoverable <lnr>
option is not supported

Note
The upper non-recoverable <unr>
option is not supported

Management 23

Command
Description

Ipmitool Command

Relevant
IPMI 2.0
Rev 1.1
Spec
Section

Get sensor
type

sdr type <type> 35.16

Read FRU
data

fru read <fru-number> <file-to-write-to> 34.2

Get SDR
repository
info

sdr info 33.9

Get SEL info "sel" or "sel info" 40.2

Get SEL
allocation info

"sel" or "sel info" 40.3

Get SEL entry "sel list" or "sel elist" 40.5

Add SEL entry sel add <filename> 40.6

Delete SEL
entry

sel delete <id> 40.8

Clear SEL sel clear 40.9

Get SEL time sel time get 40.1

Set SEL time sel time set "MM/DD/YYYY HH:M:SS" 40.11

List of IPMI Supported Sensors

Sensor ID Description

bluefield_temp 0 Support NIC monitoring of BlueField's temperature

ddr0_0_temp 1 1 Support monitoring of DDR0 temp (on memory controller 0)

ddr0_1_temp 1 2 Support monitoring of DDR1 temp (on memory controller 0)

ddr1_0_temp 1 3 Support monitoring of DDR0 temp (on memory controller 1)

ddr1_1_temp 1 4 Support monitoring of DDR1 temp (on memory controller 1)

Management 24

Sensor ID Description

p0_temp 5 Port 0 temperature

p1_temp 6 Port 1 temperature

p0_link 7 Port0 link status

p1_link 8 Port1 link status

1. On BlueField-2 and BlueField-3 based boards, DDR sensors and FRUs are not
supported. They will appear as no reading.

List of IPMI Supported FRUs

FR
U

I
D

Description

upd
ate_
tim
er

0

set_emu_param.service is responsible for collecting data on sensors and FRUs every
3 seconds. This regular update is required for sensors but not for FRUs whose
content is less susceptible to change. update_timer is used to sample the FRUs
every hour instead. Users may need this timer in the case where they are
issuing several raw IPMItool FRU read commands. This helps in assessing how
much time users have to retrieve large FRU data before the next FRU update.
update_timer is a hexadecimal number.

fw_i
nfo 1

NVIDIA® ConnectX® firmware information, Arm firmware version, and
MLNX_OFED version.
The fw_info is in ASCII format.

nic_
pci_
dev
_inf
o

2
NIC vendor ID, device ID, subsystem vendor ID, and subsystem device ID.
The nic_pci_dev_info is in ASCII format.

cpui
nfo 3

CPU information reported in lscpu and /proc/cpuinfo.
The cpuinfo is in ASCII format.

ddr
0_0_
spd
2

4
FRU for SPD MC0 DIMM 0 (MC = memory controller).
The ddr0_0_spd is in binary format.

Management 25

FR
U

I
D

Description

ddr
0_1_
spd
2

5
FRU for SPD MC0 DIMM1.
The ddr0_1_spd is in binary format.

ddr
1_0_
spd
2

6
FRU for SPD MC1 DIMM0.
The ddr1_0_spd is in binary format.

ddr
1_1_
spd
2

7
FRU for SPD MC1 DIMM1.
The ddr1_1_spd is in binary format.

em
mc_
info

8
eMMC size, list of its partitions, and partitions usage (in ASCII format).
eMMC CID, CSD, and extended CSD registers (in binary format).
The ASCII data is separated from the binary data with "StartBinary" marker.

qsfp
0_e
epr
om

9 FRU for QSFP 0 EEPROM page 0 content (256 bytes in binary format)

qsfp
1_e
epr
om

1
0

FRU for QSFP 1 EEPROM page 0 content (256 bytes in binary format)

ip_a
ddr
ess
es

1
1

This FRU file can be used to write the BMC port 0 and port 1 IP addresses to the
BlueField. It is empty to begin with.
The file passed through the ipmitool fru write 11 <file> command must have the
following format:

The size of the written file should be exactly 61 bytes.

dim
ms_
ce_
ue

1
2

FRU reporting the number of correctable and uncorrectable errors in the
DIMMs.
This FRU is updated once every 3 seconds.

BMC: XXX.XXX.XXX.XXX
P0: XXX.XXX.XXX.XXX
P1: XXX.XXX.XXX.XXX

Management 26

FR
U

I
D

Description

eth
0

1
3

Network interface 0 information. Updated once every minute.

eth
1

1
4

Network interface 1 information. Updated once every minute.

bf_u
id

1
5

BlueField UID

eth_
hw_
cou
nter
s

1
6

List of ConnectX interface hardware counters

1. On BlueField-2 and BlueField-3 based boards, DDR sensors and FRUs are not
supported. They will appear as no reading.

BlueField IPMI Commands

The BlueField is able to retrieve data from the BlueField BMC over IPMB.

Issue a command with the following format from the BlueField to retrieve information
from the BMC:

The BlueField may request information about itself using the following command format:

$ ipmitool <ipmitool command>

$ ipmitool -U ADMIN -P ADMIN -p 9001 -H localhost <ipmitool command>

Note

Management 27

I2C Addresses for BMC-initiated Requests

Device I2C Address

BlueField ipmb_dev_int 0x30

BMC ipmb_host 0x20

I2C Addresses for BlueField-initiated Requests

Device I2C Address

BlueField ipmb_host 0x11

BMC ipmb_dev_int 0x10

Changing I2C Addresses

To use a different BlueField or BMC I2C address, you must make changes to the following
files' variables.

The ipmb_host driver allows the BlueField to send requests to the BMC.
Once set_emu_param.service is started, it will try to load the ipmb_host

drivers. If the BMC is down or not responsive when BlueField tries to
load the ipmb_host driver, the latter will not load successfully. In that
case, make sure the BMC is up and operational, and run the following
from BlueField's console:

The set_emu_param.service script will try to load the driver again.

echo 0x1011 > /sys/bus/i2c/devices/i2c-2/delete_device
rmmod ipmb_host

Management 28

Filename Path Parameter Change

/usr/bin/set_emu_
param.sh

The ipmb_dev_int and ipmb_host drivers are registered at the following I2C
addresses:

IPMB_DEV_INT_ADD=<BlueField I2C Address 1>
IPMB_HOST_ADD=<BlueField I2C Address 2>

These addresses must be different from one another. Otherwise, one
of the drives will fail to register.
To change the BMC I2C address:

External Host IPMI Commands

It is possible for the external host to retrieve data from the BlueField via the IPMI LAN
interface (either OOB or ConnectX).

To do that:

1. Set the network interface address properly in progconf. For example, if the OOB IP
address is 192.168.101.2, edit the OOB_IP variable in the /etc/ipmi/progconf file as
follows:

2. Then reboot or restart the IPMI service as follows:

IPMB_HOST_CLIENTADDR=<BMC I2C Address>
<I2C Address> must be equal to: 0x1000+<7-bit I2C address>

root@localhost:~# cat /etc/ipmi/progconf
SUPPORT_IPMB="NONE"
LOOP_PERIOD=3
BF_FAMILY=$(/usr/bin/bffamily | tr -d '[:space:]')
OOB_IP="192.168.101.2"

Management 29

3. To get information from the BlueField, issue commands from the external host in
the following format:

Loading and Using IPMI on BlueField Running CentOS

1. Load the BlueField CentOS image:

Example of loading ee1004.ko, at24.ko, and eeprom.ko:

systemctl restart mlx_ipmid

ipmitool -I lanplus -H 192.168.101.2 -U ADMIN -P ADMIN <ipmitool command>

Note

The following steps are performed from the BlueField CentOS
prompt. The BlueField is running CentOS 7.6 with kernel 5.4.
The CentOS installation was done using the CentOS everything
ISO image.

The following drivers need to be loaded on the BlueField
running CentOS:

jc42.ko

ee1004.ko

at24.ko

eeprom.ko

i2c-dev.ko

Management 30

2. (Optional) Update the i2c-mlx driver if the installed version is older than i2c-mlx-1.0-

0.gab579c6.src.rpm.

1. Re-compile i2c-mlx. Run:

2. Transfer the i2c-mlx RPM from the BlueField software tarball under distro/SRPM
onto the Arm. Run:

3. Load i2c-mlx. Run:

3. Install the following packages:

modprobe ee1004
modprobe at24
modprobe eeprom

Info

The i2c-dev module is built into the kernel 5.4.60 on CentOS 7.6.

