NVIDIA.

Software Installation and Upgrade

Table of contents

Deploying BlueField Software Using BFB from Host 4
Deploying BlueField Software Using BFB from BMC 27
Deploying BlueField Software Using PXE 60

Deploying BlueField Software Using BFB with PXE 61

Deploying BlueField Software Using ISO with PXE 64
Customizing BlueField Software Deployment Using bf.cfg 77
Deploying NVIDIA Converged Accelerator 85
Installing Repo Package on Host Side 91
Installing Popular Linux Distributions on BlueField 101

Updating BlueField Software Packages Using Standard Linux Tools 104

Upgrading Boot Software 109

Software Installation and Upgrade 1

(D Info

It is recommended to upgrade your BlueField product to the latest
software and firmware versions available to benefit from new
features and latest bug fixes.

The NVIDIA® BlueField® DPU is shipped with the BlueField software based on Ubuntu
22.04 pre-installed. The DPU's Arm execution environment has the capability of being
functionally isolated from the host server and uses a dedicated network management
interface (separate from the host server's management interface). The Arm cores can run
the Open vSwitch Database (OVSDB) or other virtual switches to create a secure solution
for bare metal provisioning.

The software package also includes support for DPDK as well as applications for
accelerated encryption.

The BlueField DPU supports several methods for OS deployment and upgrade:

e Full OS image deployment using a BlueField boot stream file (BFB) via RShim
interface

(D Info

This installation method is compatible with SuperNICs.

e Full OS deployment using PXE which can be used over different network interfaces
available on the BlueField DPU (1GbE mgmt, tmfifo or NVIDIA® ConnectX®)

¢ Individual packages can be installed or upgraded using standard Linux package
management tools (e.g., apt, dpkg, etc.)

The DPU's BMC software (i.e., BMC firmware, ERoT firmware, DPU golden image, and NIC
firmware golden image) is included in the BF-Bundle and BF-FW-Bundle BFB files. The BFB

Software Installation and Upgrade 2

installation updates BMC software components automatically if BMC credentials (i.e.,
BMC_USER and BMC_PASSWORD) are provided in bf.cfg.

(D Info

The minimum BMC Firmware version that supports this method of
BMC upgrade from BFB image, is 23.07. If your BMC firmware version
is lower, follow the NVIDIA BlueField BMC Software documentation to
upgrade BMC firmware. The BMC version can be obtained by
following instructions here.

(D Info

BMC_REBOOT="no" by default. This will require BMC to be rebooted
after BFB installation process finish to apply the new BMC firmware
version. BMC reboot will reset the BMC console.

(D Info

Upgrading BlueField software using BFB Bundle now performs NIC
firmware update by default.

A reduced size BFB bf-fwbundle-<version>.prod.bfb is available for BlueField devices running a
customized OS that should not be changed by the BFB installation process. This BFB does
not include BlueField OS and can use the same set of bf.cfg parameters as a standard
BFB with the exception of BlueField OS related flags (e.g., UPDATE_DPU_OS).

Software Installation and Upgrade 3

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-bf.cfgParameters
file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-bf.cfgParameters
https://docs.nvidia.com/networking/display/bluefieldbmc
https://docs.nvidia.com/networking/display/bluefieldbmcv2404/software+versioning

Deploying BlueField
Software Using BFB from
Host

(D Info

It is recommended to upgrade your BlueField product to the latest
software and firmware versions available to benefit from new
features and latest bug fixes.

Note

This procedure assumes that a NVIDIA® BlueField® networking
platform (DPU or SuperNIC) has already been installed in a server
according to the instructions detailed in the BlueField device's
hardware user guide.

The following table lists an overview of the steps required to install Ubuntu BFB on your
BlueField:

Step | Procedure Link to Section

1
2
3

Uninstall previous DOCA on host (if exists) | Uninstall Previous Software from Host
Install RShim on the host Install RShim on Host

Verify that RShim is running on the host | Ensure RShim Running on Host

Software Installation and Upgrade

https://docs.mellanox.com/category/bluefieldsnic
https://docs.mellanox.com/category/bluefieldsnic

Step | Procedure Link to Section
4 Install the Ubuntu BFB image BFB Installation
5 Verify installation completed successfully | Verify BFB is Installed

6 Upgrade the firmware on your BlueField | Firmware Upgrade

Uninstall Previous Software from Host

If an older DOCA software version is installed on your host, make sure to uninstall it
before proceeding with the installation of the new version:

host# for f in $(dpkg --list | grep doca | awk {print $2}'); do echo $f; apt remove --

Ubuntu purge $f -y ; done
host# sudo apt-get autoremove

host# for fin $(rpm -ga |grep -i doca) ; do yum -y remove $f; done

CentOS/RH
EL

host# yum autoremove
host# yum makecache

Install RShim on Host

Before installing the RShim driver, verify that the RShim devices, which will be probed by
the driver, are listed under Isusb oOr Ispci.

Ispci | grep -i nox

Output example:

27:00.0 Ethernet controller: Mellanox Technologies MT42822 BlueField-2 integrated ConnectX-6 Dx
network controller

27:00.1 Ethernet controller: Mellanox Technologies MT42822 BlueField-2 integrated ConnectX-6 Dx
network controller

27:00.2 Non-Volatile memory controller: Mellanox Technologies NVMe SNAP Controller

Software Installation and Upgrade

27:00.3 DMA controller: Mellanox Technologies MT42822 BlueField-2 SoC Management Interface // This

is the RShim PF

RShim is compiled as part of the doca-runtimepackage in the doca-host-repo-
ubuntu<version>_amdé64 file (.deb or .rpm).

To install doca-runtime:

(0N

Ubuntu/Debian

CentOS/RHEL
7.X

1

Procedure

. Download the DOCA Runtime host package from the "Installation

Files" section in the NVIDIA DOCA Installation Guide for Linux.

. Unpack the deb repo. Run:

host# sudo dpkg -i doca-host-repo-ubuntu<version>_amd64.deb

. Perform apt update. Run:

host# sudo apt-get update

. Run aptinstall for DOCA runtime package.

host# sudo apt install doca-runtime

. Download the DOCA runtime host package from the "Installation

Files" section in the NVIDIA DOCA Installation Guide for Linux.

. Unpack the RPM repo. Run:

host# sudo rpm -Uvh doca-host-repo-rhel<version>.x86_64.rpm

. Enable new yum repos. Run:

host# sudo yum makecache

. Run yum install to install DOCA runtime package.

Software Installation and Upgrade

https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#installation-files
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#installation-files
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#installation-files
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#installation-files

oS Procedure

host# sudo yum install doca-runtime

1. Download the DOCA runtime host package from the "Installation
Files" section in the NVIDIA DOCA Installation Guide for Linux.
2. Unpack the RPM repo. Run:

host# sudo rpm -Uvh doca-host-repo-rhel<version>.x86_64.rpm

CentOS/RHEL 3. Enable new dnf repos. Run:
8.x or Rocky
8.6 host# sudo dnf makecache

4. Run dnfinstall to install DOCA runtime.

host# sudo dnf install doca-runtime

Ensure RShim Running on Host

1. Verify RShim status. Run:
sudo systemctl status rshim

Expected output:

active (running)
Probing pcie-0000:<BlueField's PCle Bus address on host>

create rshim pcie-0000:<BlueField's PCle Bus address on host>
rshim<N> attached

Software Installation and Upgrade

https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#installation-files
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#installation-files

Where <N> denotes RShim enumeration starting with 0 (then 1, 2, etc.) for every
additional BlueField installed on the server.

If the text "another backend already attached" is displayed, users will not be able to use

RShim on the host. Please refer to "RShim Troubleshooting and How-Tos" to
troubleshoot RShim issues.

1. If the previous command displays inactive or another error, restart RShim
service. Run:
sudo systemctl restart rshim

2. Verify RShim status again. Run:

sudo systemctl status rshim

If this command does not display "active (running)", then refer to "RShim
Troubleshooting and How-Tos".

2. Display the current setting. Run:

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME pcie-0000:04:00.2

This output indicates that the RShim service is ready to use.

Installing Ubuntu on BlueField

BFB Installation

(D) Note

Software Installation and Upgrade

file:///networking/display/bluefieldbsp480/RShim+Troubleshooting+and+How-Tos
file:///networking/display/bluefieldbsp480/RShim+Troubleshooting+and+How-Tos
file:///networking/display/bluefieldbsp480/RShim+Troubleshooting+and+How-Tos

Check the BFB version installed on your BlueField-2. If the version is
1.5.0 or lower, please see known issue #3600716 under Known Issues
section.

(D Info

To upgrade the BMC firmware using BFB, the user must provide the
current BMC credentials in the bf.cfg. Refer to "Customizing BlueField
Software Deployment Using bf.cfg" for more information.

(D) Note

Upgrading the BlueField networking platform using BFB Bundle
updates the NIC firmware by default. NIC firmware upgrade triggers a
NIC reset flow via mixfwreset in the BlueField Arm.

If this reset flow cannot complete or is not supported on your setup,
bfb-install alerts about it at the end of the installation. In this case,
perform a BlueField system-level reset.

To skip NIC firmware upgrade during BFB Bundle installation,
provide the parameter WITH_NIC_FW_UPDATE=no in the bf.cfg text file
when running bfb-install .

A pre-built BFB of Ubuntu 22.04 with DOCA Runtime and DOCA packages installed is
available on the NVIDIA DOCA SDK developer zone page.

() Note

Software Installation and Upgrade

https://developer.nvidia.com/networking/doca
file:///networking/display/bluefieldbsp480/Known+Issues
file:///networking/display/bluefieldbsp480/Customizing+BlueField+Software+Deployment+Using+bf.cfg
file:///networking/display/bluefieldbsp480/Customizing+BlueField+Software+Deployment+Using+bf.cfg
file:///networking/display/bluefieldbsp480/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-3094734045_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystem-levelReset

All new BlueField-2 devices and all BlueField-3 are secure boot
enabled, hence all the relevant SW images (ATF/UEFI, Linux Kernel
and Drivers) must be signed in order to boot. All formally published
SW images are signed.

/\ Warning

When installing the BFB bundle in NIC mode, users must perform the
following:

1. Prior to installing the BFB bundle, users must unbind each NIC
port, using its PCle function address. For example:

[host]# Ispci -d 15b3:

21:00.0 Ethernet controller: Mellanox Technologies MT43244 BlueField-3
integrated ConnectX-7 network controller (rev 01)

21:00.1 Ethernet controller: Mellanox Technologies MT43244 BlueField-3

integrated ConnectX-7 network controller (rev 01)
21:00.2 DMA controller: Mellanox Technologies MT43244 BlueField-3
SoC Management Interface (rev 01)

[host]# echo 0000:21:00.0 > /sys/bus/pci/drivers/mlIx5_core/unbind
[host]# echo 0000:21:00.1 > /sys/bus/pci/drivers/mlIx5_core/unbind

If there are multiple BlueField devices to be updated in the
server, repeat this step on all of them, before starting BFB
bundle installations.

2. After the BFB bundle installation is done, users must perform a
warm reboot on the host.

To install Ubuntu BFB, run on the host side:

Software Installation and Upgrade

10

bfb-install -h
syntax: bfb-install --bfb | -b <BFBFILE> [--config|-c <bf.cfg>]\
[--rootfs|-f <rootfs.tar.xz>] --rshim|-r <rshimN> [--help | -h]

The bfb-install utility is installed by the RShim package.

This utility script pushes the BFB image and optional configuration (bf.cfg file) to the
BlueField side and checks and prints the BFB installation progress. To see the BFB
installation progress, please install the pv Linux tool.

/\ Warning

BFB image installation must complete before restarting the
system/BlueField. Doing so may result in anomalous behavior of the
BlueField (e.g., it may not be accessible using SSH). If this happens, re-
initiate the update process with bfb-install to recover the BlueField.

The following is an output example of Ubuntu 20.04 installation with the bfb-install script
assuming pv has been installed.

bfb-install --bfb <BlueField-BSP>.bfb --config bf.cfg --rshim rshimQ Pushing bfb + cfg
1.46GiB 0:01:11 [20.9MiB/s] [<=>]
Collecting BlueField booting status. Press Ctrl+C to stop...

INFO[PSC]: PSC BL1 START

INFO[BL2]: start

INFO[BL2]: boot mode (rshim)

INFO[BL2]: VDDQ: 1120 mV

INFO[BL2]: DDR POST passed

INFO[BL2]: UEFI loaded

INFO[BL31]: start

INFO[BL31]: lifecycle Production

INFO[BL31]: MB8: VDD adjustment complete

INFO[BL31]: VDD: 743 mV

INFO[BL31]: power capping disabled

INFO[BL31]: runtime

Software Installation and Upgrade

11

INFO[UEFI]: eMMC init

INFO[UEFI]: eMMC probed

INFO[UEFI]: UPVS valid

INFO[UEFI]: PMI: updates started

INFO[UEFI]: PMI: total updates: 1

INFO[UEFI]: PMI: updates completed, status 0
INFO[UEFI]: PCle enum start

INFO[UEFI]: PCle enum end

INFO[UEFI]: UEFI Secure Boot (disabled)
INFO[UEFI]: exit Boot Service

INFO[MISC]: : Found bf.cfg

INFO[MISC]: : Ubuntu installation started
INFO[MISC]: bfb_pre_install

INFO[MISC]: Installing OS image

INFO[MISC]: : Changing the default password for user ubuntu
INFO[MISC]: : Running bfb_modify_os from bf.cfg
INFO[MISC]: : Ubuntu installation finished

Verify BFB is Installed

After installation of the Ubuntu OS is complete, the following note appears in
/dev/rshim0/misc on first boot:

INFO[MISC]: Linux up
INFO[MISC]: DPU is ready

"DPU is ready" indicates that all the relevant services are up and users can login the
system.

After the installation of the Ubuntu 20.04 BFB, the configuration detailed in the following
sections is generated.

(D) Note

Make sure all the services (including cloud-init) are started on
BlueField and to perform a graceful shutdown before power cycling

Software Installation and Upgrade 12

the host server.

BlueField OS image version is stored under /etc/minx-release in the BlueField:

cat /etc/miInx-release
bf-bundle-2.7.0-<version>_ubuntu-22.04_prod

Firmware Upgrade

To upgrade firmware:

1. Access the BlueField using one of the available interfaces (RShim console, BMC
console, SSH via oob_net0 or tmfifo_net0 interfaces).

2. Upgrade the firmware on BlueField. Run:

sudo /opt/mellanox/mInx-fw-updater/minx_fw_updater.pl --force-fw-update

Example output:

Device #1:

Device Type: BlueField-2

[...]
Versions: Current Available

Fw <Old_Fw> <New_FW>

(D) Note

Software Installation and Upgrade

Important! To apply NVConfig changes, stop here and follow
the steps in section "Updating NVConfig Params". In this case,
the following step #3 is redundant.

3. Perform a BlueField system reboot for the upgrade to take effect.

Updating NVConfig Params from Host

1. Optional. To reset the BlueField NIC firmware configuration (aka Nvconfig params)
to their factory default values, run the following from the BlueField ARM OS or from
the host OS:

sudo mixconfig -d /dev/mst/<MST device> -y reset

Reset configuration for device /dev/mst/<MST device>? (y/n) [n] : y
Applying... Done!
-I- Please reboot machine to load new configurations.

(D) Note

For now, please ignore tool's instruction to reboot

() Note

To learn what MST device the BlueField has on your setup, run:

mst start
mst status

Software Installation and Upgrade 14

file:///networking/display/bluefieldbsp480/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-3094734045_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystemReboot

Example output taken on a multiple BlueField host:

// The MST device corresponds with PCI Bus address.

