
Secure Boot



Table of contents

UEFI Secure Boot 4

Updating Platform Firmware 26

Secure Boot 1

Table of contents

UEFI Secure Boot

Updating Platform Firmware



Secure Boot 2

These pages provide guidelines on how to operate secured NVIDIA® BlueField® DPUs.
They provide UEFI secure boot references for the UEFI portion of the secure boot
process.

Secure boot is a process which verifies each element in the boot process prior to
execution, and halts or enters a special state if a verification step fails at any point during
the boot. It is based on an unmodifiable ROM code which acts as the root-of-trust (RoT)
and uses an off-chip public key, to authenticate the initial code which is loaded from an
external non-volatile storage. The off-chip public key integrity is verified by the ROM code
against an on-chip public key hash value stored in E-FUSEs. Then the authenticated code
and each element in the boot process cryptographically verify the next element prior to
passing execution to it. This extends the chain-of-trust (CoT) by verifying elements that
have their RoT in hardware. In addition, no external intervention in the authentication
process is permitted to prevent unauthorized software and firmware from being loaded.
There should be no way to interrupt or bypass the RoT with runtime changes.

Supported BlueField DPUs

Note

This section provides directions for illustration purposes, it does not
intend to enforce or mandate any procedure about managing keys
and/or production guidelines. Platform users are solely responsible
of implementing secure strategies and safe approaches to manage
their boot images and their associated keys and certificates.

Note

Security aspects such as key generation, key management, key
protection, and certificate generation are out of the scope of this
section.



Secure Boot 3

Secured BlueField devices have pre-installed software and firmware signed with NVIDIA
signing keys. The on-chip public key hash is programmed into E-FUSEs.

To verify whether the DPU in your possession supports secure boot, run the following
command:

“GA SECURED” indicates that the BlueField device has secure boot enabled.

To verify whether the BlueField Arm has secure boot enabled, run the following
command from the BlueField console:

# sudo mst start
# sudo flint -d /dev/mst/mt41686_pciconf0 q full | grep "Life cycle"
Life cycle:            GA SECURED

ubuntu@localhost:~$ sudo mlxbf-bootctl | grep lifecycle
lifecycle state: GA Secured



Secure Boot 4

UEFI Secure Boot

UEFI Secure Boot is a feature of the Unified Extensible Firmware Interface (UEFI)
specification. The feature defines a new interface between the operating system and
firmware/BIOS.

When enabled and fully configured on the DPU, UEFI Secure Boot helps the Arm=based
software running on top of UEFI resist attacks and infection from malware. UEFI Secure
Boot detects tampering with boot loaders, key operating system files, and unauthorized
option ROMs by validating their digital signatures. Malicious actions are blocked from
running before they can attack or infect the system.

UEFI Secure Boot works as a security gate. Code signed with valid keys (whose public
key/certificates exist in the DPU) gets through the gate and executes while blocking and
rejecting code that has either a bad or no signature.

The DPU enables UEFI secure boot with the Ubuntu OS included in the platform's
software.

Verifying UEFI Secure Boot on DPU

To verify whether UEFI secure boot is enabled, run the following command from the
BlueField console:

Note

This feature is available in the NVIDIA® BlueField®-2 and above.

ubuntu@localhost:~$ sudo mokutil --sb-state
SecureBoot enabled



Secure Boot 5

As UEFI secure boot is not specific to BlueField platforms, please refer to the Canonical
documentation online for further information on UEFI secure boot:

https://wiki.ubuntu.com/UEFI/SecureBoot

https://wiki.ubuntu.com/UEFI/SecureBoot/Signing

Main Use Cases for UEFI Secure Boot

UEFI secure boot can be used in 2 main cases for the DPU:

Method Pros Cons

Using the default enabled
UEFI secure boot (with
Ubuntu OS or any Microsoft-
signed boot loader)
See "Using Default Enabled
UEFI Secure Boot" for more.

Relatively easy

Limited flexibility; only
allows executing NVIDIA
binary files

Dependency on
Microsoft or NVIDIA as
signing entities

Enabling UEFI Secure Boot
with a custom OS (other than
the default Ubuntu)
See "Enabling UEFI Secure
Boot with Custom OS" for
more.