$ yum remove -y kmod-i2c-mlx
$ modprobe -rv i2c-mlx

$ rpmbuild --rebuild /root/i2c-mlx-1.0-0.g422740c.src.rpm
$ yum install -y /root/rpmbuild/RPMS/aarch64/i2c-mlx-1.0-
0.g422740c_5.4.17_mlnx.9.ga0bea68.aarch64.rpm
$ ls -l /lib/modules/$(uname -r)/extra/i2c-mlx/i2c-mlx.ko

$ modprobe i2c-mlx

Management 31

If the above operation fails for ipmitool, run the following to install it:

4. The i2c-tools package is also required, but the version contained in the CentOS Yum
repository is old and does not work with BlueField. Therefore, please download i2c-
tools version 4.1, and then build and install it.

5. Generate an RPM binary from the BlueField's mlx-OpenIPMI-2.0.25 source RPM.

The following packages might be needed to build the binary RPM depending on
which version of CentOS you are using.

$ yum install ipmitool lm_sensors

wget http://sourceforge.net/projects/ipmitool/files/ipmitool/1.8.18/ipmitool-1.8.18.tar.gz
tar -xvzf ipmitool-1.8.18.tar.gz
cd ipmitool-1.8.18
./bootstrap
./configure
make
make install DESTDIR=/tmp/package-ipmitool

Build i2c-tools from a newer source
wget http://mirrors.edge.kernel.org/pub/software/utils/i2c-tools/i2c-tools-4.1.tar.gz
tar -xvzf i2c-tools-4.1.tar.gz
cd i2c-tools-4.1
make
make install PREFIX=/usr

create a link to the libraries
ln -sfn /usr/lib/libi2c.so.0.1.1 /lib64/libi2c.so
ln -sfn /usr/lib/libi2c.so.0.1.1 /lib64/libi2c.so.0

$ yum install libtool rpm-devel rpmdevtools rpmlint wget ncurses-devel automake
$ rpmbuild --rebuild mlx-OpenIPMI-2.0.25-0.g581ebbb.src.rpm

Management 32

If there are issues with building the OpenIPMI RPM, verify that the swig package is
not installed.

6. Generate a binary RPM from the ipmb-dev-int source RPM and install it. Run:

7. Generate a binary RPM from the ipmb-host source RPM and install it. Run:

8. Load OpenIPMI, ipmb-host, and ipmb-dev-int RPM packages. Run:

Note

You may obtain this rpm file by means of scp from the server
host's Bluefield Distribution folder. For example:

$ scp <BF_INST_DIR>/distro/SRPMS/mlx-OpenIPMI-2.0.25-
0.g4fdc53d.src.rpm <ip-address>:/<target_directory>/

$ yum remove -y swig

$ rpmbuild --rebuild ipmb-dev-int-1.0-0.g304ea0c.src.rpm

$ rpmbuild --rebuild ipmb-host-1.0-0.g304ea0c.src.rpm

$ yum install -y /root/rpmbuild/RPMS/aarch64/mlx-OpenIPMI-2.0.25-
0.g581ebbb_5.4.0_49.el7a.aarch64.aarch64.rpm
$ yum install -y /root/rpmbuild/RPMS/aarch64/ipmb-dev-int-1.0-
0.g304ea0c_5.4.0_49.el7a.aarch64.aarch64.rpm
$ yum install -y /root/rpmbuild/RPMS/aarch64/ipmb-host-1.0-
0.g304ea0c_5.4.0_49.el7a.aarch64.aarch64.rpm

Management 33

9. Load the IPMB driver. Run:

10. Install and start rasdaemon package. Run:

11. Start the IPMI daemon. Run:

$ modprobe ipmb-dev-int

yum install rasdaemon
systemctl enable rasdaemon
systemctl start rasdaemon

$ systemctl enable mlx_ipmid
$ systemctl start mlx_ipmid
$ systemctl enable set_emu_param
$ systemctl start set_emu_param

Management 34

Redfish
Redfish provides a RESTful interface designed to manage IT infrastructure and is
implemented using a modern toolchain (HTTP(s)/TLS/JSON).

Redfish supports the operations listed in this section.

BIOS Configuration Schema

The BIOS schema contains properties related to the BIOS attribute registry. The attribute
registry describes the system-specific BIOS attributes and actions for changing to BIOS
settings. It is likely that a client finds the @Redfish.Settings term in this resource, and if it is
found, the client makes requests to change BIOS settings by modifying the resource
identified by the @Redfish.Settings annotation.

URI /redfish/v1/Systems/{ComputerSystemId}/Bios

Schema file http://redfish.dmtf.org/schemas/v1/Bios.v1_1_1.json

Operations GET; PATCH

Example response:

{
 "@Redfish.Settings": {
 "@odata.type": "#Settings.v1_3_5.Settings",
 "SettingsObject": {
 "@odata.id": "/redfish/v1/Systems/Bluefield/Bios/Settings"
 }
 },
 "@odata.id": "/redfish/v1/Systems/Bluefield/Bios",
 "@odata.type": "#Bios.v1_2_0.Bios",
 "Actions": {
 "#Bios.ChangePassword": {
 "target": "/redfish/v1/Systems/Bluefield/Bios/Actions/Bios.ChangePassword"
 },
 "#Bios.ResetBios": {

Management 35

 "target": "/redfish/v1/Systems/Bluefield/Bios/Actions/Bios.ResetBios"
 }
 },
 "Attributes": {
 "Boot Partition Protection": false,
 "CurrentUefiPassword": "",
 "DateTime": "2024-04-24T19:56:59Z",
 "DefaultPasswordPolicy": true,
 "Disable PCIe": false,
 "Disable SPMI": false,
 "Disable TMFF": false,
 "EmmcWipe": false,
 "Enable 2nd eMMC": false,
 "Enable OP-TEE": false,
 "Enable SMMU": true,
 "Field Mode": false,
 "Host Privilege Level": "Privileged",
 "Internal CPU Model": "Embedded",
 "LegacyPasswordEnable": true,
 "NicMode": "DpuMode",
 "NvmeWipe": false,
 "OsArgs": "",
 "ResetEfiVars": false,
 "SPCR UART": "Disabled",
 "UefiArgs": "",
 "UefiPassword": ""
 },
 "Description": "BIOS Configuration Service",
 "Id": "BIOS",
 "Links": {
 "SoftwareImages": [
 {
 "@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_ATF"
 },
 {
 "@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_BOARD"
 },
 {
 "@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_BSP"
 },
 {
 "@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_NIC"
 },
 {

Management 36

The following table explains each of the attributes listed in the code:

Attribute Description

Boot Partition Protection See description in section "System Configuration"

CurrentUefiPassword See "Set Password" in section "System Configuration"

DateTime See "Set RTC" in section "System Configuration"

DefaultPasswordPolicy See "Password Settings" in section "System Configuration"

Disable PCIe See description in section "System Configuration"

Disable SPMI See description in section "System Configuration"

Disable TMFF See description in section "System Configuration"

EmmcWipe See description in section "System Configuration"

Enable 2nd eMMC See description in section "System Configuration"

Enable OP-TEE See description in section "System Configuration"

Enable SMMU See description in section "System Configuration"

 "@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_NODE"
 },
 {
 "@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_OFED"
 },
 {
 "@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_OS"
 },
 {
 "@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_SYS_IMAGE"
 },
 {
 "@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_UEFI"
 }
],
 "SoftwareImages@odata.count": 9
 },
 "Name": "BIOS Configuration",
 "ResetBiosToDefaultsPending": false
}

file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration

Management 37

Attribute Description

Field Mode See description in section "System Configuration"

Host Privilege Level See "BlueField Modes" in section "System Configuration"

Internal CPU Model See "BlueField Modes" in section "System Configuration"

LegacyPasswordEnable See "Password Settings" in section "System Configuration"

NicMode See "BlueField Modes" under section "System Configuration"

NvmeWipe See description in section "System Configuration"

OsArgs Arguments to pass to the OS kernel

ResetEfiVars See "Reset EFI Variables" in section "System Configuration"

SPCR UART See " Select SPCR UART " in section "System Configuration"

UefiArgs Arguments to pass to the UEFI

UefiPassword See "Set Password" in section "System Configuration"

BlueField Platform Inventory

The NVIDIA® BlueField® networking platform (DPU or SuperNIC) provides inventory
information in the ComputerSystemCollection schema. To identify the BlueField ComputerSystem

instance, fetch the ComputerSystemCollection first.