MST modules:

MST PCl module is not loaded
MST PCI configuration module loaded

MST devices:

/dev/mst/mt41692_pciconf0 - PCI configuration cycles access.

domain:bus:dev.fn=0000:03:00.0 addr.reg=88
data.reg=92 cr_bar.gw_offset=-1

Chip revision is: 01
/dev/mst/mt41692_pciconf1 - PCI configuration cycles access.

domain:bus:dev.fn=0000:83:00.0 addr.reg=88
data.reg=92 cr_bar.gw_offset=-1

Chip revision is: 01
/dev/mst/mt41686_pciconfO - PCl configuration cycles access.

domain:bus:dev.fn=0000:a3:00.0 addr.reg=88
data.reg=92 cr_bar.gw_offset=-1

Chip revision is: 01

The MST device IDs for the BlueField-2 and BlueField-3 devices
in this example are /dev/mst/mt41686_pciconfo and
/dev/mst/mt41692_pciconf0 respectively.

2. (Optional) Enable NVMe emulation. Run:

sudo mixconfig -d <MST device> -y s NVME_EMULATION_ENABLE=1

3. Skip this step if your BlueField is Ethernet only. Please refer to section "Supported
Platforms and Interoperability" under the Release Notes to learn your BlueField

type.

Software Installation and Upgrade

If you have an InfiniBand-and-Ethernet-capable BlueField, the default link type of
the ports will be configured to IB. If you want to change the link type to Ethernet,
please run the following configuration:

sudo mixconfig -d <MST device> -y s LINK_TYPE_P1=2 LINK_TYPE_P2=2

4. Perform a BlueField system-level reset for the new settings to take effect.

() Note

After modifying files on the BlueField, run the command sync to flush
file system buffers to eMMC/SSD flash memory to avoid data loss
during reboot or power cycle.

Default Ports and OVS Configuration

The /sbin/minx_bf_configure script runs automatically with ib_umad kernel module loaded (see
/etc/modprobe.d/minx-bf.conf) and performs the following configurations:

1. Ports are configured with switchdev mode and software steering.
2. RDMA device isolation in network namespace is enabled.

3. Two scalable function (SF) interfaces are created (one per port) if BlueField is
configured with Embedded CPU mode (default):

mlnx-sf -a show

SF Index: pci/0000:03:00.0/229408
Parent PCl dev: 0000:03:00.0
Representor netdev: en3fOpf0sf0
Function HWADDR: 02:a9:49:7e:34:29

Software Installation and Upgrade 16

file:///networking/display/bluefieldbsp480/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-3094734045_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystem-levelReset
file:///networking/display/bluefieldbsp480/Modes+of+Operation#src-3094733988_ModesofOperation-SmartNICmode

Function trust: off

Function roce: true

Function eswitch: NA

Auxiliary device: mIx5_core.sf.2
netdev: enp3s0f0s0
RDMA dev: mix5_2

SF Index: pci/0000:03:00.1/294944
Parent PCl dev: 0000:03:00.1
Representor netdev: en3f1pf1sf0
Function HWADDR: 02:53:8f:2c:8a:76
Function trust: off
Function roce: true
Function eswitch: NA
Auxiliary device: mIx5_core.sf.3

netdev: enp3s0f1s0
RDMA dev: miIx5_3

The parameters for these SFs are defined in configuration file /etc/mellanox/minx-
sf.conf.

/sbin/minx-sf --action create --device 0000:03:00.0 --sfnum 0 --hwaddr 02:61:f6:21:32:8¢
/sbin/minx-sf --action create --device 0000:03:00.1 --sfnum 0 --hwaddr 02:30:13:6a:2d:2c

(D) Note

To avoid repeating a MAC address in the your network, the SF
MAC address is set randomly upon BFB installation. You may
choose to configure a different MAC address that better suit
your network needs.

4. Two OVS bridges are created:

ovs-vsctl show
f08652a8-92bf-4000-ba0b-7996c772aff6

Software Installation and Upgrade 17

Bridge ovsbr2
Port ovsbr2
Interface ovsbr2
type: internal
Port p1
Interface p1
Port en3f1pf1sf0
Interface en3f1pf1sf0
Port pf1hpf
Interface pf1hpf
Bridge ovsbr1
Port pO
Interface pO
Port pfOhpf
Interface pfOhpf
Port ovsbr1
Interface ovsbr1
type: internal
Port en3fOpf0sfO
Interface en3fOpf0sf0
ovs_version: "2.14.1"

The parameters for these bridges are defined in configuration file /etc/mellanox/minx-
ovs.conf:

CREATE_OVS_BRIDGES="yes"
OVS_BRIDGE1="ovsbr1"
OVS_BRIDGE1_PORTS="p0 pfOhpf en3f0Opf0Osf0"
OVS_BRIDGE2="ovsbr2"
OVS_BRIDGE2_PORTS="p1 pf1hpf en3f1pf1sf0"
OVS_HW_OFFLOAD="yes"
OVS_START_TIMEOUT=30

(D) Note

Software Installation and Upgrade 18

If failures occur in /sbin/minx_bf_configure or configuration changes
happen (e.g. switching to separated host mode) OVS bridges are
not created even if CREATE_OVS_BRIDGES="yes".

5. OVS HW offload is configured.

Default Network Interface Configuration

Network interfaces are configured using the netplan utility:

cat /etc/netplan/50-cloud-init.yaml
This file is generated from information provided by the datasource. Changes
to it will not persist across an instance reboot. To disable cloud-init's
network configuration capabilities, write a file
/etc/cloud/cloud.cfg.d/99-disable-network-config.cfg with the following:
network: {config: disabled}
network:
ethernets:
tmfifo_netO:
addresses:
- 192.168.100.2/30
dhcp4: false
nameservers:
addresses:
-192.168.100.1
routes:
- metric: 1025
to: 0.0.0.0/0
via: 192.168.100.1
oob_net0:
dhcp4: true
renderer: NetworkManager
version: 2

cat /etc/netplan/60-minx.yaml
network:
ethernets:
enp3s0f0s0:

Software Installation and Upgrade

19

dhcp4: 'true’
enp3s0f1s0:
dhcp4: 'true’
renderer: networkd
version: 2

BlueField devices also have a local IPv6 (LLv6) derived from the MAC address via the STD
stack mechanism. For a default MAC, 00:1A:CA:FF:FF:01, the LLv6 address would be
fe80::21a:caff:feff:ff01.

For multi-device support, the LLv6 address works with SSH for any number of BlueField
devices in the same host by including the interface name in the SSH command:

host]# systemctl restart rshim
// wait 10 seconds
host]# ssh -6 ubuntu@fe80::21a:caff:feff:ff01%tmfifo_net<n>

() Note

If tmfifo_net<n> on the host does not have an LLv6 address, restart the
RShim driver:

systemctl restart rshim

Ubuntu Boot Time Optimizations

To improve the boot time, the following optimizations were made to Ubuntu OS image:

cat /etc/systemd/system/systemd-networkd-wait-online.service.d/override.conf
[Service]

Software Installation and Upgrade

ExecStart=
ExecStart=/usr/bin/nm-online -s -q --timeout=5

cat /etc/systemd/system/NetworkManager-wait-online.service.d/override.conf
[Service]

ExecStart=

ExecStart=/usr/lib/systemd/systemd-networkd-wait-online --timeout=5

cat /etc/systemd/system/networking.service.d/override.conf

[Service]

TimeoutStartSec=5

ExecStop=

ExecStop=/sbin/ifdown -a --read-environment --exclude=lo --force --ignore-errors

This configuration may affect network interface configuration if DHCP is used. If a
network device fails to get configuration from the DHCP server, then the timeout value in
the two files above must be increased.

Grub Configuration:

Setting the Grub timeout at 2 seconds with GRUB_TIMEOUT=2 under /etc/default/grub. In
conjunction with the GRUB_TIMEOUT_STYLE=countdown parameter, Grub will show the
countdown of 2 seconds in the console before booting Ubuntu. Please note that, with this

short timeout, the standard Grub method for entering the Grub menu (i.e., SHIFT or Esc)
does not work. Function key F4 can be used to enter the Grub menu.

System Services:

docker.service is disabled in the default Ubuntu OS image as it dramatically affects boot
time.

The kexec utility can be used to reduce the reboot time. Script /usr/sbin/kexec_reboot is
included in the default Ubuntu 20.04 OS image to run corresponding kexec commands.

kexec_reboot

DHCP Client Configuration

Software Installation and Upgrade 21

/etc/dhcp/dhclient.conf:
send vendor-class-identifier "NVIDIA/BF/DP";

interface "oob_net0" {
send vendor-class-identifier "NVIDIA/BF/OOB";

}

Ubuntu Dual Boot Support

BlueField may be installed with support for dual boot. That is, two identical images of the
BlueField OS may be installed using BFB.

The following is a proposed SSD partitioning layout for 119.24 GB SSD:

Device Start End Sectors Size Type

/dev/nvmeOnip1 2048 104447 102400 50M EFI System
/dev/nvmeOn1p2 104448 114550086 114445639 54.6G Linux filesystem
/dev/nvmeOn1p3 114550087 114652486 102400 50M EFI System
/dev/nvmeOn1p4 114652487 229098125 114445639 54.6G Linux filesystem
/dev/nvme0On1p5 229098126 250069645 20971520 10G Linux filesystem

Where:

e /dev/nvmeOn1p1 - boot EFI partition for the first OS image

/dev/nvmeOn1p2 - root FS partition for the first OS image

/dev/nvmeOn1p3 - boot EFI partition for the second OS image

/dev/nvmeOn1p4 - root FS partition for the second OS image

/dev/nvmeOn1p5 - common partition for both OS images

For example, the following is a proposed eMMC partitioning layout for a 64GB eMMC:

Device Start End Sectors Size Type
/dev/mmcblkOp1 2048 104447 102400 50M EFI System
/dev/mmcblkOp2 104448 50660334 50555887 24.1G Linux filesystem

Software Installation and Upgrade 22

/dev/mmcblkOp3 50660335 50762734 102400 50M EFI System
/dev/mmcblkOp4 50762735 101318621 50555887 24.1G Linux filesystem
/dev/mmcblkOp5 101318622 122290141 20971520 10G Linux filesystem

Where:
e /dev/mmcblkOp1 - boot EFI partition for the first OS image
e /dev/mmcblkOp2 - root FS partition for the first OS image
e /dev/mmcblkOp3 - boot EFI partition for the second OS image

e /dev/mmcblkOp4 - root FS partition for the second OS image

e /dev/mmcblkOp5 - common partition for both OS images

(D) Note

The common partition can be used to store BFB files that will be
used for OS image update on the non-active OS partition.

Installing Ubuntu OS Image Using Dual Boot

(D) Note

For software upgrade procedure, please refer to section "Upgrading
Ubuntu OS Image Using Dual Boot".

Add the values below to the bf.cfg configuration file (see section "bf.cfg Parameters" for
more information).

Software Installation and Upgrade

file:///networking/display/bluefieldbsp480/Customizing+BlueField+Software+Deployment+Using+bf.cfg#src-3094733900_CustomizingBlueFieldSoftwareDeploymentUsingbf.cfg-bf.cfgParameters

DUAL_BOOT=yes

If the eMMC size is <16GB, dual boot support is disabled by default, but it can be forced
by setting the following parameter in bf.cfg:

FORCE_DUAL_BOOT=yes
To modify the default size of the /common partition, add the following parameter:
COMMON_SIZE_SECTORS=<number-of-sectors>
The number of sectors is the size in bytes divided by the block size (512). For example, for
10GB, the COMMON_SIZE_SECTORS=$((10*2**30/512)).
After assigning size for the /common partition, what remains is divided equally between

the two OS images.

bfb-install --bfb <BFB> --config bf.cfg --rshim rshim0

This will result in the Ubuntu OS image to be installed twice on the BlueField.

() Note

For comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

Upgrading Ubuntu OS Image Using Dual Boot

Software Installation and Upgrade 24

file:///networking/display/bluefieldbsp480/Customizing+BlueField+Software+Deployment+Using+bf.cfg#src-3094733900_CustomizingBlueFieldSoftwareDeploymentUsingbf.cfg-bf.cfgParameters

1. Download the new BFB to the BlueField into the /common partition. Use bfb_tool.py
script to install the new BFB on the inactive BlueField partition:

/opt/mellanox/mlnx_snap/exec_files/bfb_tool.py --op fw_activate_bfb --bfb <BFB>

2. Reset BlueField to load the new OS image:

/sbin/shutdown -r 0

BlueField should now boot into the new OS image.
Use efibootmgr utility to manage the boot order if necessary.

e Change the boot order with:

efibootmgr -o

e Remove stale boot entries with:

efibootmgr -b <E> -B

Where <e> is the last character of the boot entry (i.e., Boot000<E>). You can find that
by running:

efibootmgr

BootCurrent: 0040

Timeout: 3 seconds

BootOrder: 0040,0000,0001,0002,0003
Boot0000* NET-NIC_PO-IPV4
Boot0001* NET-NIC_PO-IPV6
Boot0002* NET-NIC_P1-IPV4
Boot0003* NET-NIC_P1-IPV6
Boot0040* focalO

Software Installation and Upgrade 25

() Note

Modifying the boot order with efibootmgr -o does not remove unused
boot options. For example, changing a boot order from 0001,0002,
0003 to just 0001 does not actually remove 0002 and 0003. 0002 and
0003 need to be explicitly removed using efibootmgr -B .

Software Installation and Upgrade

26

Deploying BlueField
Software Using BFB from
BMC

(D Info

It is recommended to upgrade your NVIDIA® BlueField® networking
platform (DPU or SuperNIC) to the latest software and firmware
versions available to benefit from new features and latest bug fixes.

() Note

This section assumes that a BlueField has already been installed in a
server according to the instructions detailed in the BlueField's
hardware user guide.

The following table lists an overview of the steps required to install Ubuntu BFB on your
BlueField:

— Procedure Direct Link

1 Verify that RShim is already running on BMC | Ensure RShim is Running on BMC

Change the default credentials using bf.cfg file | Changing Default Credentials
(optional) Using bf.cfg

Software Installation and Upgrade 27

https://docs.mellanox.com/category/bluefieldsnic
https://docs.mellanox.com/category/bluefieldsnic

Procedure Direct Link

Y

3 Install the Ubuntu BFB image BFB Installation

4 | Verify installation completed successfully Verify BFB is Installed
5 Upgrade the firmware on your BlueField Firmware Upgrade

() Note

It is important to learn your BlueField's device-id to perform some of
the software installations or upgrades in this guide.

To determine the device ID of the BlueField Platform on your setup,
run:

host# mst start
host# mst status -v

Example output:

MST modules:

MST PCI module is not loaded
MST PCl configuration module loaded

PCl devices:

DEVICE_TYPE MST PCl RDMA NET

NUMA

BlueField2(rev:1) /dev/mst/mt41686_pciconf0.1 3b:00.1 mix5_1 net-
ens1f1 0

BlueField2(rev:1) /dev/mst/mt41686_pciconf0 3b:00.0 mIx5_0 net-

ens1f0 0
BlueField3(rev:1) /dev/mst/mt41692_pciconf0.1 e2:00.1 mlx5_1 net-
ens7flnp1 4

Software Installation and Upgrade

28

BlueField3(rev:1) /dev/mst/mt41692_pciconf0 e2:00.0 mlIx5_0 net-
ens7fOnp0 4

00000191-70c2-dc13-a19d-f0e2efaf0003

Ensure RShim is Running on BMC

Display the current setting. Run:

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME usb-1.0

This output indicates that the RShim service is ready to use. If you do not receive this
output:

1. Restart RShim service:

sudo systemctl restart rshim

2. Verify the current setting again. Run:
cat /dev/rshim<N>/misc | grep DEV_NAME

If DEV_.NAME does not appear, then proceed to "RShim driver not loading on BlueField
with integrated BMC".