Autonomy, as you control
your own keys (no
dependency on Microsoft or
NVIDIA as signing entities)

You must create your
own capsule files to
enroll and customize
UEFI secure boot

Signing binaries is complex as you must create X.509 certificates and enroll them in UEFI
or shim which requires a fair amount of prior knowledge of how secure boot works. For
that reason, BlueField secured platforms are shipped with all the needed certificates and
signed binaries (which allows working seamlessly with the first use case in the table
above).

NVIDIA strongly recommends utilizing UEFI secure boot in any case due the increased
security it enables.

Verifying UEFI Secure Boot on DPU

To verify whether UEFI secure boot is enabled, run the following command from the
BlueField console:

https://wiki.ubuntu.com/UEFI/SecureBoot
https://wiki.ubuntu.com/UEFI/SecureBoot/Signing


Secure Boot 6

As UEFI secure boot is not specific to BlueField platforms, refer to the Canonical
documentation online for further information on UEFI secure boot to familiarize yourself
with the UEFI secure boot concept:

https://wiki.ubuntu.com/UEFI/SecureBoot

https://wiki.ubuntu.com/UEFI/SecureBoot/Signing

Using Default Enabled UEFI Secure Boot

As part of the default settings of the DPU, UEFI secure boot is enabled and requires no
special configuration from the user to use it with the bundled Ubuntu OS.

Disabling UEFI Secure Boot

UEFI secure boot can be disabled per device from the UEFI menu as part of the DPU boot
process which requires access to the BlueField console.

To disable UEFI secure boot, reboot the platform and stop at the UEFI menu.

From the UEFI menu screen, select "Device Manager" then "Secure Boot Configuration". If
"Attempt Secure Boot" is checked, then uncheck it and reboot.

ubuntu@localhost:~$ sudo mokutil --sb-state
SecureBoot enabled

Note

On BlueField devices with UEFI secure boot enabled, the UEFI menu is
password-protected to prevent unwanted changes to the UEFI
settings. The default password is bluefield .

https://wiki.ubuntu.com/UEFI/SecureBoot
https://wiki.ubuntu.com/UEFI/SecureBoot/Signing


Secure Boot 7

It is also possible to disable UEFI secure boot using Redfish API for BlueField devices with
an on-board BMC:

Warning

Disabling secure boot permanently is not recommended in
production environments.

curl -k -u root:<password> -H "Content-Type: application/octet-stream" -X GET https://<BF-BMC-
IP>/redfish/v1/Systems/Bluefield/SecureBoot
{
  "@odata.id": "/redfish/v1/Systems/Bluefield/SecureBoot",
  "@odata.type": "#SecureBoot.v1_1_0.SecureBoot",
  "Description": "The UEFI Secure Boot associated with this system.",
  "Id": "SecureBoot",
  "Name": "UEFI Secure Boot",
  "SecureBootCurrentBoot": "Enabled",
  "SecureBootEnable": true,
  "SecureBootMode": "SetupMode"



Secure Boot 8

After running this command, the BlueField Arm OS must be rebooted twice. The first
reboot is for the UEFI redfish client to read the request from the BMC and apply it; the
second reboot is for the setting to take effect.

From the BlueField BMC using Redfish:

From RShim:

From the BlueField Arm OS:

Existing DPU Certificates

As part of having UEFI secure boot enabled, the UEFI databases are populated with
NVIDIA self-signed X.509 certificates. The Microsoft certificate is also installed into the
UEFI database to ensure that the Ubuntu distribution can boot while UEFI secure boot is
enabled (and generally any suitable OS loader signed by Microsoft).

The pre-installed certificate files are:

} 
curl -k -u root:<BF-BMC-PASSWORD> -X PATCH https://<BF-BMC-
IP>/redfish/v1/Systems/Bluefield/SecureBoot -H 'Content-Type: application/json' -d 
'{"SecureBootEnable": false}'

curl -k -u root:<BF-BMC-PASSWORD> -X POST https://<BF-BMC-
IP>/redfish/v1/Systems/Bluefield/Actions/ComputerSystem.Reset -H 'Content-Type: 
application/json' -d '{"ResetType":"ForceRestart"}'

echo 'SW_RESET 1' > /dev/rshim0/misc

reboot



Secure Boot 9

NVIDIA PK key certificate

NVIDIA KEK key certificate

NVIDIA db certificate

Microsoft db certificate

Enabling UEFI Secure Boot with Custom OS

This section lists the required steps to enable using UEFI secure boot with a custom OS
(other than the default Ubuntu).