BlueField devices are identified with the SystemType attribute DPU. The BlueField instance
identifier value (DPU.Embedded.1_NIC.Slot.2 in this case) differs from one server vendor to
another but will uniquely identify BlueField in all cases.

The following is a simple example of fetching Redfish inventory information from a
server's BMC:

root@localhost:~$ python3 /usr/local/bin/redfishtool.py -r <bmc_ip> -u <USER> -p <PASSWORD> raw
GET /redfish/v1/Systems/
{
 "@odata.context": "/redfish/v1/$metadata#ComputerSystemCollection.ComputerSystemCollection",
 "@odata.id": "/redfish/v1/Systems",
 "@odata.type": "#ComputerSystemCollection.ComputerSystemCollection",
 "Description": "Collection of Computer Systems",
 "Members": [

file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration
file:///networking/display/bluefieldbsp480/UEFI+Menu#src-3094733913_UEFIMenu-SystemConfiguration

Management 38

 {
 "@odata.id": "/redfish/v1/Systems/System.Embedded.1"
 },
 {
 "@odata.id": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2"
 }
],
 "Members@odata.count": 2,
 "Name": "Computer System Collection"
}

root@localhost:~$ python3 /usr/local/bin/redfishtool.py -r <bmc_ip> -u <USER> -p <PASSWORD> raw
GET /redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2
{
 "@odata.context": "/redfish/v1/$metadata#ComputerSystem.ComputerSystem",
 "@odata.id": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2",
 "@odata.type": "#ComputerSystem.v1_12_0.ComputerSystem",
 "Actions": {
 "#ComputerSystem.Reset": {
 "target": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2/Actions/ComputerSystem.Reset",
 "ResetType@Redfish.AllowableValues": [
 "ForceRestart",
 "Nmi"
]
 }
 },
 "Bios": {
 "@odata.id": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2/Bios"
 },
 "BiosVersion": null,
 "Boot": {
 "BootOptions": {
 "@odata.id": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2/BootOptions"
 },
 "BootOrder": [],
 "BootOrder@odata.count": 0,
 "BootSourceOverrideEnabled": null,
 "BootSourceOverrideMode": null,
 "BootSourceOverrideTarget": null,
 "UefiTargetBootSourceOverride": null,
 "BootSourceOverrideTarget@Redfish.AllowableValues": []
 },
 "Description": "DPU System",
 "Id": "DPU.Embedded.1_NIC.Slot.2",

Management 39

 "Manufacturer": "DELL",
 "Model": "NVIDIA Bluefield-2 25GbE 2p Crypto DPU",
 "Name": "DPU System",

 "Oem": {
 "Dell": {
 "@odata.type": "#DellComputerSystem.v1_1_0.DellComputerSystem",
 "DPUConfig": {
 "FQDD": "DPU.Embedded.1:NIC.Slot.2",
 "BootStatus": "OSBooting",
 "DPUBootSynchronization": "Enabled",
 "DPUTrust": "Enabled",
 "IdenticalSBDF": [
 "0:23:0:0",
 "0:23:0:1"
],
 "LastResetReason": null,
 "OSName": null,
 "OSReadyTimeout": 20,
 "OSInstallationTimeout": 30,
 "OSVersion": null,
 "OSVendor": null,
 "OSStatus": "Unknown",
 "Slot": "2",
 "PCIeSlotState": "Enabled",
 "PostCode": null,
 "VendorID": "0x15B3",
 "DeviceID": "0xA2D6",
 "SubVendorID": "0x15B3",
 "SubDeviceID": "0x0129"
 },
 "Name": "DPUConfig",
 "Id": "DPU.Embedded.1_NIC.Slot.2"
 }
 },
 "PartNumber": "JNDCMX01",
 "SecureBoot": {
 "@odata.id": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2/SecureBoot"
 },
 "SerialNumber": "IL740311A5000A",
 "SKU": "0JNDCM",
 "Status": {

Management 40

Boot Override

This example demonstrates how to boot a BlueField Platform while overriding the
existing boot options and using HTTP boot to obtain the image.

Check the current boot override settings by doing a GET on ComputerSystem schema. Look
for the Boot property.

 "Health": "Ok",
 "HealthRollup": "Ok",
 "State": "Enabled"
 },
 "SystemType": "DPU",
 "UUID": "ec6dd921-882a-ec11-8000-08c0eb5180ba",
 "@Redfish.Settings": {
 "@odata.context": "/redfish/v1/$metadata#Settings.Settings",
 "@odata.type": "#Settings.v1_3_3.Settings",
 "SettingsObject": {
 "@odata.id": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2/Settings"
 }
 }
}

curl -vk -X GET -u "user:password" https://<bmc_ip>/redfish/v1/Systems/SystemId/ | python3 -m
json.tool
{
...
"Boot": {
 "BootNext": "",
 "BootOrderPropertySelection": "BootOrder",
 "BootSourceOverrideEnabled": "Disabled",
 "BootSourceOverrideMode": "UEFI",
 "BootSourceOverrideTarget": "None",
 "UefiTargetBootSourceOverride": "None",

 },

 "BootSourceOverrideEnabled@Redfish.AllowableValues": [
 "Once",
 "Continuous",
 "Disabled"

Management 41

The sample output above shows the BootSourceOverrideEnabled property is Disabled and
BootSourceOverrideTarget is None. The BootSourceOverrideMode property should always be set to
UEFI. Allowable values of BootSourceOverrideEnabled and BootSourceOverrideTarget are defined in
the meta-data BootSourceOverrideEnabled@Redfish.AllowableValues and
BootSourceOverrideTarget@Redfish.AllowableValues respectively.

To perform boot override, you must perform a PATCH to pending settings URI:

After performing the above PATCH successfully, reboot the BlueField Platform. Once UEFI
has completed, check whether the settings are applied by performing a GET on
ComputerSystem schema.

Note that the HttpBootUri property is parsed by the Redfish server and the URI is presented
to BlueField as part of DHCP lease when BlueField performs the HTTP boot.

],
 "BootSourceOverrideTarget@Redfish.AllowableValues": [
 "None",
 "Pxe",
 "UefiHttp",
 "UefiShell",
 "UefiTarget",
 "UefiBootNext"
],

}

curl -vk -X PATCH -d '{"Boot": {"BootSourceOverrideEnabled":"Once",
"BootSourceOverrideMode":"UEFI", "BootSourceOverrideTarget": "UefiHttp",
"HttpBootUri":"http://<HTTP-Server-Ip>/Image.iso"}}' -u "user:password"
https://<bmc_ip>/redfish/v1/Systems/SystemId/Settings | python3 -m json.tool

curl -vk -X GET -u "user:password" https://<bmc_ip>/redfish/v1/Systems/SystemId/ | python3 -m
json.tool
{
...
"Boot": {
 "BootNext": "",
 "BootOrderPropertySelection": "BootOrder",

Management 42

After confirming the settings are applied (see PATCH properties above), reboot BlueField
for the settings to take effect. If BootSourceOverrideEnabled is set to Once, boot override is
disabled and any related properties are reset to their former values to avoid repetition. If
it is set to Continuous, then on every reboot, BlueField would keep performing boot
override (HTTPBoot).

Boot Order

The following is an example of changing the boot order and fetching the details of a boot
option.

1. Check the current boot order by doing GET on the ComputerSystem schema. Look for
the BootOrder attribute under the Boot property.

2. Get the details of a particular entity in the BootOrder array by performing a GET to the
respective BootOption URL. For example, to get details of Boot0006, run:

 "BootSourceOverrideEnabled": "Once",
 "BootSourceOverrideMode": "UEFI",
 "BootSourceOverrideTarget": "UefiHttp",
 "UefiTargetBootSourceOverride": "None",

 },

}

curl -vk -X GET -u "user:password"
https://<bmc_ip>/redfish/v1/Systems/SystemId/BootOptions/Boot0006 | python3 -m json.tool

{
 "@odata.type": "#BootOption.v1_0_3.BootOption",
 "@odata.id": "/redfish/v1/Systems/SystemId/BootOptions/Boot0006",
 "Id": "Boot0006",
 "BootOptionEnabled": true,
 "BootOptionReference": "Boot0006",
 "DisplayName": "UEFI HTTPv6 (MAC:B8CEF6B8A006)",
 "UefiDevicePath":
"PciRoot(0x0)/Pci(0x0,0x0)/Pci(0x0,0x0)/Pci(0x0,0x0)/Pci(0x0,0x0)/MAC(B8CEF6B8A006,0x1)/IPv6(000
}

Management 43

3. To change the boot order, the entire BootOrder array must be PATCHed to the
pending settings URI. For the above example of the BootOrder array, if you intend to
have Boot0006 at the beginning of the array, then the PATCH operation is as follows.

