
Scalable Functions

Table of contents

Scalable Function Configuration

Device Configuration

Mandatory Kernel Configuration on Host

Software Control and Commands

Scalable Functions 1

Table of contents

Scalable Function Configuration

Device Configuration

Mandatory Kernel Configuration on Host

Software Control and Commands

Scalable Functions 2

A scalable function (SF) is a lightweight function that has a parent PCIe function on which
it is deployed. An mlx5 SF has its own function capabilities and its own resources. This
means that an SF has its own dedicated queues (txq, rxq, cq, eq) which are neither shared
nor stolen from the parent PCIe function.

No special support is needed from system BIOS to use SFs. SFs co-exist with PCIe SR-IOV
virtual functions. SFs do not require enabling PCIe SR-IOV.

Scalable Function Configuration

The following procedure offers a guide on using scalable functions with upstream Linux
kernel.

Device Configuration

1. Make sure your firmware version supports SFs (20.30.1004 and above).

2. Enable SF support in device. Run:

Scalable Functions 3

3. Perform BlueField system reboot for the mlxconfig settings to take effect.

Mandatory Kernel Configuration on Host

Support for Linux kernel mlx5 SFs must be enabled as it is disabled by default.

The following two Kconfig flags must be enabled.

MLX5_ESWITCH

MLX5_SF

Software Control and Commands

SFs use a 4-step process as follows:

Create

Configure

Deploy

Use

SFs are managed using mlxdevm tool. It is located under directory
/opt/mellanox/iproute2/sbin/mlxdevm.

1. Display the physical (i.e. uplink) port of the PF. Run:

$ mlxconfig -d 0000:03:00.0 s PF_BAR2_ENABLE=0 PER_PF_NUM_SF=1 PF_TOTAL_SF=236
PF_SF_BAR_SIZE=10

$ devlink port show

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-3032251690_id-.NVIDIABlueFieldResetandRebootProceduresv2.8.0-BlueFieldSystemRebootBlueFieldSystemReboot

Scalable Functions 4

2. Add an SF. Run:

When an SF is added on the external controller (e.g., BlueField) users must supply
the controller number. In a single host BlueField case, there is only one controller
starting with controller number 1.

Example of adding an SF for PF0 of external controller 1:

pci/0000:03:00.0/65535: type eth netdev p0 flavour physical port 0 splittable false

$ mlxdevm port add pci/0000:03:00.0 flavour pcisf pfnum 0 sfnum 88
pci/0000:03:00.0/229409: type eth netdev eth0 flavour pcisf controller 0 pfnum 0 sfnum 88
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached trust off

Note

An added SF is still not usable for the end-user application. It
can only be used after configuration and activation.

Note

SF number ≥1 000 is reserved for the virtio-net controller.

$ mlxdevm port add pci/0000:03:00.0 flavour pcisf pfnum 0 sfnum 88 controller 1
pci/0000:03:00.0/32768: type eth netdev eth6 flavour pcisf controller 1 pfnum 0 sfnum 88
splittable false
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached

file:///networking/display/bluefieldbsp480/Virtio-net+Emulated+Devices#src-3094734034_VirtionetEmulatedDevices-VirtIO-netController

Scalable Functions 5

3. Show the newly added devlink port by its port index or its representor device.

Or:

4. Set the MAC address of the SF. Run:

5. Set SF as trusted (optional). Run:

$ mlxdevm port show en3f0pf0sf88
pci/0000:03:00.0/229409: type eth netdev en3f0pf0sf88 flavour pcisf controller 0 pfnum 0 sfnum
88
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached trust off

$ mlxdevm port show pci/0000:03:00.0/229409
pci/0000:03:00.0/229409: type eth netdev en3f0pf0sf88 flavour pcisf controller 0 pfnum 0 sfnum
88
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached trust off

$ mlxdevm port function set pci/0000:03:00.0/229409 hw_addr 00:00:00:00:88:88

$ mlxdevm port function set pci/0000:03:00.0/229409 trust on
pci/0000:03:00.0/229409: type eth netdev en3f0pf0sf88 flavour pcisf controller 0 pfnum 0 sfnum
88
 function:
 hw_addr 00:00:00:00:88:88 state inactive opstate detached trust on

Note

Scalable Functions 6

6. Configure OVS. Run:

7. Activate the SF. Run:

Activating the SF results in creating an auxiliary device and initiating driver load
sequence for netdevice, RDMA, and VDPA devices. Once the operational state is
marked as attached, a driver is attached to this SF and device loading begins.