Options for Enabling UEFI Secure Boot

There are 3 main ways for signing custom binaries and running them on the DPU with
UEFI secure boot enabled:

# Method Pros Cons

1

Sign OS loader (e.g.,
Shim) by Microsoft.
See "Signing OS
Loader by Microsoft"
for more.

Does not require
access to the
BlueField console

Dependency on Microsoft as signing
entity

2 Shim – enroll a
machine owner key
(MOK) certificate in the

Easy Limited flexibility: Only allows
executing a custom kernel or
load a custom module. It does

Note

All processes described in the following subsections require some
level of testing and knowledge in how operating system boot flows
and bootloaders work.



Secure Boot 10

# Method Pros Cons

shim and use the
private part to sign
your files.
See "Enrolling MOK
Key" for more.

not allow executing UEFI
applications, UEFI drivers, or OS
loaders.
Dependency on Microsoft or
NVIDIA as signing entities
Not scalable: Requires access to
BlueField console per device (i.e.,
UART console required)

3

UEFI – enroll your own
key certificate in the
UEFI database and use
the private part to sign
your files.
See "Enrolling Your
Own Key to UEFI DB"
for more.

Autonomy, as you
control your keys
(not dependent on
Microsoft or NVIDIA
as signing entities)

Requires adding your key
certificate to database manually
Requires access to BlueField
console per device (i.e., UART
console required)
Not scalable: Requires access to
BlueField console per device (i.e.,
UART console required)

For generation of custom keys and certificates, see section "Generation of Custom Keys
and Certificates".

Signing binaries for UEFI secure boot is complex as you must create X.509 certificates and
enroll them in UEFI or shim which requires a fair amount of prior knowledge of how
secure boot works. See the processes used to enroll keys and to sign UEFI binaries in the
rest of this document.

Secure booting binaries for executing a UEFI application, UEFI driver, OS loader, custom
kernel, or loading a custom module depends on the certificates and public keys available
in the UEFI database and the shim's MOK list.

Signing OS Loader by Microsoft

Custom Kernel Images

One option to boot custom binaries on a DPU is to sign the OS loader (shim) by Microsoft
following the Microsoft guidelines which are updated and maintained by Microsoft. The

https://techcommunity.microsoft.com/t5/hardware-dev-center/updated-uefi-signing-requirements/ba-p/1062916


Secure Boot 11

certificates/keys must be embedded within the shim OS loader so it may boot, in addition
the custom Kernel binary image and the custom Kernel modules must be signed
accordingly.

NVIDIA Kernel Modules

In this option, the NVIDIA db certificates should remain enrolled. This is due to the out-of-
tree kernel modules and drivers (e.g., OFED) provided by NVIDIA which are signed by
NVIDIA and authenticated by this NVIDIA certificate in the UEFI.

Enrolling MOK Key

To boot a custom kernel or load a custom module, you must create a MOK key pair. The
newly created MOK key must be an RSA 2048-bit. The private part is used for signing
operations and must be kept safe. The public X.509 key certificate in DER format must be
enrolled within the shim MOK list.

Once the public key certificate is enrolled within the shim, the MOK key is accepted as a
valid signing key.

Note that kernel module signing requires a special configuration. For example, the
extendedKeyUsage field must show an OID of 1.3.6.1.4.1.2312.16.1.2. That OID informs shim
that this is meant to be a module signing certificate.

The following is an example of OpenSSL configuration file for illustration purposes:

Note

Signing binaries with Microsoft is a process the involves lead time
which must be taken into consideration. This course of action
requires testing to making sure the complied BFB image including the
signed Microsoft bootloader works properly.



Secure Boot 12

To enroll the MOK key certificate, download the associated key certificate to the BlueField
file system and run the following command:

You must follow the prompts to enter a password to be used to make sure you really do
want to enroll the key certificate.