After a successful PATCH, reboot BlueField and check if the settings were applied by
doing a GET on the ComputerSystem schema. If the BootOrder array is updated as intended,
then the settings were applied and the BlueField Platform should boot as per the order in
proceeding cycles.

BIOS Attributes

The following is an example of fetching and setting a BlueField BIOS attribute.

1. Check UEFI attributes and their values by doing a GET on Bios URL. Look for Attributes

property.

curl -vk -X PATCH -d '{ "Boot": { "BootOrder": ["Boot0006", "Boot0017", "Boot0001", "Boot0002",
"Boot0003", "Boot0004", "Boot0005", "Boot0007",] }}' -u "user:password"
https://<bmc_ip>/redfish/v1/Systems/SystemId/Settings | python3 -m json.tool

Note

Updating the BootOrder array results in a permanent boot order
change (persistent across reboots).

curl -vk -X GET -u "user:password" https://<bmc_ip>/redfish/v1/Systems/SystemId/Bios | python3
-m json.tool

{

 "Attributes": {
 "Boot Partition Protection": false,
 "CurrentUefiPassword": "",
 "DateTime": "2022-07-05T16:02:12Z",
 "Disable PCIe": false,

Management 44

2. The following example updates the UEFI password. Perform PATCH to Bios pending
settings URI as follows:

 "Disable SPMI": false,
 "Disable TMFF": false,
 "Enable 2nd eMMC": false,
 "Enable OP-TEE": false,
 "Enable SMMU": true,
 "Field Mode": false,
 "Host Privilege Level": "Privileged",
 "Internal CPU Model": "Embedded",
 "ResetEfiVars": false,
 "SPCR UART": "Disabled",
 "UefiPassword": ""
 },

}

Note

For Security reasons, CurrentUefiPassword and UefiPassword strings
might be empty.

curl -vk -X PATCH -d '{"Attributes":{"CurrentUefiPassword": "CURRENTPASSWD", "UefiPassword":
"NEWPASSWORD"}}' -u "user:password"
https://<bmc_ip>/redfish/v1/Systems/SystemId/Bios/Settings | python3 -m json.tool

Note

To update the password, both the current password and the
new password (requesting) should be specified as

Management 45

3. To confirm whether the PATCH request is successful, perform a GET to the BIOS
pending settings URI:

4. For requests to take effect, reboot BlueField. If the CurrentUefiPassword is correct, then
the UEFI password is updated during the UEFI Redfish phase of boot.

demonstrated above. Otherwise, the change does not work. To
modify other attributes no password is required.

curl -vk -X GET -u "user:password" https://<bmc_ip>/redfish/v1/Systems/SystemId/Bios/Settings |
python3 -m json.tool

Info

The UEFI password is only required to enter the UEFI menu
using the serial console.

Management 46

Logging
RShim Logging

RShim logging uses an internal 1KB HW buffer to track booting progress and record
important messages. It is written by the NVIDIA ® BlueField ® networking platform's
(DPU or SuperNIC) Arm cores and is displayed by the RShim driver from the USB/PCIe
host machine. Starting in release 2.5.0, ATF has been enhanced to support the RShim
logging.

The RShim log messages can be displayed described in the following:

1. Check the DISPLAY_LEVEL level in file /dev/rshim0/misc.

2. Set DISPLAY_LEVEL to 2.

3. Log messages are displayed in the misc file.

cat /dev/rshim0/misc
DISPLAY_LEVEL 0 (0:basic, 1:advanced, 2:log)
…

echo "DISPLAY_LEVEL 2" > /dev/rshim0/misc

cat /dev/rshim0/misc
...

Log Messages

 INFO[BL2]: start
 INFO[BL2]: no DDR on MSS0
 INFO[BL2]: calc DDR freq (clk_ref 53836948)

Management 47

The following table details the ATF/UEFI messages for BlueField-2 and BlueField-3:

Message Explanation Action

INFO[BL2]:
start BL2 started Informational

INFO[BL2]: no
DDR on
MSS<N>

DDR is not detected on memory
controller <N>

Informational (depends on
device)

INFO[BL2]: calc
DDR freq
(clk_ref 156M,
clk xxx)

DDR frequency is calculated based on
reference clock 156M

Informational

INFO[BL2]: calc
DDR freq
(clk_ref 100M,
clk xxx)

DDR frequency is calculated based on
reference clock 100M

Informational

INFO[BL2]: calc
DDR freq
(clk_ref xxxx)

DDR frequency is calculated based on
reference clock xxxx

Informational

INFO[BL2]: DDR
POST passed BL2 DDR training passed Informational

INFO[BL2]: UEFI
loaded

UEFI image is loaded successfully in
BL2

Informational

 INFO[BL2]: DDR POST passed
 INFO[BL2]: UEFI loaded
 INFO[BL31]: start
 INFO[BL31]: runtime
 INFO[UEFI]: eMMC init
 INFO[UEFI]: eMMC probed
 INFO[UEFI]: PCIe enum start
 INFO[UEFI]: PCIe enum end

Info

This is an example output for BlueField-2.

Management 48

Message Explanation Action

ERR[BL2]: DDR
init fail on
MSS<N>

DDR initialization failed on memory
controller <N>

Informational (depends on
device)

ERR[BL2]:
image <N> bad
CRC

Image with ID <N> is corrupted which
will cause hang

Error message. Reset the device
and retry. If problem persists, use
a different image to retry it.

ERR[BL2]: DDR
BIST failed DDR BIST failed

Need to retry. Check the ATF
booting message whether the
detected OPN is correct or not, or
whether it is supported by this
image. If still fails, contact NVIDIA
Support.

ERR[BL2]: DDR
BIST Zero Mem
failed

DDR BIST failed in the zero-memory
operation

Power-cycle and retry. If the
problem persists, contact your
NVIDIA FAE.

WARN[BL2]:
DDR frequency
unsupported

DDR training is programmed with
unsupported parameters

Check whether official FW is being
used. If the problem persists,
contact your NVIDIA FAE.

WARN[BL2]:
DDR min-
sys(unknown)

System type cannot be determined
and boot as a minimal system

Check whether the OPN or PSID is
supported. If the problem
persists, contact your NVIDIA FAE.

WARN[BL2]:
DDR min-
sys(misconf)

System type misconfigured and boot
as a minimal system

Check whether the OPN or PSID is
supported. If the problem
persists, contact your NVIDIA FAE.

Exception(BL2):
syndrome =
xxxxxxxx
…

Exception in BL2 with syndrome code
and register dump. System hung.

Capture the log, analyze the
cause, and report to FAE if
needed

PANIC(BL2): PC
= xxx
…

Panic in BL2 with register dump.
System will hung.

Capture the log, analyze the
cause, and report to FAE if
needed

ERR[BL2]:
load/auth failed

Failed to load image (non-
existent/corrupted), or image
authentication failed when secure
boot is enabled

Try again with the correct and
properly signed image

Management 49

Message Explanation Action

INFO[BL31]:
start BL31 started Informational

INFO[BL31]:
runtime

BL31 enters the runtime state. This is
the latest BL31 message in normal
booting process.

Informational

Exception(BL31
): syndrome =
xxxxxxxx
cptr_el3 xx
daif xx
…

Exception in BL31 with syndrome
code and register dump. System
hung.

Capture the log, analyze the
cause, and report to FAE if
needed

PANIC(BL31):
PC = xxx
cptr_el3
xxx
daif xxx
…

Panic in BL31 with register dump.
System hung.

Capture the log, analyze the
cause, and report to FAE if
needed

INFO[UEFI]:
eMMC init eMMC driver is initialized

Informational and should always
be printed

INFO[UEFI]:
eMMC probed eMMC card is initialized

Informational and should always
be printed

ASSERT(UEFI]:
xxx : line-no Runtime assert message in UEFI

Contact your NVIDIA FAE with this
information. Usually the system is
able to continue running.