BFB Installation

To update the software on the NVIDIA® BlueField® device, the BlueField must be booted
up without mounting the eMMC flash device. This requires an external boot flow where a
BFB (which includes ATF, UEFI, Arm OS, NIC firmware, and initramfs) is pushed from an
external host via USB or PCle. On BlueField devices with an integrated BMC, the USB
interface is internally connected to the BMC and is enabled by default. Therefore, you

Software Installation and Upgrade 29

file:///networking/display/bluefieldbsp480/RShim+Troubleshooting+and+How-Tos#src-3094734046_RShimTroubleshootingandHowTos-RShimdrivernotloadingonDPUwithintegratedBMC
file:///networking/display/bluefieldbsp480/RShim+Troubleshooting+and+How-Tos#src-3094734046_RShimTroubleshootingandHowTos-RShimdrivernotloadingonDPUwithintegratedBMC

must verify that the RShim driver is running on the BMC. This provides the ability to push
a bootstream over the USB interface to perform an external boot.

To update the software on the NVIDIA® BlueField® device, the BlueField must be booted
up without mounting the eMMC flash device. This requires an external boot flow where a
BFB (which includes ATF, UEFI, Arm OS, NIC firmware, and initramfs) is pushed from an
external host via USB or PCle. On BlueField devices with an integrated BMC, the USB
interface is internally connected to the BMC and is enabled by default. Therefore, you
must verify that the RShim driver is running on the BMC. This provides the ability to push
a bootstream over the USB interface to perform an external boot.

Changing Default Credentials Using bf.cfg

Ubuntu users are prompted to change the default password (ubuntu) for the default user
(ubuntu) upon first login. Logging in will not be possible even if the login prompt appears
until all services are up ("DPU is ready" message appears in /dev/rshim0/misc).

() Note

Attempting to log in before all services are up prints the following
message: Permission denied, please try again.

Alternatively, Ubuntu users can provide a unique password that will be applied at the end
of the BFB installation. This password must be defined in a bf.cfg configuration file. To set
the password for the ubuntu user:

1. Create password hash. Run:

openssl| passwd -1

Password:

Verifying - Password:
$1$3BORIrfX$TIHry93NFUJzg3NyaO0O0rE1

2. Add the password hash in quotes to the bf.cfg file:

Software Installation and Upgrade 30

vim bf.cfg
ubuntu_PASSWORD='$1$3BORIrfX$TIHry93NFU)zg3Nya0O0rE1'

The bf.cfg file is used with the bfb-install script in the steps that follow.

Installing BFB
The BFB installation procedure consists of the following main stages:

1. Disabling RShim on the server.

2. Initiating the BFB update procedure by transferring the BFB image using one of the
following options:

o Redfish interface - SimpleUpdate with SCP, HTTP, or HTTPS

1. Confirming the identity of the host and BMC—required only for SCP,
during first-time setup or after BMC factory reset.

2. Sending a SimpleUpdate request.
o Direct SCP

3. Tracking the installation's progress and status.

() Note

While the BlueField Bundle (BFB) contains NIC firmware images, it
does not automatically install them. To automatically install the NIC
firmware during BFB upgrade, generate the configuration file bf.cfg
and combine it with the BFB file:

echo WITH_NIC_FW_UPDATE=yes > bf.cfg

Software Installation and Upgrade 31

cat <path_to_bfb> bf.cfg > new.bfb

Transferring BFB File

Since the BFB is too large to store on the BMC flash or tmpfs, the image must be written
to the RShim device. This can be done by either running SCP directly or using the Redfish
interface.

Redfish Interface

Installing BFB File Using SCP Protocol

Software Installation and Upgrade 32

BMC Image Update Flow Using UpdateService POST Command

P
user host | BMC | | remote server

Enable BMC RShim /
. Disable R5him on host

k.
i

Enable RShim on BMC

Public Key Exchange (Only for first-time setup or after BMC factory reset) /.
2

Success
' Request for remote server public key :
| <remote_server_public/ key=> ! !
I Request for public key exchange <remote_server_public_key=> > [
| Success <bmc_public_key=> I [
| Add <bmc_public_key= to authorized keys list : ._:
BFBE Update / | | |
i Request for simple update. Input: ImageURI, targets, username > |
: : | SCP transfer request :
]]) }1
| | | _ Transfer file |
| _ Started | :
' Completed | |
I(p]]]
i i | Update BFB [
| Request for dumping rshim.log - :
. _rshimlog | |
use\lr host BMC | remote server

The following are the detailed instructions outlining each step in the diagram above:
1. Prepare secure file transfer of BFB:

1. Gather the public SSH host keys of the server holding the new.bfb file. Run the
following against the server holding the new.bfb file ("Remote Server"):

Software Installation and Upgrade 33

(D Info

OpenSSH is required for this step.

ssh-keyscan -t <key_type> <remote_server_ip>

Where:

m key_type - the type of key associated with the server storing the BFB file
(e.g., ed25519)

m remote_server_ip — the IP address of the server hosting the BFB file
2. Retrieve the remote server's public key from the response, and send the

following Redfish command to the BlueField BMC:

curl -k -u root:'<password>' -H "Content-Type: application/json" -X POST -d
'{"RemoteServerlIP":"<remote_server_ip>", "RemoteServerKeyString":"
<remote_server_public_key>"}'
https://<bmc_ip>/redfish/v1/UpdateService/Actions/Oem/NvidiaUpdateService.PublicKeyExc

Where:
m password - BlueField BMC password
m remote_server_ip — the IP address of the server hosting the BFB file
m remote_server_public_key - remote server's public key from the ssh-keyscan
response, which contains both the type and the public key with one

space between the two fields (i.e., "<type> <public_key>")

m bmc_ip - BMC IP address

Software Installation and Upgrade 34

3. Extract the BMC public key information (i.e., "<type> <bmc_public_key>
<username>@<hostname>") from the PublickeyExchange response and append it to
the authorized_keys file on the remote server holding the BFB file. This enables
password-less key-based authentication for users.

{
"@Message.ExtendedInfo": [
{
"@odata.type": "#Message.v1_1_1.Message",
"Message": "Please add the following public
key info to ~/.ssh/authorized_keys on the
remote server",
"MessageArgs": [
"<type> <bmc_public_key> root@dpu-bmc"
]
h
{
"@odata.type": "#Message.v1_1_1.Message",
"Message": "The request completed
successfully.",
"MessageArgs": [],
"Messageld": "Base.1.15.0.Success",
"MessageSeverity": "OK",
"Resolution": "None"
}
]
}

2. Initiate image transfer. Run the following Redfish command:

curl -k -u root:'<password>' -H "Content-Type: application/json" -X POST -d
"{"TransferProtocol":"SCP", "ImageURI":"<image_uri>","Targets":
["redfish/v1/UpdateService/Firmwarelnventory/DPU_0S"], "Username":"<username>"}'
https://<bmc_ip>/redfish/v1/UpdateService/Actions/UpdateService.SimpleUpdate

() Note

Software Installation and Upgrade

35

This command uses SCP for the image transfer, initiates a soft
reset on the BlueField, and then pushes the boot stream. For
NVIDIA-supplied BFBs, the eMMC is flashed automatically once
the boot stream is pushed. Upon success, a running message is
received.

(D Info

After the BMC boots, it may take a few seconds (6-8 seconds for
NVIDIA® BlueField®-2, and 2 seconds for BlueField-3) until the
BlueField BSP (DPU_0S) is up.

Where:

o image_uri - contains both the remote server IP address and the full path to the

bfb file on the remote server, with one slash between the two fields (i.e.,
<remote_server_ip>/<full_path_of_bfb>).

(D Info

For example, if <remote_server_ip> is 10.10.10.10 and
<full_path_of_bfb> is /tmp/file.bfb then
"ImageURI":"10.10.10.10//tmp/file.bfb".

o username - username on the remote server
o bmc_ip - BMC IP address
Response/error messages:

m |f RShim is disabled:

Software Installation and Upgrade

36

{

"error": {
"@Message.ExtendedInfo": [
{
"@odata.type": "#Message.v1_1_1.Message",
"Message": "The requested resource of type Target named '/dev/rshim0/boot’
was not found.",
"MessageArgs": [
"Target",
"/dev/rshim0/boot"
1
"Messageld": "Base.1.15.0.ResourceNotFound",
"MessageSeverity": "Critical",
"Resolution": "Provide a valid resource identifier and resubmit the request."
}
I8
"code": "Base.1.15.0.ResourceNotFound",
"message": "The requested resource of type Target named '/dev/rshim0/boot'
was not found."

}

= |f a username or any other required field is missing:

{
"Username@Message.ExtendedInfo": [
{
"@odata.type": "#Message.v1_1_1.Message",
"Message": "The create operation failed because the required property
Username was missing from the request.”,
"MessageArgs": [
"Username"
1
"Messageld": "Base.1.15.0.CreateFailedMissingReqgProperties",
"MessageSeverity": "Critical",
"Resolution"; "Correct the body to include the required property with a valid
value and resubmit the request if the operation failed."
}
]
}

Software Installation and Upgrade

37

m Success message if the request is valid and a task is created:

{
"@odata.id":

"/redfish/v1/TaskService/Tasks/<task_id>",
"@odata.type": "#Task.v1_4_3.Task",

"Id": "<task_id>",

"TaskState": "Running",

"TaskStatus": "OK"

3. Run the following Redfish command to track the SCP image's transfer status
(percentage is not updated until it reaches 100%):

curl -k -u root:'<password>' -X GET https://<bmc_ip>/redfish/v1/TaskService/Tasks/<task_id>

() Note

During the transfer, the PercentComplete value remains at 0. If no
errors occur, the TaskState is set to Running, and a keep-alive
message is generated every 5 minutes with the content
"Transfer is still in progress (X minutes elapsed). Please wait".
Once the transfer is completed, the PercentComplete is set to 100,
and the TaskState is updated to Completed.

Upon failure, a message is generated with the relevant
resolution.

Where:

o bmc_ip - BMC IP address

Software Installation and Upgrade

38

o task_id - task ID received by the UpdateService command response

Examples:

m Response/error messages:

» |f host identity is not confirmed or the provided host key is wrong:

"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Transfer of image '<file_name>'to '/dev/rshim0/boot' failed.",
"MessageArgs": [
"<file_name>,
"/dev/rshim0/boot"
1
"Messageld": "Update.1.0.TransferFailed",
"Resolution": " Unknown Host: Please provide server's public key using
PublicKeyExchange ",
"Severity": "Critical"
}

"PercentComplete": 0,
"StartTime": "<start_time>",
"TaskMonitor": "/redfish/v1/TaskService/Tasks/<task_id>/Monitor",
"TaskState": "Exception”,
"TaskStatus": "Critical"

(D Info

In this case, revoke the remote server key using
the following Redfish command:

curl -k -u root:'<password>' -H "Content-Type:
application/json" -X POST -d '{"RemoteServer|P":"

Software Installation and Upgrade 39

<remote_server_ip>"}'
https://<bmc_ip>/redfish/v1/UpdateService/Actions/Oem/NvidiaUpdat

Where:

® remote_server_ip — remote server's IP
address

® bmc_ip - BMC IP address

Then repeat steps 1 and 2.

» |f the BMC identity is not confirmed:

"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",

"Message": "Transfer of image '<file_name>' to '/dev/rshim0/boot' failed.",

"MessageArgs": [

"<file_name>",
"/dev/rshim0/boot"

1

"Messageld": "Update.1.0.TransferFailed",

"Resolution": "Unauthorized Client: Please use the PublicKeyExchange
action to receive the system's public key and add it as an authorized key on
the remote server”,

"Severity": "Critical"

}

"PercentComplete": 0,
"StartTime": "<start_time>",
"TaskMonitor": "/redfish/v1/TaskService/Tasks/<task_id>/Monitor",
"TaskState": "Exception",
"TaskStatus": "Critical"

Software Installation and Upgrade 40

(D Info

In this case, verify that the BMC key has been
added correctly to the authorized_key file on the
remote server.

m |f SCP fails:

"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Transfer of image '<file_name>' to '/dev/rshim0/boot' failed.",
"MessageArgs": [
"<file_name>",
"/dev/rshim0/boot"
1
"Messageld": "Update.1.0.TransferFailed",
"Resolution": "Failed to launch SCP",
"Severity": "Critical"
}

"PercentComplete": 0,
"StartTime": "<start_time>",
"TaskMonitor": "/redfish/v1/TaskService/Tasks/<task_id>/Monitor",

"TaskState": "Exception”,
"TaskStatus": "Critical"

m Success/status messages:

» The keep-alive message:

Software Installation and Upgrade 41

"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": " <file_name>'is being transferred to
'/dev/rshim0/boot".",
"MessageArgs": [
" <file_name>",
"/dev/rshim0/boot"
1
"Messageld": "Update.1.0.TransferringToComponent",
"Resolution"; "Transfer is still in progress (5 minutes elapsed):
Please wait",
"Severity": "OK"

}

"PercentComplete": O,
"StartTime": "<start_time>",
"TaskMonitor"; "/redfish/v1/TaskService/Tasks/<task_id>/Monitor",
"TaskState": "Running",
"TaskStatus": "OK"

» Upon successful completion of SCP BFB transfer:

"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Device 'DPU' successfully updated with image
'<file_name>"",
"MessageArgs": [
"DPU",
"<file_name>"
It
"Messageld": "Update.1.0.UpdateSuccessful",
"Resolution": "None",
"Severity": "OK"
h

"PercentComplete": 100,
"StartTime"; "<start_time>",
"TaskMonitor": "/redfish/v1/TaskService/Tasks/<task_id>/Monitor",
"TaskState": "Completed",

Software Installation and Upgrade 42

"TaskStatus": "OK"

Installing BFB File with HTTP Protocol
1. Make sure the BFB file, new.bfb, is available on HTTP server

2. Initiate image transfer. Run the following Redfish command:

curl -k -u root:'<password>' -H "Content-Type: application/json" -X POST -d
'{"TransferProtocol™:"HTTP", "ImageURI":"<image_uri>","Targets":
["redfish/v1/UpdateService/Firmwarelnventory/DPU_OS"]}!
https://<bmc_ip>/redfish/v1/UpdateService/Actions/UpdateService.SimpleUpdate

() Note

This command uses HTTP to download the image, initiates a
soft reset on the BlueField, and pushes the boot stream. For
NVIDIA-supplied BFBs, the eMMC is flashed automatically once
the boot stream is pushed. Upon success, a running message is
received.

(D Info

After the BMC boots, it may take a few seconds (6-8 seconds in
BlueField-2 and 2 seconds in BlueField-3) until the BlueField BSP
(DPU_OS) is up.

Where:

Software Installation and Upgrade

43

o image_uri - contains both the HTTP server address and the exported path to the
.bfb file on the server, with one slash between the two fields (i.e.,
<http_server>/<exported_path_of_bfb>).

(D Info

For example, if <http_server> is 10.10.10.10 and
<exported_path_of_bfb> is /tmp/new.bfb then
"ImageURI":"10.10.10.10//tmp/new.bfb".

o bmc_ip - BMCIP address
Response/error messages:

= |[f RShim is disabled:

{
"error": {
"@Message.ExtendedInfo": [
{
"@odata.type": "#Message.v1_1_1.Message",

"Message": "The requested resource of type Target named '/dev/rshim0/boot'
was not found.",

"MessageArgs": [
"Target",
"/dev/rshim0/boot"
1
"Messageld": "Base.1.15.0.ResourceNotFound",
"MessageSeverity": "Critical",
"Resolution": "Provide a valid resource identifier and resubmit the request."
}
I8
"code": "Base.1.15.0.ResourceNotFound",

"message": "The requested resource of type Target named '/dev/rshim0/boot'
was not found."