Note that the key certificate is not enrolled yet. It will be enrolled by the shim upon the
next reboot. To list the imported certificate file to enroll:

HOME                    = .
RANDFILE                = $ENV::HOME/.rnd 
[ req ]
distinguished_name      = req_distinguished_name
x509_extensions         = v3
string_mask             = utf8only
prompt                  = no
 
[ req_distinguished_name ]
countryName             = US
stateOrProvinceName     = Westborough
localityName            = Massachusetts
0.organizationName      = CampanyX
commonName              = Secure Boot Signing
emailAddress            = example@example.com
 
[ v3 ]
subjectKeyIdentifier    = hash
authorityKeyIdentifier  = keyid:always,issuer
basicConstraints        = critical,CA:FALSE
extendedKeyUsage        = codeSigning,1.3.6.1.4.1.311.10.3.6,1.3.6.1.4.1.2312.16.1.2
nsComment               = "OpenSSL Generated Certificate"

ubuntu@localhost:~$ sudo mokutil --import mok.der
input password: 
input password again: 

ubuntu@localhost:~$ sudo mokutil --list-new 



Secure Boot 13

A reboot must be performed.

Just before loading GRUB, shim displays a blue screen which is actually another piece of
the shim project called "MokManager". You may ignore the blue screen showing the error
message. Press "OK" to enter the "Shim UEFI key management" screen.

Select "Enroll MOK" and follow the menus to finish the enrolling process.



Secure Boot 14

You may look at the properties of the key you are adding to make sure it is indeed correct
using "View key". MokManager will ask for the same password you typed in earlier when
running mokutil before reboot. MokManager will save the key and you will need to
reboot again.

To list the enrolled certificate files, run the following command:

Generation of Custom Keys and Certificates

To boot binaries not signed with the existing public keys and certificates in the UEFI
database (like the Microsoft certificate and key described in "Signing OS Loader by
Microsoft"), create an X.509 certificate (which includes the public key part of the public–
private key pair) that can be imported either directly though the UEFI or, more easily, via
shim.

Creating a certificate and public key for use in the UEFI secure boot is relatively simple.
OpenSSL can do it by running the command req.

ubuntu@localhost:~$ sudo mokutil --list-enrolled

https://confluence.nvidia.com/display/BlueFieldUEFISecBootUGDEV/Signing+OS+Loader+by+Microsoft
https://confluence.nvidia.com/display/BlueFieldUEFISecBootUGDEV/Signing+OS+Loader+by+Microsoft


Secure Boot 15

For illustration purposes only, this example shows how to create a 2048-bit RSA MOK key
and its associated certificate file in DER format:

An OpenSSL configuration file may be used for key generation. It may be specified using --
config path/to/openssl.cnf.

The following sections refer to the db private key as key.priv and its DER certificate as
cert.der. Similarly, the MOK private key is referred to as mok.priv and its DER certificate as
mok.der.

Enrolling Your Own Key to UEFI DB

Some users may need to generate their own keys. For convenience, the processes used
to enroll keys into UEFI db as well as to sign UEFI binaries are provided in this document.

To execute your binaries while UEFI secure boot is enabled, you need your own pair of
private and public key certificates. The supported keys are RSA 2048-bit and ECDSA 384-
bit.

The private part is used for signing operations and must be kept safe. The public part
X.509 key certificate in DER format must be enrolled within the UEFI db.

A prerequisite for the following steps is having UEFI secure boot temporarily disabled on
the DPU. After temporarily disabling UEFI secure boot per device as in section "Existing

$ openssl req -new -x509 -newkey rsa:2048 -nodes -days 36500 -outform DER -keyout "mok.priv" -out 
"mok.der"

Note

Detailed key and certificate generation are beyond the scope of this
document. Any organization should choose the proper way to
generate keys and certificates based on their security policy.



Secure Boot 16

DPU Certificates", it is possible to override all the key certificate files of the UEFI database.
This allows you to enroll your PK key certificate, KEK key certificate, and db certificates.

The following subsections detail how enrolling can be done.

Using a Capsule

To enroll your key certificates, create a capsule file by way of tools and scripts provided
along with the BlueField software.