INFO[UEFI]:
PCIe enum
start

PCIe enumeration start Informational

INFO[UEFI]:
PCIe enum end PCIe enumeration end Informational

ERR[UEFI]:
Synchronous
Exception at
xxxxxx
ERR[UEFI]:
PC=xxxxxx
ERR[UEFI]:
PC=xxxxxx
…

UEFI Exception with PC value
reported

Contact your NVIDIA FAE with this
information

Management 50

Message Explanation Action

ERR[BL2]:

FW auth failed
Image authentication error

Wrong image has been used in
the current secure lifecycle.
Switch to the correct image.

ERR[BL2]: IROT
cert sig not
found

Failed to load attestation certificates
Contact your NVIDIA FAE with this
information

ERR[BL2]: IROT
cert sig not
found

Failed to load certification update
record

Contact your NVIDIA FAE with this
information

INFO[BL31]:
PSC Turtle
Mode detected

PSC enters turtle mode

Informational

INFO[BL31]: In
Enhanced NIC
mode

BlueField-3 enters enhanced NIC
mode

Informational

ERR[BL31]:
(set_page err |
pmbus_lsb err
| mfr_vr_mc err
| set_vout err)

BlueField-3 power management
programming error.

Contact your NVIDIA FAE with this
information

Info
Only relevant for
certain BlueField-
3 devices.

Info
BlueField-3 only.

Info
Usually happens
when the I2C

Management 51

Message Explanation Action

INFO [BL31]:
MB8: VDD
adjustment
complete

BlueField-3 MainBin 8-core board
VDD CPU adjustment

Informational

INFO [BL31]:
VDD
adjustment
complete

BlueField-3 (non-8-core board) VDD
CPU adjustment

Informational

INFO [BL31]:
VDD: xxx mV BlueField-3 VDD CPU voltage Informational

ERR[BL31]:
cannot access
vr0 (or access
vr1)

BlueField-3 unable to access voltage
regulator (vr0 or vr1) via I2C

Contact your NVIDIA FAE with this
information

ERR[BL31]: ATX
power not
detected!

ATX power is not connected
Contact your NVIDIA FAE with this
information

INFO[BL31]:
PTMERROR:
Unknown OPN

Unable to detect the OPN on this
device

Contact your NVIDIA FAE with this
information

INFO[BL31]:
PTMERROR: VR
access error

Unable to access the voltage
regulator on this device

Contact your NVIDIA FAE with this
information

INFO[BL31]:
power capping
disabled

BlueField-3 power capping disabled Informational

voltage regulator
is not accessible.

Info
This also means
power capping
will be disabled.

Management 52

Message Explanation Action

INFO[BL2]:
boot mode
(rshim | emmc
| unknown)

Device boot mode (from external
RShim or eMMC)

Informational

ERR[BL31]:
ECC_SINGLE_ER
ROR_CNT=xxx

Single ECC error counter report
Contact your NVIDIA FAE with this
information

ERR[BL31]:
ECC_DOUBLE_E
RROR_CNT=xxx

Double ECC error counter report
Contact your NVIDIA FAE with this
information

ERR[BL31]:
mss0|mss1:
C0|C1 single-
bit ecc, IRQ[%d]

MSS (0 or 1) channel (0 or 1) single-bit
ECC error interrupt #

Contact your NVIDIA FAE with this
information

ERR[BL31]:
mss0|mss1:
C0|C1 Double
bit ecc, IRQ[%d]

MSS (0 or 1) channel (0 or 1) double-
bit ECC error interrupt #

Contact your NVIDIA FAE with this
information

ERR[BL31]:
Double-bit ECC
also detected in
same buffer

Single/double ECC error detected in
the same buffer

Contact your NVIDIA FAE with this
information

ERR[BL31]: l3c:
double-bit ecc L3c double-bit ECC error detected

Contact your NVIDIA FAE with this
information

ERR[BL31]:
MSS%d
DIMM%d
single|double
bit ECC error
detected

MSS DRAM single (or double) bit error
detected

Contact your NVIDIA FAE with this
information

ERR[BL31]:
MSS%d SRAM
double bit ECC
error detected

MSS SRAM double bit ECC error
detected

Contact your NVIDIA FAE with this
information

IPMI Logging in UEFI

During UEFI boot, the BlueField sends IPMI SEL messages over IPMB to the BMC in order
to track boot progress and report errors. The BMC must be in responder mode to receive
the log messages.

Management 53

SEL Record Format

The following table presents standard SEL records (record type = 0x02).

Byte(
s)

Field Description

1
2

Record ID
ID used to access SEL record. Filled in by the BMC. Is initialized to
zero when coming from UEFI.

3
Record
Type

Record type

4
5
6
7

Timestamp
Time when event was logged. Filled in by BMC. Is initialized to zero
when coming from UEFI.

8
9

Generator
ID

This value is always 0x0001 when coming from UEFI

10 EvM Rev
Event message format revision which provides the version of the
standard a record is using.
This value is 0x04 for all records generated by UEFI.

11
Sensor
Type

Sensor type code for sensor that generated the event

12
Sensor
Number

Number of the sensor that generated the event.
These numbers are arbitrarily chosen by the OEM.

13
Event Dir |
Event Type

[7] – 0b0 = Assertion, 0b1 = Deassertion
[6:0] – Event type code

14 Event Data
1

[7:6] – Type of data in Event Data 2

0b00 = unspecified
0b10 = OEM code
0b11 = Standard sensor-specific event extension

[5:4] – Type of data in Event Data 3

0b00 = unspecified
0b10 = OEM code
0b11 = Standard sensor-specific event extension

Management 54

Byte(
s)

Field Description

[3:0] – Event Offset; offers more detailed event categories.
See IPMI 2.0 Specification section 29.7 for more detail.

15
Event Data
2

Data attached to the event. 0xFF for unspecified.
Under some circumstances, this may be used to specify more
detailed event categories.

16
Event Data
3

Data attached to the event. 0xFF for unspecified.

See IPMI 2.0 Specification section 32.1 for more detail.

Possible SEL Field Values

BlueField UEFI implements a subset of the IPMI 2.0 SEL standard. Each field may have the
following values:

Field
Possible
Values

Description of Values

Record
Type

0x02
Standard SEL record. All events sent by UEFI are standard SEL
records.

Event Dir 0b0 All events sent by UEFI are assertion events

Event
Type

0x6F
Sensor-specific discrete events. Events with this type do not
deviate from the standard.

Sensor
Number

0x06
UEFI boot progress “sensor”. If value is 0x06, the sensor type will
always be “System Firmware Progress” (0x0F).

For Sensor Type, Event Offset, and Event Data 1-3 definitions, see next table.

Event Definitions

Management 55

Events are defined by a combination of Record Type, Event Type, Sensor Type, Event
Offset (occupies Event Data 1), and sometimes Event Data 2 (referred to as the Event
Extension if it defines sub-events).

The following tables list all currently implemented IPMI events (with Record Type = 0x02,
Event Type = 0x6F).

Sensor
Type

Sensor
Type
Code

Event
Offse
t

Event Description, Actions to Take

System
Firmware
Progress

0x0F

0x00

System firmware error (POST error).
Event Data 2:

0x06 – Unrecoverable EMMC error. Contact NVIDIA
support.

0x02

System firmware progress: Informational message, no
actions needed.
Event Data 2:

0x02 – Hard Disk Initialization. Logged when EMMC
is initialized.
0x04 – User Authentication. Logged when a user
enters the correct UEFI password. This event is never
logged if there is no UEFI password.
0x07 – PCI Resource Configuration. Logged when PCI
enumeration has started.
0x0B – SMBus Initialization. This event is logged as
soon as IPMB is configured in UEFI.
0x13 – Starting OS Boot Process. Logged when Linux
begins booting.

Note

Note that if an Event Data 2 or Event Data 3 value is not specified, it
can be assumed to be Unspecified (0xFF).

Management 56

Reading IPMI SEL Log Messages

Log messages may be read from the BMC by issuing it a “Get SEL Entry Command” while
it is in responder mode, either from a remote host, or from BlueField itself once it is
booted.