Software Installation and Upgrade 44

m |f the HTTPS server address is wrong or the HTTPS service is not stated,
an "Unknown Host" error is expected:

{

"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",

"Message": "Transfer of image 'new.bfb' to '/dev/rshim0/boot' failed.",

"MessageArgs": [

"new.bfb",
"/dev/rshim0/boot"

1

"Messageld": "Update.1.0.TransferFailed",

"Resolution": "Unknown Host: Please provide server's public key using
PublicKeyExchange (for SCP download) or Check and restart server's web service
(for HTTP/HTTPS download)",

"Severity": "Critical"

}

» |f TransferProtocol or any other required field are wrong:

{
"@Message.ExtendedInfo": [{
"@odata.type": "#Message.v1_1_1.Message",
"Message": "The parameter TransferProtocol for the action
UpdateService.SimpleUpdate is not supported on the target resource.",
"MessageArgs": [
"TransferProtocol",
"UpdateService.SimpleUpdate"
1
"Messageld": "Base.1.16.0.ActionParameterNotSupported",
"MessageSeverity": "Warning",
"Resolution"; "Remove the parameter supplied and resubmit the request if the
operation failed."
}
1
}

Software Installation and Upgrade 45

m |f Targets or any other required field are missing:

{
"Targets@Message.ExtendedInfo":

{
"@odata.type": "#Message.v1_1_1.Message",
"Message": "The create operation failed because the required property Targets
was missing from the request.",
"MessageArgs": [
"Targets"
1
"Messageld": "Base.1.16.0.CreateFailedMissingReqgProperties"”,
"MessageSeverity": "Critical",
"Resolution": "Correct the body to include the required property with a valid
value and resubmit the request if the operation failed."
}
]
}

m Success message if the request is valid and a task is created:

{
"@odata.id":

"/redfish/v1/TaskService/Tasks/<task_id>",
"@odata.type": "#Task.v1_4_3.Task",

"Id": "<task_id>",

"TaskState": "Running",

"TaskStatus": "OK"

Installing BFB File with HTTPS Protocol
1. Make sure the BFB file, new.bfb, is available on HTTPS server

2. Make sure the BMC has certificate to authenticate the HTTPS server. Or install a
valid certificate to authenticate:

Software Installation and Upgrade

46

curl -c cjar -b cjar -k -u root:'<password>' -X POST
https://$bmc/redfish/v1/Managers/Bluefield_BMC/Truststore/Certificates -d @CAcert.json

3. Initiate image transfer. Run the following Redfish command:

curl -k -u root:'<password>' -H "Content-Type: application/json" -X POST -d
{"TransferProtocol":"HTTPS", "ImageURI":"<image_uri>","Targets":
["redfish/v1/UpdateService/Firmwarelnventory/DPU_OS"]}!
https://<bmc_ip>/redfish/v1/UpdateService/Actions/UpdateService.SimpleUpdate

(D) Note

This command uses HTTPS for the image download, initiates a
soft reset on the BlueField, and then pushes the boot stream.
For NVIDIA-supplied BFBs, the eMMC is flashed automatically
once the boot stream is pushed. Upon success, a running
message is received.

(D Info

After the BMC boots, it may take a few seconds (6-8 seconds in
BlueField-2 and 2 seconds in BlueField-3) until the BlueField BSP
(DPU_OS) is up.

Where:

o image_uri - contains both the HTTPS server address and the exported path to
the .bfb file on the server, with one slash between the two fields (i.e.,

Software Installation and Upgrade 47

<https_server>/<exported_path_of_bfb>).

(D Info

For example, if <https_server> is urm.nvidia.com and
<exported_path_of_bfb> is artifactory/sw-minx-bluefield-
generic/Ubuntu22.04/new.bfb then
"ImageURI":"10.126.206.42/artifactory/sw-minx-bluefield-
generic/Ubuntu22.04/new.bfb".

o bmc_ip - BMCIP address

Response / error messages:

= |f RShim is disabled:

{

"error": {
"@Message.ExtendedInfo": [
{
"@odata.type": "#Message.v1_1_1.Message",
"Message": "The requested resource of type Target named '/dev/rshim0/boot'
was not found.",
"MessageArgs": [
"Target",
"/dev/rshim0/boot"
1
"Messageld": "Base.1.15.0.ResourceNotFound",
"MessageSeverity": "Critical",
"Resolution": "Provide a valid resource identifier and resubmit the request.”
}
1
"code": "Base.1.15.0.ResourceNotFound",
"message": "The requested resource of type Target named '/dev/rshim0/boot'
was not found."

Software Installation and Upgrade

48

http://urm.nvidia.com/

m |f the HTTPS server address is wrong or the HTTPS service is not stated,
an "Unknown Host" error is expected:

{

"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",

"Message": "Transfer of image 'new.bfb' to '/dev/rshim0/boot' failed.",

"MessageArgs": [

"new.bfb",
"/dev/rshim0/boot"

1

"Messageld": "Update.1.0.TransferFailed",

"Resolution": "Unknown Host: Please provide server's public key using
PublicKeyExchange (for SCP download) or Check and restart server's web service
(for HTTP/HTTPS download)",

"Severity": "Critical"

h

» |f TransferProtocol or any other required field are wrong:

{
"@Message.ExtendedInfo": [{
"@odata.type": "#Message.v1_1_1.Message",
"Message": "The parameter TransferProtocol for the action
UpdateService.SimpleUpdate is not supported on the target resource.",
"MessageArgs": [
"TransferProtocol",
"UpdateService.SimpleUpdate"
1
"Messageld": "Base.1.16.0.ActionParameterNotSupported",
"MessageSeverity": "Warning",
"Resolution"; "Remove the parameter supplied and resubmit the request if the
operation failed."
}
1
}

Software Installation and Upgrade 49

o}
m |f Targets or any other required field are missing:
{
"Targets@Message.ExtendedInfo":
{

"@odata.type": "#Message.v1_1_1.Message",
"Message": "The create operation failed because the required property Targets

was missing from the request."”,
"MessageArgs": [

"Targets"

1
"Messageld": "Base.1.16.0.CreateFailedMissingReqgProperties"”,
"MessageSeverity": "Critical",
"Resolution": "Correct the body to include the required property with a valid

value and resubmit the request if the operation failed."

}
]
}
[J
o

m |f the HTTPS server fails to authenticate the current installed certificate:

{
"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Transfer of image 'new.bfb' to '/dev/rshim0/boot' failed.",
"MessageArgs": [
"new.bfb",
"/dev/rshim0/boot"
1
"Messageld": "Update.1.0.TransferFailed",
"Resolution": "Bad Certificate: Please check the remote server certification,
correct and replace the current installed one",
"Severity": "Critical"
}

Software Installation and Upgrade

m Success message if the request is valid and a task is created:

"@odata.id":
"/redfish/v1/TaskService/Tasks/<task_id>",
"@odata.type": "#Task.v1_4_3.Task",

"Id": "<task_id>",

"TaskState": "Running",

"TaskStatus": "OK"

Tracking Image Transfer Status and Progress for HTTP/HTTPS Protocols

The following section is relevant for HTTP/HTTPS protocols which received a success
message of a valid SimpleUpdate request and a running task state.

Run the following Redfish command to track image transfer status and progress:

curl -k -u root:'<password>' -X GET https://<bmc_ip>/redfish/v1/TaskService/Tasks/<task_id>

Example:

{
"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Image 'new.bfb' is being transferred to '/dev/rshim0/boot".",
"MessageArgs": [
"new.bfb",
"/dev/rshim0/boot"
1
"Messageld": "Update.1.0.TransferringToComponent",
"Resolution": "Transfer started",
"Severity": "OK"
}

Software Installation and Upgrade

51

"PercentComplete": 60,

"StartTime": "2024-06-10T19:39:03+00:00",

"TaskMonitor": "/redfish/v1/TaskService/Tasks/1/Monitor",
"TaskState": "Running",

"TaskStatus": "OK"

Direct SCP

scp <path_to_bfb> root@<bmc_ip>:/dev/rshim0/boot

If bf.cfg is required as part of the boot process, run:

cat <path_to_bfb> bf.cfg > new.bfb
scp <path to new.bfb> root@<bmc_ip>:/dev/rshim0/boot

Tracking Installation Progress and Status

After image transfer is complete, users may follow the installation progress and status
with the help of a dump of current the RShim miscellaneous messages log.

1. Initiate request for dump download:

sudo curl -k -u root:'<password>' -d '{"DiagnosticDataType": "Manager"}' -X POST
https://<ip_address>/redfish/v1/Managers/Bluefield_BMC/LogServices/Dump/Actions/LogService.Ci

Where:

o <ip-address> - BMC IP address

Software Installation and Upgrade 52

o <password> - BMC password

2. Use the received task ID to poll for dump completion:

sudo curl -k -u root:'<password>' -H 'Content-Type: application/json' -X GET
https://<ip_address>/redfish/v1/TaskService/Tasks/<task_id>

Where:
o <ip-address> - BMC IP address
o <password> - BMC password
o <task_id> - Task ID received from the first command
3. Once dump is complete, download and review the dump:
sudo curl -k -u root:'<password>' -H 'Content-Type: application/json' -X GET
https://<ip_address>/redfish/v1/Managers/Bluefield_BMC/LogServices/Dump/Entries/<entry_id>/at
--output </path/to/tar/log_dump.tar.xz>
Where:
0 <ip-address> - BMC IP address

o <password> - BMC password

o <entry_id> - The entry ID of the dump in
redfish/v1/Managers/Bluefield_BMC/LogServices/Dump/Entries

0 </path/to/tar/log_dump.tar.xz> - path to download the log dump log_dump.tar.xz

4. Untar the file to review the logs. For example:

tar xvf] log_dump.tar.xz

Software Installation and Upgrade 53

5. The log is contained in the rshim.log file. The log displays Reboot, finished, DPU is ready, Or

In Enhanced NIC mode when BFB installation completes.

() Note

If the downloaded log file does not contain any of these strings,
keep downloading the log file until they appear.

6. When installation is complete, you may crosscheck the new BFB version against the

version provided to verify a successful upgrade:

curl -k -u root:"<PASSWORD>" -H "Content-Type: application/json" -X GET
https://<bmc_ip>/redfish/v1/UpdateService/Firmwarelnventory/DPU_OS

Example response:

"@odata.id": "/redfish/v1/UpdateService/Firmwarelnventory/DPU_OS",
"@odata.type": "#Softwarelnventory.v1_4_0.Softwarelnventory",
"Description™: "Host image",
"Id": "DPU_OS",
"Members@odata.count”: 1,
"Name": "Software Inventory",
"Relatedltem": [

{

"@odata.id": "/redfish/v1/Systems/Bluefield/Bios"
}

1
"Softwareld": "",

"Status": {
"Conditions": [],
"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

b
"Updateable": true,

Software Installation and Upgrade

54

"Version": "DOCA_2.2.0_BSP_4.2.1_Ubuntu_22.04-8.23-07"

() Note

For comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

Verify BFB is Installed

After installation of the Ubuntu OS is complete, the following note appears in
/dev/rshim0/misc on first boot:

INFO[MISC]: Linux up
INFO[MISC]: DPU is ready

"DPU is ready" indicates that all the relevant services are up and users can login the
system.

After the installation of the Ubuntu 20.04 BFB, the configuration detailed in the following
sections is generated.

() Note

Make sure all the services (including cloud-init) are started on
BlueField and to perform a graceful shutdown before power cycling
the host server.

Software Installation and Upgrade 55

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-bf.cfgParameters

BlueField OS image version is stored under /etc/minx-release in the BlueField:

cat /etc/minx-release
bf-bundle-2.7.0-<version>_ubuntu-22.04_prod

Firmware Upgrade

To upgrade firmware:

1. Access the BlueField using one of the available interfaces (RShim console, BMC
console, SSH via oob_net0 or tmfifo_net0 interfaces).

2. Upgrade the firmware on BlueField. Run:
sudo /opt/mellanox/mInx-fw-updater/minx_fw_updater.pl --force-fw-update

Example output:

Device #1:

Device Type: BlueField-2

[...]
Versions: Current Available
Fw <Old_Fw> <New_FW>

(D) Note

Important! To apply NVConfig changes, stop here and follow
the steps in section "Updating NVConfig Params". In this case,
the following step #3 is redundant.

Software Installation and Upgrade

56

3. Perform a BlueField system reboot for the upgrade to take effect.

Updating NVConfig Params

1. Optional. To reset the BlueField NIC firmware configuration (aka Nvconfig params)
to their factory default values, run the following from the BlueField ARM OS or from
the host OS:

sudo mixconfig -d /dev/mst/<MST device> -y reset

Reset configuration for device /dev/mst/<MST device>? (y/n) [n] : y
Applying... Done!
-I- Please reboot machine to load new configurations.

(i) Note

For now, please ignore tool's instruction to reboot

() Note

To learn what MST device the BlueField has on your setup, run:

mst start
mst status

Example output taken on a multiple BlueField host:

// The MST device corresponds with PCl Bus address.

MST modules:

Software Installation and Upgrade 57

file:///networking/display/bluefieldbsp480/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-3094734045_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystemReboot

MST PCI module is not loaded
MST PCI configuration module loaded

MST devices:

/dev/mst/mt41692_pciconf0 - PCI configuration cycles access.

domain:bus:dev.fn=0000:03:00.0 addr.reg=88
data.reg=92 cr_bar.gw_offset=-1

Chip revision is: 01
/dev/mst/mt41692_pciconf1 - PCI configuration cycles access.

domain:bus:dev.fn=0000:83:00.0 addr.reg=88
data.reg=92 cr_bar.gw_offset=-1

Chip revision is: 01
/dev/mst/mt41686_pciconf0 - PCI configuration cycles access.

domain:bus:dev.fn=0000:a3:00.0 addr.reg=88
data.reg=92 cr_bar.gw_offset=-1

Chip revision is: 01

The MST device IDs for the BlueField-2 and BlueField-3 devices
in this example are /dev/mst/mt41686_pciconfo and
/dev/mst/mt41692_pciconf0 respectively.

2. (Optional) Enable NVMe emulation. Run:

sudo mixconfig -d <MST device> -y s NVME_EMULATION_ENABLE=1

3. Skip this step if your BlueField is Ethernet only. Please refer to section "Supported
Platforms and Interoperability" under the Release Notes to learn your BlueField

type.

If you have an InfiniBand-and-Ethernet-capable BlueField, the default link type of
the ports will be configured to IB. If you want to change the link type to Ethernet,
please run the following configuration:

sudo mixconfig -d <MST device> -y s LINK_TYPE_P1=2 LINK_TYPE_P2=2

Software Installation and Upgrade

4. Perform a BlueField system-level reset for the new settings to take effect.

Software Installation and Upgrade

59

file:///networking/display/bluefieldbsp480/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-3094734045_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystem-levelReset

Deploying BlueField
Software Using PXE

The following steps detail the PXE deployment sequence:
1. Connect to the BlueField console via UART or RShim console.
2. Reboot Arm.
3. Interrupt the boot process into UEFI menu.
4. Access the Boot Manager menu.