To create the capsule files, execute the mlx-mkcap script. After BlueField software
installation, the script can be found under /lib/firmware/mellanox/boot/capsule/scripts. This
script generates a capsule file to supply the key certificates to UEFI and enables UEFI
secure boot:

Note that you may specify as many db certificates as needed using the --db-key flag. In this
example, only a single db certificate is specified.

To set the UEFI password, you may specify the --uefi-passwd flag. For example, to set the
UEFI password to bluefield, run:

The resulting capsule file, EnrollYourKeysCap, can be downloaded to the BlueField file system
to initiate the key enrollment process. From the the BlueField console execute the
following command then reboot:

On the next reboot, the capsule file is processed and the UEFI database is populated with
the keys extracted from the capsule file.

$ ./mlx-mkcap --pk-key pk.cer --kek-key kek.cer --db-key db.cer EnrollYourKeysCap

$ ./mlx-mkcap --pk-key pk.cer --kek-key kek.cer --db-key db.cer --uefi-passwd "bluefield" 
EnrollYourKeysCap

ubuntu@localhost:~$ bfrec --capsule EnrollYourKeysCap



Secure Boot 17

Enroll Certificate into UEFI DB

As mentioned, the public part of the X.509 key certificate in DER format must be enrolled
within the UEFI db. The X.509 DER certificate file must be installed into the EFI system
partition (ESP).

Download the certificate file to BlueField file system and place it into the ESP:

To enroll the certificate into the UEFI db, you must to reboot and log in again into the
UEFI menu. From the "UEFI menu", select "Device Manager" entry then "Secure Boot
Configuration". Navigate to "Secure Boot Mode" and select "Custom Mode" setup.

The secure boot "Custom Mode" setup feature allows a physically present user to modify
the UEFI database.

Note

Enrolling the PK key certificate file enables the UEFI secure boot.

ubuntu@localhost:~$ sudo cp path/to/cert.der /boot/efi/



Secure Boot 18

Once the platform is in "Custom Mode", a "Custom Secure Boot Options" menu entry
appears which allows you to manipulate the UEFI database keys and certificates.

To enroll your DER certificate file, select "DB Options" and enter the "Enroll Signature"
menu. Select "Enroll Signature Using File" and navigate within the EFI System Partition



Secure Boot 19

(ESP) to the db DER certificate file.

The ESP path is shown below as "system-boot, [VenHw(*)/HD(*)]".



Secure Boot 20

While enrolling the certificate file, you may enter a GUID along with the key certificate file.
The GUID is the platform's way of identifying the key. It serves no purpose other than for
you to tell which key is which when you delete it (it is not used at all in signature
verification).

This value must be in the following format: 11111111-2222-3333-4444-1234567890ab. If
nothing is entered, a GUID of 00000000-0000-0000-0000-000000000000 is created.

Finally, commit the changes and exit. You may be asked to reboot.

Signing Binaries

Signing Custom Kernel and UEFI Binaries

To sign a custom kernel or any other EFI binary (UEFI application, UEFI driver or OS
loader) you want to have loaded by shim, you need the private part of the key and the
certificate in PEM format.

To convert the certificate into PEM, run:

Now, to sign your EFI binary, run:

If you are using your db key, use the private part of the key and its associated certificate
converted into PEM format for binary signing.

If the X.509 key certificate is enrolled in UEFI db or by way of shim, the binary should be
loaded without an issue.

$ openssl x509 -in mok.der -inform DER -outform PEM -out mok.pem

$ sbsign --key mok.priv --cert mok.pem binary.efi --output binary.efi.signed



Secure Boot 21

Signing Kernel Modules

The X.509 certificate you added must be visible to the kernel. To verify the keys visible to
the kernel, run:

For a straightforward result, run:

If the X.509 certificate attributes (commonName, etc.) are configured properly, you should
see your key certificate information in the result output. In this example, two custom keys
are visible to the kernel:

YourSigningMokKey – registered with the shim as a MOK

YourSigningDbKey – registered with UEFI as db

ubuntu@localhost:~$ sudo cat /proc/keys

ubuntu@localhost:~$ dmesg | grep -i "X.509"
[    1.869521] Loading compiled-in X.509 certificates
[    1.875441] Loaded X.509 cert 'Build time autogenerated kernel key: 
b1a3fbd0178bdb7190387a4187e8e4b0eb476cdc'
[    1.941752] integrity: Loading X.509 certificate: UEFI:db
[    1.947636] integrity: Loaded X.509 cert 'YourSigningDbKey: 
a109f01707ba6769c4d546530ba1592c7daedc3b'
[    1.958736] integrity: Loading X.509 certificate: UEFI:db
[    1.964170] integrity: Loaded X.509 cert 'Microsoft Corporation UEFI CA 2011: 
13adbf4309bd82709c8cd54f316ed522988a1bd4'
[    2.023740] integrity: Loading X.509 certificate: UEFI:MokListRT
[    2.030090] integrity: Loaded X.509 cert 'YourSingingMokKey: 
2012e5122669ffc0cc28827c6134329a6bec0b88'
[    2.040796] integrity: Loading X.509 certificate: UEFI:MokListRT
[    2.046830] integrity: Loaded X.509 cert 'SomeOrg: shim: 
331c1c8963538e327d6e39346f4f53b200987015'
[    2.055796] integrity: Loading X.509 certificate: UEFI:MokListRT
[    2.062114] integrity: Loaded X.509 cert 'Canonical Ltd. Master Certificate Authority: 
ad91990bc22ab1f517048c23b6655a268e345a63'



Secure Boot 22

You may sign kernel modules using either of these approaches:

kmodsign command

Linux kernel script sign-file

Signing Kernel Modules Using kmodsign

If you are using the kmodsign command to sign kernel modules, run:

The signature is appended to the kernel module by kmodsign.

But if you rather keep the original kernel module unchanged, run:

Refer to kmosign --help for more information.

Signing Kernel Modules Using Sign File

To sign the kernel module using the Linux kernel script sign-file, please refer to Linux
kernel documentation.

Note

This example is for illustration purposes only. The actual output
might differ from the output shown in this example depending on
what key was previously enrolled and how it was enrolled.

ubuntu@localhost:~$ sudo cat /proc/keys

ubuntu@localhost:~$ kmodsign sha512 mok.priv mok.der module.ko module-signed.ko

https://www.kernel.org/doc/html/v5.4/admin-guide/module-signing.html#manually-signing-modules
https://www.kernel.org/doc/html/v5.4/admin-guide/module-signing.html#manually-signing-modules


Secure Boot 23

If you are using your db key, use the private part of the key and its associated certificate
for binary signing.

To validate that the module is signed, check that it includes the string ~Module signature

appended~:

Ongoing Updates

Update Key Certificates

While UEFI secure boot is enabled, it is possible to update your keys using a capsule file.

To create a capsule intended to update the UEFI secure boot keys, generate a new set of
keys and then run:

ubuntu@localhost:~$ hexdump -Cv module.ko | tail -n 5
00002c20  10 14 08 cd eb 67 a8 3d  ac 82 e1 1d 46 b5 5c 91  |.....g.=....F.\.|
00002c30  9c cb 47 f7 c9 77 00 00  02 00 00 00 00 00 00 00  |..G..w..........|
00002c40  02 9e 7e 4d 6f 64 75 6c  65 20 73 69 67 6e 61 74  |..~Module signat|
00002c50  75 72 65 20 61 70 70 65  6e 64 65 64 7e 0a        |ure appended~.|
00002c5e

Note

This requires UEFI secure boot to have been enabled using your own
keys, which means that you own the signing keys.

$ ./mlx-mkcap --pk-key new_pk.cer --kek-key new_kek.cer --db-key new_db1.cer --db-key new_db2.cer --
db-key new_db3.cer --signer-key db.key --signer-cert db.pem EnrollYourNewKeysCap



Secure Boot 24

Note that --signer-key and --signer-cert are set so the capsule is signed. When UEFI secure
boot is enabled, the capsule is verified using the key certificates previously enrolled in the
UEFI database. It is important to use the old signing keys associated with the certificates
in the UEFI database to sign the capsule. The new key certificates are intended to replace
the existing key certificates after capsule processing. Once the UEFI database is updated,
the new keys must be used to sign the newly created capsule files.