ACPI BERT Logging

ACPI boot error record table (BERT) is supported to log last boot error in Linux. Once Linux
printk is enabled (e.g., by adding "kernel.printk=8" to /etc/sysctl.conf), it will try to report the
errors automatically for last boot. The following is an example of such error reports:

$ ipmitool sel list
 7b | Pre-Init |0000691604| System Firmwares #0x06 | SMBus initialization | Asserted
 7c | Pre-Init |0000691604| System Firmwares #0x06 | Hard-disk initialization | Asserted
 7d | Pre-Init |0000691654| System Firmwares #0x06 | System boot initiated
$ ipmitool sel get 0x7d
SEL Record ID : 007d
 Record Type : 02
 Timestamp : 01/09/1970 00:07:34
 Generator ID : 0001
 EvM Revision : 04
 Sensor Type : System Firmwares
 Sensor Number : 06
 Event Type : Sensor-specific Discrete
 Event Direction : Assertion Event
 Event Data : c213ff
 Description : System boot initiated
$ ipmitool sel clear
Clearing SEL. Please allow a few seconds to erase.
$ ipmitool sel list
SEL has no entries

[2.635539] BERT: Error records from previous boot:
[2.640434] [Hardware Error]: event severity: fatal
[2.645331] [Hardware Error]: Error 0, type: fatal

Management 57

[2.650236] [Hardware Error]: section type: unknown, c6adf9e6-1108-4760-8827-003d059fe2e1
[2.658606] [Hardware Error]: section length: 0x35
[2.663580] [Hardware Error]: 00000000: 52524520 4645555b 203a5d49 0a0d0a0d ERR[UEFI]:
[2.672284] [Hardware Error]: 00000010: 636e7953 6e6f7268 2073756f 65637845 Synchronous Exce
[2.680987] [Hardware Error]: 00000020: 6f697470 7461206e 36783020 37313643 ption at 0x6C617
[2.689696] [Hardware Error]: 00000030: 34 37 30 0d 0a
...

Management 58

SoC Management Interface
The SoC management interface, formerly known as RShim, allows an external agent such
as the host CPU or BMC to operate the NVIDIA® BlueField® networking platform (DPU or
SuperNIC) and monitor its operational state. This interface allows provisioning of
BlueField, resetting Arm cores, and obtaining logs.

Installation and Upgrade

Please refer to section Updating Repo Package on Host Side.

Configuration File

The configuration file for the SoC management interface is located at /etc/rshim.conf and
includes the parameters listed in the table below.

Parameter
Defa
ult

Description

BOOT_TIMEOUT 150
Timeout value in seconds when pushing BFB while Arm side is not
reading the boot stream.

DROP_MODE 0

Once set to 1, the RShim driver ignores all RShim writes and
returns 0 for RShim read.
This is used in cases such as during FW_RESET or bypassing the
RShim PF to VM.

PCIE_RESET_DEL
AY

10 Delay in seconds for RShim over PCIe, which is added after chip

Note

For instructions for Windows support, please refer to page "Windows
Support".

file:///networking/display/bluefieldbsp480/Installing+Repo+Package+on+Host+Side
file:///networking/display/bluefieldbsp480/Windows+Support
file:///networking/display/bluefieldbsp480/Windows+Support

Management 59

Parameter
Defa
ult

Description

reset and before pushing the boot stream.

PCIE_INTR_POLL_
INTERVAL 10

Interrupt polling interval in seconds when running RShim over
direct memory mapping.

PCIE_HAS_VFIO 1
Setting this parameter to 0 disallows RShim memory mapping via
VFIO.

PCIE_HAS_UIO 1
Setting this parameter to 0 disallows RShim memory mapping via
UIO.

Users may control which RShim index maps to which device by following this procedure:

Note

Configuring RShim is optional. The default parameters are designed
to support out-of-box deployment scenarios including multiple
BlueField device s on a single host.

Uncomment the 'rshim<N>' line to configure the mapping.
#
device-name pci-device
rshim0 pcie-0000:21:00.2
rshim1 pcie-0000:81:00.2

#
Ignored devices.
Uncomment the 'none' line to configure the ignored devices.
#
#none usb-1-1.4
#none pcie-lf-0000:84:00.0

Note

Management 60

Host-side Interface Configuration

BlueField registers on the host OS a "DMA controller" for BlueField management over
PCIe. This can be verified by running the following:

A special SoC management driver must be installed and run on the host OS to expose the
various BlueField management interfaces to the OS. Currently, this driver is named RShim
and is automatically installed as part of the DOCA installation. Refer to section "Install
RShim on Host" for information on how to obtain and install the host-side SoC
management interface driver .

When the SoC management interface driver runs properly on the host side, a sysfs
device, /dev/rshim0/*, and a virtual Ethernet interface, tmfifo_net0, become available. The
following is an example for querying the status of the SoC management interface driver
on the host side:

If any of these configurations are changed, then the SoC
management interface must be restarted by running:

systemctl restart rshim

lspci -d 15b3: | grep 'SoC Management Interface'
27:00.2 DMA controller: Mellanox Technologies MT42822 BlueField-2 SoC Management Interface (rev
01)

systemctl status rshim
● rshim.service - rshim driver for BlueField SoC
 Loaded: loaded (/lib/systemd/system/rshim.service; disabled; vendor preset: enabled)
 Active: active (running) since Tue 2022-05-31 14:57:07 IDT; 1 day 1h ago
 Docs: man:rshim(8)
 Process: 90322 ExecStart=/usr/sbin/rshim $OPTIONS (code=exited, status=0/SUCCESS)
 Main PID: 90323 (rshim)
 Tasks: 11 (limit: 76853)

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-InstallRShimonHost
file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-InstallRShimonHost

Management 61

If the SoC management interface driver device does not appear, refer to section "RShim
Troubleshooting and How-Tos".

Virtual Ethernet Interface

On the host, the SoC management interface driver exposes a virtual Ethernet device
called tmfifo_net0. This virtual Ethernet can be thought of as a peer-to-peer tunnel
connection between the host and the BlueField OS. The BlueField OS also configures a
similar device. The BlueField OS's BFB images are customized to configure the BlueField
side of this connection with a preset IP of 192.168.100.2/30. It is up to the user to
configure the host side of this connection. Configuration procedures vary for different
OSs.

The following example configures the host side of tmfifo_net0 with a static IP and enables
IPv4-based communication to the BlueField OS:

 Memory: 3.3M
 CGroup: /system.slice/rshim.service
 └─90323 /usr/sbin/rshim
May 31 14:57:07 … systemd[1]: Starting rshim driver for BlueField SoC...
May 31 14:57:07 … systemd[1]: Started rshim driver for BlueField SoC.
May 31 14:57:07 … rshim[90323]: Probing pcie-0000:a3:00.2(vfio)
May 31 14:57:07 … rshim[90323]: Create rshim pcie-0000:a3:00.2
May 31 14:57:07 … rshim[90323]: rshim pcie-0000:a3:00.2 enable
May 31 14:57:08 … rshim[90323]: rshim0 attached

ip addr add dev tmfifo_net0 192.168.100.1/30

Note

For instructions on persistent IP configuration of the tmfifo_net0
interface, refer to step "Assign a static IP to tmfifo_net0" under
"Updating Repo Package on Host Side".

file:///networking/display/bluefieldbsp480/RShim+Troubleshooting+and+How-Tos
file:///networking/display/bluefieldbsp480/RShim+Troubleshooting+and+How-Tos
file:///networking/display/bluefieldbsp480/Installing+Repo+Package+on+Host+Side

Management 62

Logging in from the host to the BlueField OS is now possible over the virtual Ethernet. For
example:

SoC Management Interface Driver Support for Multiple
BlueFields

Multiple BlueField device s may connect to the same host machine. When the SoC
management interface driver is loaded and operating correctly, each BlueField device is
expected to have its own device directory on sysfs, /dev/rshim<N>, and a virtual Ethernet
device, tmfifo_net<N>.

The following are some guidelines on how to set up the SoC management virtual
Ethernet interfaces properly if multiple BlueField device s are installed in the host system.

There are two methods to manage multiple tmfifo_net interfaces on a Linux platform:

Using a bridge, with all tmfifo_net<N> interfaces on the bridge – the bridge device
bares a single IP address on the host while each BlueField has unique IP in the same
subnet as the bridge

Directly over the individual tmfifo_net<N> – each interface has a unique subnet IP and
each BlueField has a corresponding IP per subnet

Whichever method is selected, the host-side tmfifo_net interfaces should have different
MAC addresses, which can be:

ssh ubuntu@192.168.100.2

Note

<N> correlates to the number of BlueField devices used where the SoC
management interfaces of the first BlueField is 0, incrementing by 1
for each added device.

Management 63

Configured using ifconfig. For example:

Or saved in configuration via the /udev/rules as can be seen later in this section.