5. Select the relevant port to PXE from.

Device Path :

Boot Option Menu PciRoot (0x0)/Pci(0xa,0
X0)/Pci(0x0,0x0)/Pci(0
ubuntu X0,0x0)/Pci(0x0,0x0)/M
focalo AC(0C42A1937A44,0x1)/I
Linux from mmc® Pvd(0.0.0.08)/Uri()

EFI Internal Shell
EFI Misc Device
EFI Network

EFI Network 1

Network 2

EFI Network 3
EFI Network 4
EFI Network 5
EFI Network 6

Software Installation and Upgrade 60

() Note

To set up a PXE server, please refer to the documentation provided
by the distribution vendor. For example, to install Ubuntu 20.04 or
later, see official Ubuntu 20.04 documentation.

Deploying BlueField Software Using
BFB with PXE

(D Info

It is recommended to upgrade your BlueField product to the latest
software and firmware versions available to benefit from new
features and latest bug fixes.

() Note

PXE installation is not supported for NIC mode on NVIDIA®
BlueField®-3.

The following are the steps to prepare a PXE server to deploy a BFB bundle:

1. Provide the image of the BFB file. Run:

mlx-mkbfb -x <BFB>

Software Installation and Upgrade 61

https://ubuntu.com/server/docs/netboot-the-server-installer-via-uefi-pxe-on-arm-aarch64-arm64-and-x86-64-amd64

For example:

mix-mkbfb -x DOCA_2.7.0_BSP_4.7.0_Ubuntu_22.04-<version>.bfb

() Note

mix-mkbfb is a Python script that can be found in BlueField
release tarball under the /bin directory or in the BlueField Arm
file system /usr/bin/mix-mkbfb.

2. Copy the 2 dumped files, dump-image-v0 and dump-initramfs-v0 into the PXE server tftp
path.

3. Create a boot entry in the PXE server. For example:

/var/lib/tftpboot/grub.cfg

set default=0
set timeout=5
menuentry 'Bluefield_Ubuntu_22_04_From_BFB' --class red --class gnu-linux --class gnu --class os

{
linux (tftp)/ubuntu22.04/dump-image-v0 ro ip=dhcp console=hvc0 console=ttyAMAO
initrd (tftp)/ubuntu22.04/dump-initramfs-v0

}

If additional parameters must be set, use the bf.cfg configuration file, then add the
bfks parameter to the Linux command line in the grub.cfg above.

menuentry 'Ubuntu22.04 From BFB with bf.cfg' --class red --class gnu-linux --class gnu --class os {
linux (tftp)/ubuntu22.04/dump-image-v0 console=hvc0 console=ttyAMAO bfnet=o0ob_net0:dhcp
bfks=http://15.22.82.40/bfks
initrd (tftp)/ubuntu22.04/dump-initramfs-v0

Software Installation and Upgrade 62

bfks is @ BASH script that runs alongside BFB's install.sh script at the beginning of the
BFB installation process. Here is an example of bfks that creates a /etc/bf.cfg file:

cat > /etc/bf.cfg << 'EOF

DEBUG=yes
ubuntu_PASSWORD='$1$3BORIrfX$TIHry93NFU)zg3Nya0O0rE1'
EOF

4. Define DHCP.

/etc/dhcp/dhcpd.conf

allow booting;
allow bootp;

subnet 192.168.100.0 netmask 255.255.255.0 {
range 192.168.100.10 192.168.100.20;
option broadcast-address 192.168.100.255;
option routers 192.168.100.1;
option domain-name-servers <ip-address-list>
option domain-search <domain-name-list>;
next-server 192.168.100.1;
filename "/BOOTAA64.EFI";

Specify the IP address for this client.

host tmfifo_pxe_client {
hardware ethernet 00:1a:ca:ff:ff:01;
fixed-address 192.168.100.2;

}

subnet 20.7.0.0 netmask 255.255.0.0 {
range 20.7.8.10 20.7.254.254;
next-server 20.7.6.6;
filename "/BOOTAAG4.EFI";

}

Software Installation and Upgrade

Deploying BlueField Software Using
ISO with PXE

BlueField software (including Ubuntu OS), NIC firmware, and BMC software can be
deployed using an ISO image similarly to the standard Ubuntu deployment method using
ISO. The BlueField ISO image is based on the standard Ubuntu ISO image for Arm64 with
an updated kernel and added DOCA packages.

PXE Server Setup

Mount the ISO:

$ mount bf-bundle-2.7.0085-1-2024-06-14-22-36-50.iso /mnt
$ cp /mnt/casper/vmlinuz /var/lib/tftpboot/boot/
$ cp /mnt/casper/initrd /var/lib/tftpboot/boot/

Example of grub.cfg:

menuentry "Install BF OS" {

linux /boot/vmlinuz autoinstall fsck.mode=skip no-snapd console=hvc0 console=ttyAMAQO
earlycon=pl011,0x13010000 net.ifnames=0 biosdevname=0 iommu.passthrough=1 ip=dhcp
url=http://<HTTP server IP>/jammy/ISO/bf-bundle-2.7.0085-1-2024-06-14-22-36-50.iso bfnet=eth0:dhcp
bfks=http://<HTTP server IP>/jammy/ISO/bfks

initrd /boot/initrd

The bf.cfg file can be used to customize the installation procedure. To create bf.cfg on the
BlueField to be used for the installation use the bfks parameter to point to the script
located on HTTP server that will create bf.cfg file:

bfks example:

cat > /etc/bf.cfg << 'EOF
BMC_PASSWORD="..."

Software Installation and Upgrade 64

EOF

Standard automatic Ubuntu installation using autoinstall.yaml is also supported. See
Introduction to autoinstall - Ubuntu installation documentation.

Example of autoinstall.yaml that can be used to customize the installation and modify bf.cfg:

Example of a grub.cfg with autoinstall.yaml:

menuentry "Install BF OS" {

linux /boot/vmlinuz autoinstall fsck.mode=skip no-snapd console=hvc0 console=ttyAMAO
earlycon=pl011,0x13010000 net.ifnames=0 biosdevname=0 iommu.passthrough=1 ip=dhcp
url=http://<HTTP server IP>/jammy/ISO/bf-bundle-2.7.0085-1-2024-06-14-22-36-50.iso force-
ai=http://<HTTP server IP>/jammy/ISO/autoinstall.yaml cloud-config-url=/dev/null

initrd /boot/initrd

Example of autoinstall.yam!:

version: 1

apt:
preserve_sources_list: false
conf: |
Dpkg::Options {
"--force-confdef";
"--force-confold";

h

storage:
swap:
size: 0
grub:
reorder_uefi: true
config:
- id: nvmeOn1
type: disk
ptable: gpt

Software Installation and Upgrade

65

https://canonical-subiquity.readthedocs-hosted.com/en/latest/intro-to-autoinstall.html

path: /dev/nvmeOn
name: osdisk
wipe: superblock-recursive

- id: nvmeOn1-part1
type: partition
device: nvmeOn1
number: 1
size: 50MB
flag: boot
grub_device: true

- id: nvmeOn1-part1-fs1
type: format
fstype: fat32
label: efi
volume: nvmeOn1-part1

- id: nvmeOn1-part2
type: partition
device: nvmeOn1
number: 2
size: -1

- id: nvmeOn1-part2-fs1
type: format
fstype: ext4
label: root
volume: nvmeOn1-part2

- id: nvmeOn1-mount
type: mount
path: /
device: nvmeOn1-part2-fs1
options: defaults
passno: 0
fstype: auto

- id: nvmeOn1-boot-mount
type: mount
path: /boot/efi
device: nvmeOn1-part1-fs1
options: umask=0077
passno: 1

Software Installation and Upgrade

66

reporting:
builtin:
type: print

Add user-data so that subiquity doesn't complain about us not
having a identity section
user-data:
debug:
verbose: true
write_files:
- path: /etc/iptables/rules.v4
permissions: '0644'
owner: 'root:root’
content: |
*mangle
:PREROUTING ACCEPT [45:3582]
:(INPUT ACCEPT [45:3582]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [36:4600]
:POSTROUTING ACCEPT [36:4600]
:KUBE-IPTABLES-HINT - [0:0]
:KUBE-KUBELET-CANARY - [0:0]
COMMIT
*filter
:INPUT ACCEPT [41:3374]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [32:3672]
:DOCKER-USER - [0:0]
:KUBE-FIREWALL - [0:0]
:KUBE-KUBELET-CANARY - [0:0]
:LOGGING - [0:0]
:POSTROUTING - [0:0]
:PREROUTING - [0:0]
-A INPUT -j KUBE-FIREWALL
-A INPUT -p tcp -m tcp --dport 111 -j REJECT --reject-with icmp-port-unreachable
-A INPUT -p udp -m udp --dport 111 -j REJECT --reject-with icmp-port-unreachable
-A INPUT -i lo -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -d 127.0.0.0/8 -m mark --mark 0xb -m comment --comment MD_IPTABLES -j DROP
-A INPUT -m mark --mark 0xb -m state --state RELATED,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp ! --dport 22 I --tcp-flags FIN,SYN,RST,ACK SYN -m mark --mark Oxb -m state --
state NEW -m comment --comment MD_IPTABLES -j DROP
-A INPUT -f -m mark --mark Oxb -m comment --comment MD_IPTABLES -j DROP

Software Installation and Upgrade 67

-A INPUT -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG FIN,SYN,RST,PSH,ACK,URG -m mark --
mark Oxb -m comment --comment MD_IPTABLES -j DROP

-A INPUT -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG NONE -m mark --mark Oxb -m
comment --comment MD_IPTABLES -j DROP

-A INPUT -m mark --mark 0xb -m state --state INVALID -m comment --comment MD_|IPTABLES -j
DROP

-A INPUT -p tcp -m tcp --tcp-flags RST RST -m mark --mark Oxb -m hashlimit --hashlimit-above 2/sec
--hashlimit-burst 2 --hashlimit-mode srcip --hashlimit-name hashlimit_0 --hashlimit-htable-expire 30000
-m comment --comment MD_IPTABLES -j DROP

-A INPUT -p tcp -m mark --mark 0xb -m state --state NEW -m hashlimit --hashlimit-above 50/sec --
hashlimit-burst 50 --hashlimit-mode srcip --hashlimit-name hashlimit_1 --hashlimit-htable-expire 30000
-m comment --comment MD_IPTABLES -j DROP

-A INPUT -p tcp -m mark --mark 0xb -m conntrack --ctstate NEW -m hashlimit --hashlimit-above
60/sec --hashlimit-burst 20 --hashlimit-mode srcip --hashlimit-name hashlimit_2 --hashlimit-htable-
expire 30000 -m comment --comment MD_IPTABLES -j DROP

-A INPUT -m mark --mark Oxb -m recent --rcheck --seconds 86400 --name portscan --mask
255.255.255.255 --rsource -m comment --comment MD_IPTABLES -j DROP

-A INPUT -m mark --mark Oxb -m recent --remove --name portscan --mask 255.255.255.255 --
rsource -m comment --comment MD_IPTABLES

-A INPUT -p tcp -m tcp --dport 22 -m mark --mark 0xb -m conntrack --ctstate NEW -m recent --set --
name DEFAULT --mask 255.255.255.255 --rsource -m comment --comment MD_IPTABLES

-A INPUT -p tcp -m tcp --dport 22 -m mark --mark 0xb -m conntrack --ctstate NEW -m recent --
update --seconds 60 --hitcount 50 --name DEFAULT --mask 255.255.255.255 --rsource -m comment --
comment MD_IPTABLES -j DROP

-A INPUT -p tcp -m tcp --dport 443 -m mark --mark Oxb -m conntrack --ctstate NEW -m recent --set --
name DEFAULT --mask 255.255.255.255 --rsource -m comment --comment MD_IPTABLES

-A INPUT -p tcp -m tcp --dport 443 -m mark --mark Oxb -m conntrack --ctstate NEW -m recent --
update --seconds 60 --hitcount 10 --name DEFAULT --mask 255.255.255.255 --rsource -m comment --
comment MD_IPTABLES -j DROP

-A INPUT -p udp -m udp --dport 161 -m mark --mark Oxb -m conntrack --ctstate NEW -m recent --set
--name DEFAULT --mask 255.255.255.255 --rsource -m comment --comment MD_IPTABLES

-A INPUT -p udp -m udp --dport 161 -m mark --mark Oxb -m conntrack --ctstate NEW -m recent --
update --seconds 60 --hitcount 100 --name DEFAULT --mask 255.255.255.255 --rsource -m comment --
comment MD_IPTABLES -j DROP

-A INPUT -p tcp -m tcp --dport 22 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p tcp -m tcp --dport 443 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p tcp -m tcp --dport 179 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --dport 68 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --dport 122 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

Software Installation and Upgrade 68

-A INPUT -p udp -m udp --dport 161 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --dport 6306 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED
-m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --dport 69 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --dport 389 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p tcp -m tcp --dport 389 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --dport 1812:1813 -m mark --mark Oxb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --dport 49 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p tcp -m tcp --dport 49 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --sport 53 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p tcp -m tcp --sport 53 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED -m
comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --dport 500 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --dport 4500 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED
-m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --dport 1293 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED
-m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p tcp -m tcp --dport 1293 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --dport 1707 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED
-m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p tcp -m tcp --dport 1707 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -i lo -p udp -m udp --dport 3786 -m conntrack --ctstate NEW,ESTABLISHED -m comment --
comment MD_IPTABLES -j ACCEPT

-A INPUT -i lo -p udp -m udp --dport 33000 -m conntrack --ctstate NEW,ESTABLISHED -m comment -
-comment MD_IPTABLES -j ACCEPT

-A INPUT -p icmp -m mark --mark 0xb -m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --sport 5353 --dport 5353 -m mark --mark Oxb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT

-A INPUT -p udp -m udp --dport 33434:33523 -m mark --mark 0xb -m comment --comment
MD_IPTABLES -j REJECT --reject-with icmp-port-unreachable

-A INPUT -p udp -m udp --dport 123 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT

Software Installation and Upgrade 69

-A INPUT -p udp -m udp --dport 514 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 67 -m mark --mark Oxb -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 60102 -m mark --mark 0xb -m conntrack --ctstate NEW,ESTABLISHED
-m comment --comment "MD_IPTABLES: Feature HA port" -j ACCEPT
-A INPUT -m mark --mark 0xb -m comment --comment MD_IPTABLES -j LOGGING
-A FORWARD -j DOCKER-USER
-A OUTPUT -0 oob_net0 -m comment --comment MD_|IPTABLES -j ACCEPT
-A DOCKER-USER -j RETURN
-A LOGGING -m mark --mark 0xb -m comment --comment MD_IPTABLES -j NFLOG --nflog-prefix
"IPTables-Dropped: " --nflog-group 3
-A LOGGING -m mark --mark 0xb -m comment --comment MD_IPTABLES -j DROP
-A PREROUTING -i oob_net0 -m comment --comment MD_IPTABLES -j MARK --set-xmark
Oxb/Oxffffffff
-A PREROUTING -p tcp -m tcpmss ! --mss 536:65535 -m tcp ! --dport 22 -m mark --mark Oxb -m
conntrack --ctstate NEW -m comment --comment MD_IPTABLES -j DROP
COMMIT
*nat
:PREROUTING ACCEPT [1:320]
:INPUT ACCEPT [1:320]
:OUTPUT ACCEPT [8:556]
:POSTROUTING ACCEPT [8:556]
:KUBE-KUBELET-CANARY - [0:0]
:KUBE-MARK-DROP - [0:0]
:KUBE-MARK-MASQ - [0:0]
:KUBE-POSTROUTING - [0:0]
-A POSTROUTING -m comment --comment "kubernetes postrouting rules" -j KUBE-POSTROUTING
-A KUBE-MARK-DROP -j MARK --set-xmark 0x8000/0x8000
-A KUBE-MARK-MASQ -j MARK --set-xmark 0x4000/0x4000
-A KUBE-POSTROUTING -m mark ! --mark 0x4000/0x4000 -j RETURN
-A KUBE-POSTROUTING -j MARK --set-xmark 0x4000/0x0
-A KUBE-POSTROUTING -m comment --comment "kubernetes service traffic requiring SNAT" -j
MASQUERADE --random-fully
COMMIT
users:
- name: ubuntu
lock_passwd: False
groups: adm, audio, cdrom, dialout, dip, floppy, Ixd, netdev, plugdev, sudo, video
sudo: ALL=(ALL) NOPASSWD:ALL
shell: /bin/bash
plain_text_passwd: 'ubuntu’
chpasswd:
list: |