To enroll the new set of keys, download the capsule file to the BlueField console and use
bfrec to initiate the capsule update.

Disable UEFI Secure Boot Using a Capsule

It is possible to disable UEFI secure boot through a capsule update. This requires an
empty PK key when creating the capsule file.

To create a capsule intended to disable UEFI secure boot:

1. Create a dummy empty PK certificate:

2. Create the capsule file:

Note

This requires UEFI secure boot to have been enabled using your own
keys, which means that you own the signing keys.

$ touch null_pk.cer

$ ./mlx-mkcap --pk-key null_pk.cer --signer-key db.key --signer-cert db.pem DeletePkCap



Secure Boot 25

--signer-key and --signer-cert must be specified with the appropriate private keys and
certificates associated with the actual key certificates in the UEFI database.

To enroll the empty PK certificate, download the capsule file to the BlueField console and
use bfrec to initiate the capsule update.

Warning

Deleting the PK certificate will result in UEFI secure boot to be
disabled which is not recommended in a production environment.



Secure Boot 26

Updating Platform
Firmware
To update the platform firmware on secured devices, download the latest NVIDIA®
BlueField® software images from NVIDIA.com.

Updating eMMC Boot Partitions Image

The capsule file /lib/firmware/mellanox/boot/capsule/MmcBootCap is used to update the eMMC
boot partition and update the Arm pre-boot code (i.e., Arm trusted firmware and UEFI).

The capsule file is signed with NVIDIA keys. If UEFI secure boot is enabled, make sure the
NVIDIA certificate files are enrolled into the UEFI database. Please refer to "UEFI Secure
Boot" for more information on how to update the UEFI database key certificates.

To initiate the update of the eMMC boot partitions, run the following command:

After the command completes, reboot the system to process the capsule file. On the next
reboot, UEFI will verify the capsule signature. If verified, UEFI will process the capsule file,
extract the pre-boot image and burn it into the eMMC boot partitions.

Note that the pre-boot code is signed with the NVIDIA key. The bootloader images are
installed into the eMMC with their associated certificate files. The public key is derived
from the certificate file and its integrity is verified by the ROM code against an on-chip
public key hash value stored in E-FUSEs. If the verification fails, then the pre-boot code
will not be allowed to execute.

Recovering eMMC Boot Partition

If the system cannot boot from the eMMC boot partitions for any reason, it is
recommended to download a valid BFB image and boot it over the BlueField platform.

ubuntu@localhost:~$ sudo bfrec --capsule /lib/firmware/mellanox/boot/capsule/MmcBootCap

https://developer.nvidia.com/networking/doca
file:///networking/display/bluefieldbsp480/UEFI+Secure+Boot
file:///networking/display/bluefieldbsp480/UEFI+Secure+Boot


Secure Boot 27

The recovery path relies on the platform to be configured to boot solely from the RShim
interface (either RShim USB or RShim PCIe). With this configuration there must not be a
way to interrupt or bypass the RoT when secure booting.

You will need to append a capsule file to the BFB prior to booting. Run:

Then boot the recovery_install.bfb using the RShim interface. Run:

The capsule file will be processed by UEFI upon boot.

Updating SPI Flash FS4 Image

The SPI flash contains the firmware image of the DPU firmware in FS4 format. The
firmware image is provided along with the software.

There are two different ways to install the firmware image:

From the BlueField console, using the following command:

From the PCIe host console, using the following command:

$ mlx-mkbfb --capsule MmcBootCap install.bfb recovery_install.bfb

$ cat recovery_install.bfb > /dev/rshim0/boot

ubuntu@localhost:~$ /opt/mellanox/mlnx-fw-
updater/firmware/mlxfwmanager_sriov_dis_aarch64_<bf-dev>

# flint -d /dev/mst/mt<bf-dev>_pciconf0 -i firmware.bin b



Secure Boot 28

© Copyright 2024, NVIDIA. PDF Generated on 08/20/2024

Info

bf-dev is 41686 for BlueField-2 or 41692 for BlueField-3.


	UEFI Secure Boot
	Updating Platform Firmware