In addition, each Arm-side tmfifo_net interface must have a unique MAC and IP address
configuration, as BlueField OS comes uniformly pre-configured with a generic MAC, and
192.168.100.2. The latter must be configured in each BlueField manually or by BlueField
customization scripts during BlueField OS installation.

Multi-board Management Example

This example deals with two BlueField devices installed on the same server (the process
is similar for more devices). The example assumes that the RShim package has been
installed on the host server.

Configuring Management Interface on Host

1. Create a bf_tmfifo interface under /etc/sysconfig/network-scripts. Run:

2. Inside ifcfg-br_tmfifo, insert the following content:

$ ifconfig tmfifo_net0 192.168.100.1/24 hw ether 02:02:02:02:02:02

Note

This example is relevant for CentOS/RHEL operating systems only.

vim /etc/sysconfig/network-scripts/ifcfg-br_tmfifo

DEVICE="br_tmfifo"
BOOTPROTO="static"
IPADDR="192.168.100.1"
NETMASK="255.255.255.0"

file:///networking/display/bluefieldbsp480/Customizing+BlueField+Software+Deployment+Using+bf.cfg

Management 64

3. Create a configuration file for the first BlueField, tmfifo_net0. Run:

4. Inside ifcfg-tmfifo_net0, insert the following content:

5. Create a configuration file for the second BlueField, tmfifo_net1. Run:

6. Create the rules for the tmfifo_net interfaces. Run:

7. Restart the network for the changes to take effect. Run:

ONBOOT="yes"
TYPE="Bridge"

vim /etc/sysconfig/network-scripts/ifcfg-tmfifo_net0

DEVICE=tmfifo_net0
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br_tmfifo

DEVICE=tmfifo_net1
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br_tmfifo

vim /etc/udev/rules.d/91-tmfifo_net.rules

/etc/init.d/network restart
Restarting network (via systemctl): [OK]

Management 65

Configuring BlueField Side

BlueField devices arrive with the following factory default configurations for tmfifo_net0.

Address Value

MAC 00:1a:ca:ff:ff:01

IP 192.168.100.2

Therefore, if you are working with more than one BlueField, you must change the default
MAC and IP addresses.

Updating RShim Network MAC Address

1. Use a Linux console application (e.g. screen or minicom) to log into each BlueField.
For example:

2. Create a configuration file for tmfifo_net0 MAC address. Run:

3. Inside bf.cfg, insert the new MAC:

Note

This procedure is relevant for Ubuntu/Debian (sudo needed), and
CentOS BFBs. The procedure only affects the tmfifo_net0 on the Arm
side.

sudo screen /dev/rshim<0|1>/console 115200

sudo vi /etc/bf.cfg

Management 66

4. Apply the new MAC address. Run:

5. Repeat this procedure for the second BlueField (using a different MAC address).

Updating IP Address

For Ubuntu:

1. Access the file 50-cloud-init.yaml and modify the tmfifo_net0 IP address:

NET_RSHIM_MAC=00:1a:ca:ff:ff:03

sudo bfcfg

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the IP address before you do that to
avoid unnecessary reboots.

Note

For comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

sudo vim /etc/netplan/50-cloud-init.yaml

file:///networking/display/bluefieldbsp480/Customizing+BlueField+Software+Deployment+Using+bf.cfg#src-3094733900_CustomizingBlueFieldSoftwareDeploymentUsingbf.cfg-bf.cfgParameters

Management 67

2. Reboot the Arm. Run:

3. Repeat this procedure for the second BlueField (using a different IP address).

For CentOS:

1. Access the file ifcfg-tmfifo_net0. Run:

2. Modify the value for IPADDR:

3. Reboot the Arm. Run:

 tmfifo_net0:
 addresses:
 - 192.168.100.2/30 ===>>> 192.168.100.3/30

sudo reboot

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the MAC address before you do that
to avoid unnecessary reboots.

vim /etc/sysconfig/network-scripts/ifcfg-tmfifo_net0

IPADDR=192.168.100.3

reboot

Management 68

Or perform netplan apply.

4. Repeat this procedure for the second BlueField (using a different IP address).

Permanently Changing Arm-side MAC Address

The default MAC address is 00:1a:ca:ff:ff:01. It can be changed using ifconfig or by updating
the UEFI variable as follows:

1. Log into Linux from the Arm console.

2. Run:

3. If not mounted, run:

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the MAC address before you do that
to avoid unnecessary reboots.

Note

It is assumed that the commands in this section are executed with
root (or sudo) permission.

$ "ls /sys/firmware/efi/efivars".

Management 69

The printf command sets the MAC address to 00:1a:ca:ff:ff:03 (the last six bytes of the printf

value). Either reboot the device or reload the tmfifo driver for the change to take effect.

The MAC address can also be updated from the server host side while the Arm-side Linux
is running:

1. Enable the configuration. Run:

2. Display the current setting. Run:

3. Modify the MAC address. Run:

$ mount -t efivarfs none /sys/firmware/efi/efivars
$ chattr -i /sys/firmware/efi/efivars/RshimMacAddr-8be4df61-93ca-11d2-aa0d-00e098032b8c
$ printf "\x07\x00\x00\x00\x00\x1a\xca\xff\xff\x03" > \
 /sys/firmware/efi/efivars/RshimMacAddr-8be4df61-93ca-11d2-aa0d-00e098032b8c

echo "DISPLAY_LEVEL 1" > /dev/rshim0/misc

cat /dev/rshim0/misc
DISPLAY_LEVEL 1 (0:basic, 1:advanced, 2:log)
BOOT_MODE 1 (0:rshim, 1:emmc, 2:emmc-boot-swap)
BOOT_TIMEOUT 300 (seconds)
DROP_MODE 0 (0:normal, 1:drop)
SW_RESET 0 (1: reset)
DEV_NAME pcie-0000:04:00.2
DEV_INFO BlueField-2(Rev 1)
PEER_MAC 00:1a:ca:ff:ff:01 (rw)
PXE_ID 0x00000000 (rw)
VLAN_ID 0 0 (rw)

$ echo "PEER_MAC xx:xx:xx:xx:xx:xx" > /dev/rshim0/misc

Management 70

SoC Management Interface Features and Functionality

Function Command Comments

1 Push BFB
Using bf.cfg in the command is optional. For more
details about bf.cfg, refer to "Customizing BlueField
Software Deployment Using bf.cfg".

2
Open
console

The N index depends on the number of BlueField
devices in your setup.
Use Linux's screen or minicom console applications
to access the BlueField console.

3

Configure a
virtual
network
interface

The N index depends on the number of BlueField
devices in your setup. Refer to section "SoC
Management Interface Driver Support for Multiple
BlueFields" for more information.
The default IP address for the BlueField is
192.168.100.2/30.
The IP used in the command (192.168.100.1/30) is
for example purposes only.

Info

For more information and an example of the script that covers the
installation and configuration of multiple BlueField devices, refer to
section "Installing Full DOCA Image on Multiple BlueField Platforms"
of the NVIDIA DOCA Installation Guide.

bfb-install –r
rshim<N> -b
<bfb> [-c bf.cfg]

screen
/dev/rshim<N>/
console 115200
minicom -D
/dev/rshim<N>/
console

ip addr add dev
tmfifo_net<N>
192.168.100.1/3
0

file:///networking/display/bluefieldbsp480/Customizing+BlueField+Software+Deployment+Using+bf.cfg
file:///networking/display/bluefieldbsp480/Customizing+BlueField+Software+Deployment+Using+bf.cfg
https://docs.nvidia.com/doca/sdk/nvidia+doca+installation+guide+for+linux/index.html#src-2654401500_id-.NVIDIADOCAInstallationGuideforLinuxv2.7.0-InstallingFullDOCAImageonMultipleDPUs

Management 71

Function Command Comments

4
Log into
the DPU

The N index depends on the number of DPUs in
your setup. Refer to section "SoC Management
Interface Driver Support for Multiple BlueFields" for
more information.

5
PXE boot
over RShim

N/A
Please refer to section "Deploying BlueField
Software Using BFB with PXE" for more information.

6
Issue Arm
software
reset

7
Expose log
messages

N/A
For more information, please refer to section
"Logging".

BlueField Configuration File

The bf.cfg file contains configuration that can be pushed to customize the installation of
the BFB.

See "Customizing BlueField Software Deployment Using bf.cfg" for more information.

RShim Ownership

The RShim interface may be owned by the BlueField BMC or the host (Windows or Linux).
In situations where users do not have access to the host, they would want to transfer
RShim ownership to the BMC.