Software Installation and Upgrade 70

ubuntu:ubuntu
expire: True
no_ssh_fingerprints: true
runcmd:
- [/usr/sbin/netfilter-persistent, start]
- [/opt/mellanox/doca/services/telemetry/import_doca_telemetry.sh]
- [/usr/bin/bfrshlog, "INFO: DPU is ready"]

late-commands:

write release file

- |
cat << EOF > /target/etc/bf-release
BF_NAME="Mellanox Bluefield"
BF_PRETTY_NAME="Mellanox Bluefield"
BF_SWBUILD_TIMESTAMP="2024-06-12-12-47-25"
BF_SWBUILD_VERSION="2.7.0085-1"
BF_COMMIT_ID="7fce146"
BF_PLATFORM="BlueField SoC"
BF_SERIAL_NUMBER="1332723060006"
EOF

mount cdrom

- mkdir -p /target/tmp/cdrom

- mount --bind /cdrom /target/tmp/cdrom | | true

- |
cat << EOF > /target/etc/apt/sources.list
deb [check-date=no] file:///tmp/cdrom/ jammy main restricted
EOF

avoid running flash kernel after install kernel
- mkdir -p /target/run/systemd
- echo docker > /target/run/systemd/container

Install packages

- curtin in-target -- apt update -y

- curtin in-target -- apt remove -y --purge ‘dpkg --list | grep openipmi | awk '{print $2}"

- curtin in-target -- /bin/bash -c "DEBIAN_FRONTEND=noninteractive RUN_FW_UPDATER=no0 apt-get
install --no-install-recommends -y acpid bc binutils bridge-utils build-essential cracklib-runtime dc
docker.io flash-kernel i2c-tools ifenslave iperf3 iptables-persistent iputils-arping iputils-ping iputils-
tracepath kexec-tools libpam-pwaquality libssl-dev lldpad Im-sensors net-tools network-manager nfs-
common nvme-cli openssh-server python3.10 python3-pyinotify python3-pip rasdaemon rsync
sbsigntool shim-signed tcpdump watchdog doca-runtime doca-devel containerd kubelet runc nv-
common-apis nvidia-repo-keys linux-bluefield-modules-bluefield linux-image-5.15.0-1042-bluefield"

Software Installation and Upgrade

71

rewrite sources

-
cat << EOF > /target/etc/apt/sources.list
deb http://ports.ubuntu.com/ubuntu-ports/ jammy main restricted universe multiverse
deb http://ports.ubuntu.com/ubuntu-ports/ jammy-updates main restricted universe multiverse
deb http://ports.ubuntu.com/ubuntu-ports/ jammy-security main restricted universe multiverse
EOF

Allow cloud-init to configure networking

- find /target/etc/cloud/cloud.cfg.d/ -type f ! -name README ! -name 05_logging.cfg | -name 90_dpkg.cfg
-delete | | true;

- curtin in-target -- cloud-init clean

Post-installation steps
Create bf.cfg
- |
cat << EOF > /target/etc/bf.cfg
UPDATE_ATF_UEFI - Updated ATF/UEFI (Default: yes)
Relevant for PXE installation only as while using RSHIM interface ATF/UEFI
will always be updated using capsule method
UPDATE_ATF_UEFI="yes"

HHH AR R R
BMC Component Update

HEHBHSA
BMC_USER - User name to be used to access BMC (Default: root)
BMC_USER="root"

BMC_PASSWORD - Password used by the BMC user to access BMC (Default: None)
BMC_PASSWORD=""

BMC_IP_TIMEOUT - Maximum time in seconds to wait for the connection to the
BMC to be established (Default: 600)
BMC_IP_TIMEOQUT=600

BMC_TASK_TIMEOUT - Maximum time in seconds to wait for BMC task (BMC/CEC
Firmware update) to complete (Default: 1800)

BMC_TASK_TIMEOUT=1800

UPDATE_BMC_FW - Update BMC firmware (Default: yes)
UPDATE_BMC_FW="yes"

Software Installation and Upgrade 72

BMC_REBOOT - Reboot BMC after BMC firmware update to apply the new version
(Default: no). Note that the BMC reboot will reset the BMC console.
BMC_REBOOT="no"

UPDATE_CEC_FW - Update CEC firmware (Default: yes)
UPDATE_CEC_FW="yes"

UPDATE_DPU_GOLDEN_IMAGE - Update BlueField Golden Image (Default: yes)
UPDATE_DPU_GOLDEN_IMAGE="yes"

UPDATE_NIC_FW_GOLDEN_IMAGE- Update NIC firmware Golden Image (Default: yes)
UPDATE_NIC_FW_GOLDEN_IMAGE="yes"

pre_bmc_components_update - Shell function called by BFB's install.sh before
updating BMC components (no communication to the BMC is established at this
point)
post_bmc_components_update - Shell function called by BFB's install.sh after
updating BMC components
HEHHHHHH R HHHH R R HH R R R R R R R R R R R R R R R R
NIC Firmware update
HHH
WITH_NIC_FW_UPDATE - Update NIC Firmware (Default: no)
WITH_NIC_FW_UPDATE="yes"

EOF

Run post-installation script to update ATF/UEFI, NIC firmware and BMC components
- curtin in-target -- /bin/bash -c "device=/dev/nvmeOn1 /usr/local/sbin/bfiso-post-install.sh | | true"

- curtin in-target -- systemctl disable snapd

PXE Sequence with Redfish

HTTP boot configuration can be done using the BlueField BMC's Redfish interface.
ISO upgrade via Redfish to set UEFI HTTPs/PXE boot by setting UEFI first boot source.

To set the UEFI first boot source using Redfish:

Software Installation and Upgrade 73

1. Follow the instructions under section "Deploying BlueField Software Using BFB with
PXE".

2. Check the current boot override settings by performing a GET on the ComputerSystem
schema over 1GbE to the BlueField BMC. Look for the "Boot" property.

curl -k -X GET -u root:<password> https://<BF-BMC-IP>/redfish/v1/Systems/<SystemID>/ |
python3 -m json.tool

{

"Boot": {
"BootNext": "",
"BootOrderPropertySelection": "BootOrder",
"BootSourceOverrideEnabled": "Disabled",
"BootSourceOverrideMode": "UEFI",
"BootSourceOverrideTarget": "None",
"UefiTargetBootSourceOverride": "None",

"BootSourceOverrideEnabled@Redfish.AllowableValues": [
"Once",
"Continuous",
"Disabled"
1
"BootSourceOverrideTarget@Redfish.AllowableValues": [
"None",
"Pxe",
"UefiHttp",
"UefiShell",
"UefiTarget",
"UefiBootNext"

Software Installation and Upgrade 74

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+with+PXE
file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+with+PXE

Boot override enables overriding the first boot source, either
once or continuously.

3. The example output above shows the BootSourceOverrideEnabled property is Disabled
and BootSourceOverrideTarget iS None. The BootSourceOverrideMode property should always
be set to UEFI. Allowable values of BootSourceOverrideEnabled and BootSourceOverrideTarget
are defined in the metadata (BootSourceOverrideEnabled@Redfish.AllowableValues and
BootSourceOverrideTarget@Redfish.AllowableValues respectively).

4. If BootSourceOverrideEnabled is set to Once, then boot override is disabled after the first
boot, and any related properties are reset to their former values to avoid repetition.
If it is set to Continuous, then on every reboot the BlueField keeps performing boot
override (HTTPBoot).

5. To perform boot override, perform a PATCH to pending settings URI over the 1GbE
to the BlueField BMC.

curl -k -X PATCH -d '{"Boot": {"BootSourceOverrideEnabled":"Once",
"BootSourceOverrideMode":"UEFI", "BootSourceOverrideTarget": "UefiHttp",
"HttpBootUri":"http://<HTTP-Server-Ip>/Image.iso"}}' -u root:<password> https://<BF-BMC-
IP>/redfish/v1/Systems/<SystemID>/Settings | python3 -m json.tool

For example:

curl -k -X GET -u root:<password> https://<BF-BMC-IP>/redfish/v1/Systems/<System|D>/ |
python3 -m json.tool
{

"Boot": {
"BootNext": "",
"BootOrderPropertySelection": "BootOrder",
"BootSourceOverrideEnabled": "Once",
"BootSourceOverrideMode": "UEFI",
"BootSourceOverrideTarget": "UefiHttp",
"UefiTargetBootSourceOverride": "None",

Software Installation and Upgrade 75

6. After performing the above PATCH successfully, reboot the BlueField using the
Redfish Manager schema over the 1GbE to the BlueField BMC:

curl -k -u root:<password> -H "Content-Type: application/json" -X POST https://<BF-BMC-
IP>/redfish/v1/Systems/Bluefield/Actions/ComputerSystem.Reset -d '{"ResetType" :
"GracefulRestart"}'

7. Once UEFI has completed, check whether the settings are applied by performing a
GET on ComputerSystem schema over the 1GbE OOB to the BlueField BMC.

() Note

The HttpBootUri property is parsed by the Redfish server and the
URI is presented to the BlueField as part of DHCP lease when
the BlueField performs the HTTP boot.

Software Installation and Upgrade

76

Customizing BlueField
Software Deployment
Using bf.cfg

bf.cfg is an optional configuration file which may be used to customize the software
deployment process on NVIDIA® BlueField® networking platforms (DPU or SuperNIC).

(D) Note

To update the BMC components, it is required to provide the
BMC_PASSWORD using bf.cfg to the BFB/ISO installation environment.

There are different ways to pass bf.cfg along with the BFB or ISO to customize the
installation procedure:

e With BFB from the host:

bfb-install -r <rshim device> -c <path to bf.cfg> -b <BFB>

e Using cat command:

cat <BFB> <path to bf.cfg> > /dev/<rshim device>/boot

e By appending bf.cfg to the BFB and push it to RShim device on a host or BMC:

Software Installation and Upgrade 77

cat <BFB> <path to bf.cfg> > <new BFB>

¢ In PXE environment using bfks parameter to provide a script that will be downloaded
by the installation process and run on the Bluefield side at the beginning of
installation:

cat > /etc/bf.cfg << 'EOF
BMC_PASSWORD="..."
EOF

e Or using autoinstall.yaml. See " Deploying BlueField Software Using ISO with PXE" for
details.

Changing Default Credentials for "ubuntu” User via
bf.cfg

(D Info

For a comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

Ubuntu users are prompted to change the default password (ubuntu) for the default user
(ubuntu) upon first login. Logging in will not be possible even if the login prompt appears
until all services are up ("DPU is ready" message appears in /dev/rshim0/misc).

(i) Note

Attempting to log in before all services are up prints the following
message: Permission denied, please try again.

Software Installation and Upgrade 78

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+ISO+with+PXE

Alternatively, Ubuntu users can provide a unique password that will be applied at the end
of the BFB installation. This password must be defined in a bf.cfg configuration file. To set
the password for the ubuntu user:

1. Create password hash. Run:

openssl passwd -1

Password:

Verifying - Password:
$1$3BORIrfX$TIHry93NFU)Jzg3NyaO0OrE1

2. Add the password hash in quotes to the bf.cfg file:

vim bf.cfg
ubuntu_PASSWORD='$1$3BORIrfX$TIHry93NFU)zg3Nya0O0rE1'

The bf.cfg file is used with the bfb-install script in the steps that follow.

Changing UEFI Password Using bf.cfg

To change UEFI password add current UEFI password UEFI_PASSWORD and the new UEFI
password NEW_UEFI_PASSWORD to bf.cfg.

Changing BMC Password Using bf.cfg

To change BMC root password, add current BMC root password BMC_PASSWORD and the
new BMC root password NEW_BMC_PASSWORD tO bf.cfg.

Advanced Customizations During BFB Installation

Using special purpose configuration parameters in the bf.cfg file, the BlueField's boot
options and OS can be further customized. For a full list of the supported parameters to
customize your BlueField during BFB installation, refer to section "bf.cfg Parameters". In
addition, the bf.cfg file offers further control on customization of BlueField OS installation
and software configuration through scripting.

Software Installation and Upgrade 79

Add any of the following functions to the bf.cfg file for them to be called by the install.sh
script embedded in the BFB:

¢ bfb_modify_os - called after the file system is extracted on the target partitions. It can
be used to modify files or create new files on the target file system mounted under
/mnt. So the file path should look as follows: /mnt/<expected_path_on_target_0S>. This can
be used to run a specific tool from the target OS (remember to add /mnt to the path
for the tool).

e bfb_pre_install - called before eMMC/SSD partitions format and OS filesystem is
extracted

e bfb_post_install - called as a last step before reboot. All eMMC/SSD partitions are
unmounted at this stage.

For example, the bf.cfg script below disables OVS bridge creation upon boot:

cat /root/bf.cfg

bfb_modify_os()

{

log "Disable OVS bridges creation upon boot"

sed -i -r -e 's/(CREATE_OVS_BRIDGES=).*/\1"no"/' /mnt/etc/mellanox/mlnx-ovs.conf
}

bfb_pre_install()

bf.cfg Parameters

The following is a comprehensive list of the supported parameters to customize the bf.cfg
file for BFB installation:

Software Installation and Upgrade 80

HHHHHHHRHHHHH AR HH R R H AR R R A R R R R A R R R R
Configuration which can also be set in

UEFI->Device Manager->System Configuration

HHHHBHFRHH R R BB R R R R RR RH R HHH RHRRHRHHR
Enable SMMU in ACPI.

#SYS_ENABLE_SMMU = TRUE

Enable 12C0 in ACPI.
#SYS_ENABLE_I2CO = FALSE

Disable SPMI in ACPI.
#SYS_DISABLE_SPMI = FALSE

Enable the second eMMC card which is only available on the BlueField Reference Platform.
#SYS_ENABLE_2ND_EMMC = FALSE

Enable eMMC boot partition protection.
#SYS_BOOT_PROTECT = FALSE

Enable SPCR table in ACPI.
#SYS_ENABLE_SPCR = FALSE

Disable PCle in ACPI.
#SYS_DISABLE_PCIE = FALSE

Enable OP-TEE in ACPI.
#SYS_ENABLE_OPTEE = FALSE

B B i
Boot Order configuration

Each entry BOOT<N> could have the following format:

PXE:

BOOT<N> = NET-<NIC_PO | NIC_P1 | OOB | RSHIM>-<IPV4 | IPV6>

PXE over VLAN (vlan-id in decimal):

BOOT<N> = NET-<NIC_PO | NIC_P1 | OOB | RSHIM>[.<vlan-id>]-<IPV4 | IPV6>

UEFI Shell:

BOOT<N> = UEFI_SHELL

DISK: boot entries created during OS installation.

BOOT<N> = DISK

B B B B B L L i g
This example configures PXE boot over the 2nd ConnectX port.

If fails, it continues to boot from disk with boot entries created during OS

installation.