8. By default, SF is attached to the configuration driver mlx5_core.sf_cfg. Users must
unbind an SF from the configuration and bind it to the mlx5_core.sf driver to make use
of it. Run:

A trusted function has additional privileges like the ability to
update steering database.

$ systemctl start openvswitch
$ ovs-vsctl add-br network1
$ ovs-vsctl add-port network1 ens3f0npf0sf88
$ ip link set dev ens3f0npf0sf88 up

$ mlxdevm port function set pci/0000:03:00.0/229409 state active

Note

An application interested in using the SF netdevice and rdma
device must monitor the RDMA and netdevices either through
udev monitor or poll the sysfs hierarchy of the SF's auxiliary
device.

 $ echo mlx5_core.sf.4 > /sys/bus/auxiliary/devices/mlx5_core.sf.4/driver/unbind

Scalable Functions 7

9. View the new state of the SF. Run:

10. View the auxiliary device of the SF. Run:

There can be hundreds of auxiliary SF devices on the auxiliary bus. Each SF's
auxiliary device contains a unique sfnum and PCI information.

11. View the parent PCI device of the SF. Run:

 $ echo mlx5_core.sf.4 > /sys/bus/auxiliary/drivers/mlx5_core.sf/bind

$ mlxdevm port show en3f0pf0sf88 -jp
{
 "port": {
 "pci/0000:03:00.0/229409": {
 "type": "eth",
 "netdev": "en3f0pf0sf88",
 "flavour": "pcisf",
 "controller": 0,
 "pfnum": 0,
 "sfnum": 88,
 "function": {
 "hw_addr": "00:00:00:00:88:88",
 "state": "active",
 "opstate": "detached",
 "trust": "on"
 }
 }
 }
 }

$ cat /sys/bus/auxiliary/devices/mlx5_core.sf.4/sfnum
88

$ readlink /sys/bus/auxiliary/devices/mlx5_core.sf.1

Scalable Functions 8

12. View the devlink instance of the SF device. Run:

13. View the port and netdevice associated with the SF. Run:

14. View the RDMA device for the SF. Run:

15. Deactivate SF. Run:

Deactivating the SF triggers driver unload in the host system. Once SF is deactivated,
its operational state changes to "detached". An orchestration system should poll for
the operational state to be changed to "detached" before deleting the SF. This
ensures a graceful hot-unplug.

16. Delete SF. Run:

../../../devices/pci0000:00/0000:00:00.0/0000:01:00.0/0000:02:00.0/0000:03:00.0/mlx5_core.sf.1

$ devlink dev show
$ devlink dev show auxiliary/mlx5_core.sf.4

$ devlink port show auxiliary/mlx5_core.sf.4/1
auxiliary/mlx5_core.sf.4/1: type eth netdev enp3s0f0s88 flavour virtual port 0 splittable false

$ rdma dev show
$ ls /sys/bus/auxiliary/devices/mlx5_core.sf.4/infiniband/

$ mlxdevm port function set pci/0000:03:00.0/229409 state inactive

$ mlxdevm port del pci/0000:03:00.0/229409

Scalable Functions 9

Finally, once the state is "inactive" and the operational state is "detached" the user
can safely delete the SF. For faster provisioning, a user can reconfigure and active
the SF again without deletion.

© Copyright 2024, NVIDIA. PDF Generated on 08/20/2024

	Scalable Function Configuration
	Device Configuration
	Mandatory Kernel Configuration on Host
	Software Control and Commands