Assuming that /dev/rshim0 is the BlueField requesting ownership over the RShim interface,
ownership may be transferred to the BlueField BMC by running the following command
from the BMC console:

ssh -6
user@fe80::21a
:caff:feff:ff01%t
mfifo_net<N>

echo
"SW_RESERT 1"
>
/dev/rshim<N>/
misc

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+PXE
file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+PXE
file:///networking/display/bluefieldbsp480/Customizing+BlueField+Software+Deployment+Using+bf.cfg

Management 72

To set ownership priority to the host or BMC, users may forcibly do so using either of the
following options:

The command line option -F or --force

Setting FORCE_MODE 1 in the configuration file rshim.conf

bf-bmc# echo "FORCE_CMD 1" > /dev/rshim0/misc

Tip

This method requires the RShim driver binary to be run with -F or --
force option, or have the FORCE_MODE set to 1 in rshim.conf. Otherwise,
/dev/rshim<N>/ would not be created if the driver is detached from
RShim.

Management 73

BlueField OOB Ethernet
Interface
The NVIDIA® BlueField® networking platform's (DPU or SuperNIC) OOB interface is a
gigabit Ethernet interface which provides TCP/IP network connectivity to the Arm cores.
This interface is named oob_net0 and is intended to be used for management traffic (e.g.,
file transfer protocols, SSH, etc). The Linux driver that controls this interface is named
mlxbf_gige.ko, and is automatically loaded upon boot. This interface can be configured and
monitored using of standard tools (e.g., ifconfig, ethtool, etc). The OOB interface is
subject to the following design limitations:

Only supports 1Gb/s full-duplex setting

Only supports GMII access to external PHY device

Supports maximum packet size of 2KB (i.e., no support for jumbo frames)

The OOB interface can also be used for PXE boot. This OOB port is not a path for the
BlueField boot stream. Any attempt to push a BFB to this port would not work. Refer to
"How to use the UEFI boot menu" for more information about UEFI operations related to
the OOB interface.

OOB Interface MAC Address

The MAC address to be used for the OOB port is burned into Arm-accessible UPVS
EEPROM during the manufacturing process. This EEPROM device is different from the SPI
Flash storage device used for the NIC firmware and associated NIC MACs/GUIDs. The
value of the OOB MAC address is specific to each platform and is visible on the board-
level sticker.

Warning

file:///networking/display/bluefieldbsp480/Installation+Troubleshooting+and+How-Tos#src-3094734054_InstallationTroubleshootingandHowTos-HowtousetheUEFIbootmenu

Management 74

If there is a need to re-configure this MAC for any reason, follow these steps to configure
a UEFI variable to hold new value for OOB MAC.:

1. Log into Linux from the Arm console.

2. Issue the command ls /sys/firmware/efi/efivars to show whether efivarfs is mounted. If it
is not mounted, run:

3. Run:

4. Set the MAC address to 00:1a:ca:ff:ff:03 (the last six bytes of the printf value).

5. Reboot the device for the change to take effect.

It is not recommended to reconfigure the MAC address from the MAC
configured during manufacturing.

Note

The creation of an OOB MAC address UEFI variable will override the
OOB MAC address defined in EEPROM, but the change can be
reverted.

mount -t efivarfs none /sys/firmware/efi/efivars

chattr -i /sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-00e098032b8c

printf "\x07\x00\x00\x00\x00\x1a\xca\xff\xff\x03" > /sys/firmware/efi/efivars/OobMacAddr-
8be4df61-93ca-11d2-aa0d-00e098032b8c

Management 75

To revert this change and go back to using the MAC as programmed during
manufacturing, follow these steps:

1. Log into UEFI from the Arm console, go to "Boot Manager" then "EFI Internal Shell".

2. Delete the OOB MAC UEFI variable. Run:

3. Reboot the device by running "reset" from UEFI.

4. Log into Linux from the Arm console.

5. Issue the command ls /sys/firmware/efi/efivars to show whether efivarfs is mounted. If it
is not mounted, run:

6. Run:

7. Reconfigure the original MAC address burned by the manufacturer in the format
aa\bb\cc\dd\ee\ff. Run:

8. Reboot the device for the change to take effect.

Supported ethtool Options for OOB Interface

dmpstore -d OobMacAddr

mount -t efivarfs none /sys/firmware/efi/efivars

chattr -i /sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-00e098032b8c

printf "\x07\x00\x00\x00\x00\<original-MAC-address>" > /sys/firmware/efi/efivars/OobMacAddr-
8be4df61-93ca-11d2-aa0d-00e098032b8c

Management 76

The Linux driver for the OOB port supports the handling of some basic ethtool requests:
get driver info, get/set ring parameters, get registers, and get statistics.

To use the ethtool options available, use the following format:

Where <option> may be:

<no-argument> – display interface link information

-i – display driver general information

-S – display driver statistics

-d – dump driver register set

-g – display driver ring information

-G – configure driver ring(s)

-k – display driver offload information

-a – query the specified Ethernet device for pause parameter information

-r – restart auto-negotiation on the specified Ethernet device if auto-negotiation is
enabled

For example:

$ ethtool [<option>] <interface>

$ ethtool oob_net0
Settings for oob_net0:
 Supported ports: [TP]
 Supported link modes: 1000baseT/Full
 Supported pause frame use: Symmetric
 Supports auto-negotiation: Yes
 Supported FEC modes: Not reported
 Advertised link modes: 1000baseT/Full
 Advertised pause frame use: Symmetric
 Advertised auto-negotiation: Yes

Management 77

 Advertised FEC modes: Not reported
 Link partner advertised link modes: 1000baseT/Full
 Link partner advertised pause frame use: Symmetric
 Link partner advertised auto-negotiation: Yes
 Link partner advertised FEC modes: Not reported
 Speed: 1000Mb/s
 Duplex: Full
 Port: Twisted Pair
 PHYAD: 3
 Transceiver: internal
 Auto-negotiation: on
 MDI-X: Unknown
 Link detected: yes

$ ethtool -i oob_net0
driver: mlxbf_gige
version:
firmware-version:
expansion-rom-version:
bus-info: MLNXBF17:00
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: yes
supports-priv-flags: no

Display statistics specific to BlueField-2 design (i.e. statistics that are not shown in the output of
"ifconfig oob0_net")
$ ethtool -S oob_net0
NIC statistics:
 hw_access_errors: 0
 tx_invalid_checksums: 0
 tx_small_frames: 1
 tx_index_errors: 0
 sw_config_errors: 0
 sw_access_errors: 0
 rx_truncate_errors: 0
 rx_mac_errors: 0
 rx_din_dropped_pkts: 0
 tx_fifo_full: 0
 rx_filter_passed_pkts: 5549

Management 78

IP Address Configuration for OOB Interface

The files that control IP interface configuration are specific to the Linux distribution. The
udev rules file (/etc/udev/rules.d/92-oob_net.rules) that renames the OOB interface to oob_net0

and is the same for Yocto, CentOS, and Ubuntu:

The files that control IP interface configuration are slightly different for CentOS and
Ubuntu:

CentOS configuration of IP interface:

Configuration file for oob_net0: /etc/sysconfig/network-scripts/ifcfg-oob_net0

For example, use the following to enable DHCP:

For example, to configure static IP use the following:

 rx_filter_discard_pkts: 4

SUBSYSTEM=="net", ACTION=="add", DEVPATH=="/devices/platform/MLNXBF17:00/net/eth[0-9]",
NAME="oob_net0"

NAME="oob_net0"
DEVICE="oob_net0"
NM_CONTROLLED="yes"
PEERDNS="yes"
ONBOOT="yes"
BOOTPROTO="dhcp"
TYPE=Ethernet

NAME="oob_net0"
DEVICE="oob_net0"
IPV6INIT="no"
NM_CONTROLLED="no"
PEERDNS="yes"
ONBOOT="yes"

Management 79

For Ubuntu configuration of IP interface, please refer to section "Default Network
Interface Configuration".

Copyright 2024. PDF Generated on 08/20/2024

BOOTPROTO="static"
IPADDR="192.168.200.2"
PREFIX=30
GATEWAY="192.168.200.1"
DNS1="192.168.200.1"
TYPE=Ethernet

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-NetworkInterfaceConfiguration
file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-NetworkInterfaceConfiguration

	Performance Monitoring Counters
	Intelligent Platform Management Interface
	Redfish
	Logging
	SoC Management Interface
	BlueField OOB Ethernet Interface