Software Installation and Upgrade 81

#BOOTO = NET-NIC_P1-IPV4
#BOOT1 = DISK

UPDATE_ATF_UEFI - Updated ATF/UEFI (Default: yes)

Relevant for PXE installation only as while using RSHIM interface ATF/UEFI
will always be updated using capsule method

UPDATE_ATF_UEFI="yes"

To change UEFI password set UEFI_PASSWORD to its current value and NEW_UEFI_PASSWORD to the
new UEFI password (clear text).

UEFI_PASSWORD=<current UEFI password>

NEW_UEFI_PASSWORD=<new UEFI password>

UPDATE_DPU_OS - Update/Install BlueField Operating System (Default: yes)
UPDATE_DPU_OS="yes"

grub_admin_PASSWORD - Hashed password to be set for the "admin" user to enter Grub menu

Relevant for Ubuntu BFB only. (Default: is not set)

#Eg.:
grub_admin_PASSWORD='grub.pbkdf2.sha512.10000.5EB1FF92FDD89BDAF3395174282C77430656A6DBE
grub_admin_PASSWORD='grub.pbkdf2.sha512.10000.<hashed password>'

ubuntu_PASSWORD - Hashed password to be set for "ubuntu" user during BFB installation process.
Relevant for Ubuntu BFB only. (Default: is not set)
ubuntu_PASSWORD=<hashed password>

HHHHRBHHHH BB HHH BB R HHH R BB HHH BB R HHH BB HHH BB R HH BB R HHH BB HH BB HH AR RS HHHHRH
BMC Component Update

HHHH BB HHHH BB HHH BB R HHH R BB HHH BB R HHH BB HHH BB R HH BB R HHH BB HH BB HHH AR RS HHHHRH
BMC_USER - User name to be used to access BMC (Default: root)

BMC_USER="root"

BMC_PASSWORD - Password used by the BMC user to access BMC (Default: None)
BMC_PASSWORD=""

NEW_BMC_PASSWORD - can be used to change BMC_PASSWORD to the new one (Default: None)
Note: current BMC_PASSWORD is required

NEW_BMC_PASSWORD=<new BMC password>

BMC_IP_TIMEOUT - Maximum time in seconds to wait for the connection to the

BMC to be established (Default: 600)

BMC_IP_TIMEOUT=600

BMC_TASK_TIMEOUT - Maximum time in seconds to wait for BMC task (BMC/CEC

Software Installation and Upgrade 82

Firmware update) to complete (Default: 1800)
BMC_TASK_TIMEOUT=1800

UPDATE_BMC_FW - Update BMC firmware (Default: yes)
UPDATE_BMC_FW="yes"

BMC_REBOOT - Reboot BMC after BMC firmware update to apply the new version
(Default: no). Note that the BMC reboot will reset the BMC console.
BMC_REBOOT="no"

UPDATE_CEC_FW - Update CEC firmware (Default: yes)
UPDATE_CEC_FW="yes"

UPDATE_DPU_GOLDEN_IMAGE - Update BlueField Golden Image (Default: yes)
UPDATE_DPU_GOLDEN_IMAGE="yes"

UPDATE_NIC_FW_GOLDEN_IMAGE- Update NIC firmware Golden Image (Default: yes)
UPDATE_NIC_FW_GOLDEN_IMAGE="yes"

pre_bmc_components_update - Shell function called by BFB's install.sh before
updating BMC components (no communication to the BMC is established at this
point)

post_bmc_components_update - Shell function called by BFB's install.sh after
updating BMC components

HHHHRBHHHH BB HHH BB R HHH R BB HHH BB R HHH BB HHH BB R HH BB R HHH BB HH BB HH AR RS HHHHRH
NIC Firmware update

HHHH BB HHHH BB HHH BB R HHH R BB HHH BB R HHH BB HHH BB R HH BB R HHH BB HH BB HHH AR RS HHHHRH
WITH_NIC_FW_UPDATE - Update NIC Firmware (Default: yes)

WITH_NIC_FW_UPDATE="yes"

HHHHBHFRHH R R R R R R R R R R R R R R
Other misc configuration

HHHHBHHRHH R HH R R R R R R R R R R R R R R R R

MAC address of the rshim network interface (tmfifo_net0).
#NET_RSHIM_MAC = 00:1a:ca:ff:ff:01

DHCP class identifier for PXE (arbitrary string up to 32 characters)
#PXE_DHCP_CLASS_ID = NVIDIA/BF/PXE

Create dual boot partition scheme (Ubuntu only)
DUAL_BOOT=yes

Software Installation and Upgrade 83

Upgrade NIC firmware
WITH_NIC_FW_UPDATE=yes

Target storage device for the BlueField Arm OS (Default SSD: /dev/nvme0On1)
device=/dev/nvmeOn1

bfb_modify_os - SHELL function called after the file system is extracted on the target partitions.

It can be used to modify files or create new files on the target file system mounted under

/mnt. So the file path should look as follows: /mnt/<expected_path_on_target_0OS>. This

can be used to run a specific tool from the target OS (remember to add /mnt to the path for
the tool).

bfb_pre_install - SHELL function called before partitions format
and OS filesystem is extracted

bfb_post_install - SHELL function called as a last step before reboot.
All partitions are unmounted at this stage.

Software Installation and Upgrade

84

Deploying NVIDIA
Converged Accelerator

(D Info

It is recommended to upgrade your BlueField product to the latest
software and firmware versions available to benefit from new
features and latest bug fixes.

This section assumes that you have installed the BlueField OS BFB on your NVIDIA®
Converged Accelerator using any of the following guides:

e Deploying BlueField Software Using BFB from Host
e Deploying BlueField Software Using BFB from BMC
¢ Deploying BlueField Software Using PXE

NVIDIA® CUDA® (GPU driver) must be installed to use the GPU. For information on how
to install CUDA on your Converged Accelerator, refer to NVIDIA CUDA Installation Guide
for Linux.

Configuring Operation Mode

After installing the BFB, you may now select the mode you want your NVIDIA Converged
Accelerator to operate in.

e Standard (default) - the NVIDIA® BlueField® and the GPU operate separately (GPU
is owned by the host)

e BlueField-X - the GPU is exposed to BlueField and is no longer visible on the host
(GPU is owned by BlueField)

Software Installation and Upgrade 85

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host
file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+BMC
file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+PXE
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

() Note

It is important to know your device name (e.g., mt41686_pciconf0).

MST tool is necessary for this purpose which is installed by default on
the DPU.

Run:

mst status -v

Example output:

MST modules:

MST PCI module is not loaded
MST PCI configuration module loaded

PCI devices:

DEVICE_TYPE MST PCl RDMA NET

NUMA

BlueField2(rev:1) /dev/mst/mt41686_pciconf0.1 3b:00.1 mlx5_1 net-
ens1f1 0

BlueField2(rev:1) /dev/mst/mt41686_pciconf0 3b:00.0 mix5_0 net-
ens1f0 0

BlueField-X Mode

1. Run the following command from the host:

mixconfig -d /dev/mst/<device-name> s PCI_DOWNSTREAM_PORT_OWNER[4]=0xF

Software Installation and Upgrade

2. P erform a BlueField system-level reset for the mixconfig settings to take effect.

Standard Mode

To return BlueField from BlueField-X mode to Standard mode:

1. Run the following command from the host:

mixconfig -d /dev/mst/<device-name> s PCI_DOWNSTREAM_PORT_OWNER[4]=0x0

2. P erform a BlueField system-level reset for the mixconfig settings to take effect.

Verifying Configured Operational Mode

Use the following command from the host or BlueField:

$ sudo mixconfig -d /dev/mst/<device-name> q PCI_DOWNSTREAM_PORT_OWNER[4]

e Example of Standard mode output:

Device #1:

[...]

Configurations: Next Boot
PCI_DOWNSTREAM_PORT_OWNER[4] DEVICE_DEFAULT(0)

e Example of BlueField-X mode output:

Software Installation and Upgrade 87

file:///networking/display/bluefieldbsp480/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-3094734045_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystem-levelReset
file:///networking/display/bluefieldbsp480/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-3094734045_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystem-levelReset

Device #1:

Configurations: Next Boot
PCI_DOWNSTREAM_PORT_OWNER[4] EMBEDDED_CPU(15)

Verifying GPU Ownership

The following are example outputs for when BlueField is configured to BlueField-X mode.

The GPU is no longer visible from the host:

root@host:~# Ispci | grep -i nv
None

The GPU is now visible from BlueField:

ubuntu@bf:~$ Ispci | grep -i nv
06:00.0 3D controller: NVIDIA Corporation GA20B8 (rev a1)

GPU Firmware

Get GPU Firmware

smbpbi: (See SMBPBI spec)

root@bf:~# i2cset -y 3 0x4f 0x5c 0x05 0x08 0x00 0x80 s
root@bf:~# i2cget -y 3 Ox4f Ox5cip 5

5: 0x04 0x05 0x08 0x00 0x5f

root@bf:~# i2cget -y 3 Ox4f Ox5d ip 5

5: 0x04 0x39 0x32 0x2e 0x30

root@bf:~#

root@bf:~#

Software Installation and Upgrade

88

root@bf:~# i2cset -y 3 0x4f Ox5c 0x05 0x08 0x01 0x80 s
root@bf:~# i2cget -y 3 Ox4f Ox5¢ip 5

5: 0x04 0x05 0x08 0x01 Ox5f

root@bf:~# i2cget -y 3 Ox4f 0x5d ip 5

5: 0x04 0x30 0x2e 0x36 0x42

root@bf:~# i2cset -y 3 0x4f 0x5c 0x05 0x08 0x02 0x80 s
root@bf:~# i2cget -y 3 Ox4f Ox5cip 5

5: 0x04 0x05 0x08 0x02 Ox5f

root@bf:~# i2cget -y 3 Ox4f Ox5d ip 5

5: 0x04 0x2e 0x30 0x30 Ox2e

root@bf:~# i2cset -y 3 0x4f 0x5c 0x05 0x08 0x03 0x80 s
root@bf:~# i2cget -y 3 0x4f Ox5cip 5

5: 0x04 0x05 0x08 0x03 0x5f

root@bf:~# i2cget -y 3 Ox4f 0x5d ip 5

5: 0x04 0x30 0x31 0x00 0x00

root@bf:~#

39322e30302e36422e30302e30310000 92.00.6B.00.01

Updating GPU Firmware

root@bf:~# scp root@10.23.201.227:/<path-to-fw-bin>/1004_0230_891__92006B0001-dbg-ota.bin
/tmp/gpu_images/

root@10.23.201.227's password:

1004_0230_891_92006B0001-dbg-ota.bin 100% 384KB 384.4KB/s 00:01

root@bf:~# cat /tmp/gpu_images/progress.txt
TaskState="Running"

TaskStatus="0OK"

TaskProgress="50"

root@bf:~# cat /tmp/gpu_images/progress.txt
TaskState="Running"

TaskStatus="0OK"

TaskProgress="50"

root@bf:~# cat /tmp/gpu_images/progress.txt

TaskState=Frimware update succeeded.
TaskStatus=0K

Software Installation and Upgrade

TaskProgress=100

Software Installation and Upgrade

90

Installing Repo Package on
Host Side

() Note

This section assumes that an NVIDIA® BlueField® networking
platform (DPU or SuperNIC) has already been installed in a server
according to the instructions detailed in the BlueField's hardware
user guide.

The following procedure instructs users on upgrading DOCA local repo package for host.

Removing Previously Installed DOCA Runtime Packages

If an older DOCA (or MLNX_OFED) software version is installed on your host, make sure to
uninstall it before proceeding with the installation of the new version:

$ for fin $(dpkg --list | grep doca | awk '{print $2}'); do echo $f; apt remove --purge

$f -y ; done
Deb-based $ /usr/sbin/ofed_uninstall.sh --force

$ sudo apt-get autoremove

host# for fin $(rpm -qa | grep -i doca) ; do yum -y remove $f; done
RPM- host# /usr/sbin/ofed_uninstall.sh --force
based host# yum autoremove

host# yum makecache

Software Installation and Upgrade 91

https://docs.mellanox.com/category/bluefieldsnic
https://docs.mellanox.com/category/bluefieldsnic

Then perform the following steps:

() Note

The following procedure is valid for RPM-based OS only.

1. Download NVIDIA's RPM-GPG-KEY-Mellanox-SHA256 key:

wget http://www.mellanox.com/downloads/ofed/RPM-GPG-KEY-Mellanox-SHA256
--2018-01-25 13:52:30-- http://www.mellanox.com/downloads/ofed/RPM-GPG-KEY-Mellanox-
SHA256

Resolving www.mellanox.com... 72.3.194.0

Connecting to www.mellanox.com|72.3.194.0|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1354 (1.3K) [text/plain]

Saving to: ?RPM-GPG-KEY-Mellanox-SHA256?

100%[:::>] 1,354 “.'K/S |n Os

2018-01-25 13:52:30 (247 MB/s) - ?RPM-GPG-KEY-Mellanox-SHA256? saved [1354/1354]
2. Install the key:

sudo rpm --import RPM-GPG-KEY-Mellanox-SHA256

warning: romts_HdrFromFdno: Header V3 DSA/SHA1 Signature, key ID 6224c050: NOKEY
Retrieving key from file:///repos/MLNX_OFED//RPM-GPG-KEY-Mellanox

Importing GPG key 0x6224C050:

Userid: "Mellanox Technologies (Mellanox Technologies - Signing Key v2) "

From :/repos/MLNX_OFED//RPM-GPG-KEY-Mellanox-SHA256

Is this ok [y/N]:

3. Verify that the key was successfully imported:

Software Installation and Upgrade 92

rpm -q gpg-pubkey --gf

'0%6{NAME}-%{VERSION}-%{RELEASENt%{SUMMARYAN' | grep Mellanox

gpg-pubkey-a9e4b643-520791ba gpg(Mellanox Technologies)

Downloading DOCA Runtime Packages

The following table provides links to DOCA Runtime packages depending on the OS

running on your host.

oS Arch
Alinux 3.2 x86

aarch6
Anolis 4
x86

aarcho6
BCLinux 21.10 4
x86

aarch6

4
BCLinux 21.10 SP2

x86

aarché
CTyunOS 2.0 4
x86

aarché
CTyunOS 23.01 4
x86

aarché
Debian 10.13 4

x86

Debian 10.8 aarcho6
4

Software Installation and Upgrade

Link
doca-host-2.8.0-204000_24.07_alinux32.x86_64.rpm

doca-host-2.8.0-204000_24.07_anolis86.aarch64.rpm
doca-host-2.8.0-204000_24.07_anolis86.x86_64.rpm
doca-host-2.8.0-204000_24.07_bclinux2210.aarch64.rpm

doca-host-2.8.0-204000_24.07_bclinux2210.x86_64.rpm

doca-host-2.8.0-
204000_24.07_bclinux2110sp2.aarch64.rpm

doca-host-2.8.0-
204000_24.07_bclinux2110sp2.x86_64.rpm

doca-host-2.8.0-204000_24.07_ctyunos20.aarch64.rpm
doca-host-2.8.0-204000_24.07_ctyunos20.x86_64.rpm
doca-host-2.8.0-204000_24.07_ctyunos2301.aarch64.rpm
doca-host-2.8.0-204000_24.07_ctyunos2301.x86_64.rpm
doca-host_2.8.0-204000-24.07-debian1013_arm64.deb
doca-host_2.8.0-204000-24.07-debian1013_amd64.deb

doca-host_2.8.0-204000-24.07-debian108_arm64.deb

93

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_alinux32.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_anolis86.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_anolis86.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_bclinux2210.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_bclinux2210.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_bclinux2110sp2.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_bclinux2110sp2.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_bclinux2110sp2.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_bclinux2110sp2.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ctyunos20.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ctyunos20.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ctyunos2301.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ctyunos2301.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian1013_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian1013_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian108_arm64.deb

(0N

Debian 10.9

Debian 11.3

Debian 12.1

Debian 12.5

EulerOS 20 SP11

EulerOS 20 SP12

Fedora32

Kylin 1.0 SP2

Kylin 1.0 SP3

Mariner 2.0
Oracle Linux 7.9
Oracle Linux 8.4

Oracle Linux 8.6

Software Installation and Upgrade

Arch
x86
x86

aarch6
4

x86

aarch6
4

x86

aarch6
4

x86

aarch6
4

x86

aarch6
4

x86
x86

aarch6
4

x86

aarch6
4

x86
x86
x86
x86
x86

Link
doca-host_2.8.0-204000-24.07-debian108_amd64.deb
doca-host_2.8.0-204000-24.07-debian109_amd64.deb

doca-host_2.8.0-204000-24.07-debian113_armé64.deb
doca-host_2.8.0-204000-24.07-debian113_amd64.deb
doca-host_2.8.0-204000-24.07-debian121_armé64.deb
doca-host_2.8.0-204000-24.07-debian121_amd64.deb
doca-host_2.8.0-204000-24.07-debian125_armé64.deb

doca-host_2.8.0-204000-24.07-debian125_amd64.deb

doca-host-2.8.0-
204000_24.07_euleros20sp11.aarch64.rpm

doca-host-2.8.0-204000_24.07_euleros20sp11.x86_64.rpm

doca-host-2.8.0-
204000_24.07_euleros20sp12.aarch64.rpm

doca-host-2.8.0-204000_24.07_euleros20sp12.x86_64.rpm
doca-host-2.8.0-204000_24.07_fc32.x86_64.rpm

doca-host-2.8.0-204000_24.07_kylin10sp2.aarch64.rpm
doca-host-2.8.0-204000_24.07_kylin10sp2.x86_64.rpm
doca-host-2.8.0-204000_24.07_kylin10sp3.aarch64.rpm

doca-host-2.8.0-204000_24.07_kylin10sp3.x86_64.rpm
doca-host-2.8.0-204000_24.07_mariner20.x86_64.rpm
doca-host-2.8.0-204000_24.07_0l179.x86_64.rpm
doca-host-2.8.0-204000_24.07_0184.x86_64.rpm
doca-host-2.8.0-204000_24.07_0l86.x86_64.rpm

94

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian108_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian109_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian113_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian113_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian121_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian121_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian125_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian125_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_euleros20sp11.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_euleros20sp11.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_euleros20sp11.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_euleros20sp12.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_euleros20sp12.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_euleros20sp12.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_fc32.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_kylin10sp2.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_kylin10sp2.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_kylin10sp3.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_kylin10sp3.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_mariner20.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol79.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol84.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol86.x86_64.rpm

OS

Oracle Linux 8.7
Oracle Linux 8.8
Oracle Linux 9.1

Oracle Linux 9.2

openEuler 20.03
SP3

openEuler 22.03

openEuler 22.03
SP1

RHEL/CentOS 8.0

RHEL/CentOS 8.1

RHEL/CentOS 8.2

RHEL/CentOS 8.3

RHEL/CentOS 8.4

Software Installation and Upgrade

Arch
x86
x86
x86
x86
aarché
4

x86

aarch6
4

x86

x86
aarch6
4

x86

aarch6
4

x86

aarch6
4

x86

aarch6
4

x86

aarch6
4

x86

Link

doca-host-2.8.0-204000_24.07_0187.x86_64.rpm
doca-host-2.8.0-204000_24.07_0188.x86_64.rpm
doca-host-2.8.0-204000_24.07_0191.x86_64.rpm
doca-host-2.8.0-204000_24.07_0192.x86_64.rpm

doca-host-2.8.0-
204000_24.07_openeuler2003sp3.aarch64.rpm

doca-host-2.8.0-
204000_24.07_openeuler2003sp3.x86_64.rpm

doca-host-2.8.0-
204000_24.07_openeuler2203.aarch64.rpm

doca-host-2.8.0-
204000_24.07_openeuler2203.x86_64.rpm

doca-host-2.8.0-
204000_24.07_openeuler2203sp1.x86_64.rpm

doca-host-2.8.0-204000_24.07_rhel80.aarch64.rpm
doca-host-2.8.0-204000_24.07_rhel80.x86_64.rpm
doca-host-2.8.0-204000_24.07_rhel81.aarch64.rpm
doca-host-2.8.0-204000_24.07_rhel81.x86_64.rpm
doca-host-2.8.0-204000_24.07_rhel82.aarch64.rpm
doca-host-2.8.0-204000_24.07_rhel82.x86_64.rpm
doca-host-2.8.0-204000_24.07_rhel83.aarch64.rpm
doca-host-2.8.0-204000_24.07_rhel83.x86_64.rpm
doca-host-2.8.0-204000_24.07_rhel84.aarch64.rpm

doca-host-2.8.0-204000_24.07_rhel84.x86_64.rpm

95

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol87.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol88.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol91.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol92.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2003sp3.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2003sp3.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2003sp3.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2003sp3.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2203.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2203.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2203.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2203.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2203sp1.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2203sp1.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel80.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel80.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel81.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel81.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel82.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel82.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel83.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel83.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel84.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel84.x86_64.rpm

(0N Arch Link

aarch6 doca-host-2.8.0-204000_24.07_rhel85.aarch64.rpm
RHEL/Cent0S 85 |4

x86 doca-host-2.8.0-204000_24.07_rhel85.x86_64.rpm

aarch6 doca-host-2.8.0-204000_24.07_rhel86.aarch64.rpm
RHEL/Rocky 8.6 |4

x86 doca-host-2.8.0-204000_24.07_rhel86.x86_64.rpm

aarch6 doca-host-2.8.0-204000_24.07_rhel87.aarch64.rpm
RHEL/Rocky 8.7 |4

x86 doca-host-2.8.0-204000_24.07_rhel87.x86_64.rpm

aarch6 doca-host-2.8.0-204000_24.07_rhel88.aarch64.rpm
RHEL/Rocky 8.8 |4

x86 doca-host-2.8.0-204000_24.07_rhel88.x86_64.rpm

aarch6 doca-host-2.8.0-204000_24.07_rhel89.aarch64.rpm
RHEL/Rocky 8.9 |4

x86 doca-host-2.8.0-204000_24.07_rhel89.x86_64.rpm

aarch6 doca-host-2.8.0-204000_24.07_rhel810.aarch64.rpm
RHEL/Rocky 8.10 |4

x86 doca-host-2.8.0-204000_24.07_rhel810.x86_64.rpm

aarch6 doca-host-2.8.0-204000_24.07_rhel90.aarch64.rpm
RHEL/Rocky 9.0 |4

x86 doca-host-2.8.0-204000_24.07_rhel90.x86_64.rpm

aarch6 doca-host-2.8.0-204000_24.07_rhel91.aarch64.rpm
RHEL/Rocky 9.1 |4

x86 doca-host-2.8.0-204000_24.07_rhel91.x86_64.rpm

aarch6 doca-host-2.8.0-204000_24.07_rhel92.aarch64.rpm
RHEL/Rocky 9.2 |4

x86 doca-host-2.8.0-204000_24.07_rhel92.x86_64.rpm
RHEL/Rocky 9.3 Zarch6 doca-host-2.8.0-204000_24.07_rhel93.aarch64.rpm

Software Installation and Upgrade

96

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel85.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel85.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel86.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel86.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel87.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel87.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel88.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel88.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel89.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel89.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel810.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel810.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel90.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel90.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel91.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel91.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel92.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel92.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel93.aarch64.rpm

(0N

RHEL/Rocky 9.4

SLES 15 SP2

SLES 15 SP3

SLES 15 SP4

SLES 15 SP5

SLES 15 SP6

TencentOS 3.3

Ubuntu 20.04

Ubuntu 22.04

Ubuntu 24.04

Software Installation and Upgrade

Arch
x86

aarcho6
4

x86

aarcho6
4

x86

aarcho6
4

x86

aarcho6
4

x86

aarcho6
4

x86
x86

aarch6
4

x86

aarch6
4

x86

aarch6
4

x86

aarch6
4

x86

Link
doca-host-2.8.0-204000_24.07_rhel93.x86_64.rpm

doca-host-2.8.0-204000_24.07_rhel94.aarch64.rpm
doca-host-2.8.0-204000_24.07_rhel94.x86_64.rpm
doca-host-2.8.0-204000_24.07_sles15sp2.aarch64.rpm
doca-host-2.8.0-204000_24.07_sles15sp2.x86_64.rpm
doca-host-2.8.0-204000_24.07_sles15sp3.aarch64.rpm
doca-host-2.8.0-204000_24.07_sles15sp3.x86_64.rpm
doca-host-2.8.0-204000_24.07_sles15sp4.aarch64.rpm
doca-host-2.8.0-204000_24.07_sles15sp4.x86_64.rpm
doca-host-2.8.0-204000_24.07_sles15sp5.aarch64.rpm

doca-host-2.8.0-204000_24.07_sles15sp5.x86_64.rpm
doca-host-2.8.0-204000_24.07_sles15sp6.x86_64.rpm

doca-host-2.8.0-204000_24.07_tencentos33.aarch64.rpm
doca-host-2.8.0-204000_24.07_tencentos33.x86_64.rpm
doca-host_2.8.0-204000-24.07-ubuntu2004_arm64.deb
doca-host_2.8.0-204000-24.07-ubuntu2004_amd64.deb
doca-host_2.8.0-204000-24.07-ubuntu2204_arm64.deb
doca-host_2.8.0-204000-24.07-ubuntu2204 _amd64.deb
doca-host_2.8.0-204000-24.07-ubuntu2404_arm64.deb

doca-host_2.8.0-204000-24.07-ubuntu2404 _amd64.deb

97

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel93.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel94.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel94.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp2.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp2.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp3.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp3.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp4.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp4.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp5.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp5.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp6.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_tencentos33.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_tencentos33.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-ubuntu2004_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-ubuntu2004_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-ubuntu2204_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-ubuntu2204_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-ubuntu2404_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-ubuntu2404_amd64.deb

oS Arch Link

aarcho6
UOS20.1060 4
x86 doca-host-2.8.0-204000_24.07_u0s201060.x86_64.rpm

doca-host-2.8.0-204000_24.07_u0s201060.aarch64.rpm

aarcho6
UOS20.1060A 4
x86 doca-host-2.8.0-204000_24.07_u0s201060a.x86_64.rpm

doca-host-2.8.0-204000_24.07_uo0s201060a.aarch64.rpm

XenServer 8.2 x86 doca-host-2.8.0-204000_24.07_xenserver82.x86_64.rpm

Installing Local Repo Package for Host Dependencies

1. Install DOCA local repo package for host:

oS Procedure

1. Download the DOCA SDK and DOCA Runtime packages from
Downloading DOCA Runtime Packages section for the host.
2. Unpack the deb repo. Run:

host# sudo dpkg -i doca-host-repo-ubuntu<version>_amd64.deb
Ubu 3. Perform apt update. Run:
ntu

host# sudo apt-get update

4. Run aptinstall for DOCA runtime, tools, and SDK:

host# sudo apt install -y doca-runtime doca-sdk

Cent 1. Download the DOCA SDK and DOCA Runtime packages from
(0N Downloading DOCA Runtime Packages section for the x86 host.
2. Install the following software dependencies. Run:

host# sudo yum install -y epel-release

3. For CentOS 8.2 only, also run:

Software Installation and Upgrade

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_uos201060.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_uos201060.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_uos201060a.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_uos201060a.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_xenserver82.x86_64.rpm

oS Procedure

host# yum config-manager --set-enabled PowerTools
4. Unpack the RPM repo. Run:

host# sudo rpm -Uvh doca-host-repo-rhel<version>.x86_64.rpm

5. Run yum install for DOCA runtime, tools, and SDK.

host# sudo yum install -y doca-runtime doca-sdk

RHE 1. Open a RedHat account.
L 1. Log into RedHat website via the developers tab.
2. Create a developer user.
2. Run:

host# subscription-manager register --username=<username> --
password=PASSWORD

To extract pool ID:

host# subscription-manager list --available --all

Subscription Name: Red Hat Developer Subscription for Individuals
Provides: Red Hat Developer Tools (for RHEL Server for ARM)

Red Hat CodeReady Linux Builder for x86_64

Pool ID: <pool-id>

And use the pool ID for the Subscription Name and Provides that include
Red Hat CodeReady Linux Builder for x86_64.
3. Run:

host# subscription-manager attach --pool=<pool-id>
host# subscription-manager repos --enable codeready-builder-for-rhel-8-
x86_64-rpms

Software Installation and Upgrade

99

https://developers.redhat.com/?percmp=7013a000002wAAqAAM&extIdCarryOver=true&sc_cid=701f2000001OH6fAAG
https://sso.redhat.com/auth/realms/redhat-external/login-actions/registration?client_id=rhd-web&tab_id=8x0-WZfx7BY

oS Procedure

host# yum makecache
4. Install the DOCA local repo package for host. Run:

host# rpm -Uvh doca-host-repo-rhel<version>.x86_64.rpm
host# sudo yum install -y doca-runtime doca-sdk

5. Sign out from your RHEL account. Run:

host# subscription-manager remove --all
host# subscription-manager unregister

2. Verify that RShim is active.

host# sudo systemctl status rshim

This command is expected to display incative (dead).

o To launch RShim service, run:

host# sudo systemctl start rshim

o To allow RShim to launch automatically in future boots, run:

host# sudo systemctl enable rshim

3. A'ssign a dynamic IP to tmfifo_net0 interface (RShim host interface):

host# ifconfig tmfifo_net0 192.168.100.1 netmask 255.255.255.252 up

Software Installation and Upgrade 100

Installing Popular Linux
Distributions on BlueField

Building Your Own BFB Installation Image

Users wishing to build their own customized NVIDIA® BlueField® networking platform's
(DPU or SuperNIC) OS image can use the BFB build environment. See this GitHub
webpage for more information.

() Note

For any customized BlueField OS image to boot on the UEFI secure-
boot-enabled BlueField (default BlueField secure boot setting), the OS
must be either signed with an existing key in the UEFI DB (e.g., the
Microsoft key), or UEFI secure boot must be disabled. See "Secure
Boot" and its subpages for more details.

Installing Linux Distributions

Contact NVIDIA Enterprise Support for information on the installation of Linux
distributions other than Ubuntu.

BlueField Linux Drivers

The following table lists the BlueField drivers which are part of the Official Ubuntu Linux
distribution for BlueField. Some of the drivers are not in the upstream Linux kernel yet.

Software Installation and Upgrade 101

https://github.com/Mellanox/bfb-build/
https://github.com/Mellanox/bfb-build/
https://confluence.nvidia.com/display/bluefieldbsp480/NVIDIA+BlueField+BSP+Documentation#NVIDIABlueFieldBSPDocumentation-TechnicalSupport
file:///networking/display/bluefieldbsp480/Secure+Boot
file:///networking/display/bluefieldbsp480/Secure+Boot

Driv
er

bluefi
eld-
edac

dw_m
mc_bl
uefiel

sdhci-
of-
dwcm
shc

gpio-
mixbf

gpio-
mlixbf

i2¢c-
mix

ipmb-
dev-
int

ipmb-
host

mlixbf-
gige

mlixbf-
livefis

mixbf-
pka

mIixbf-
pmc

Blu | Blu

_ eFi |eFi
Description old- | eld-
2 3

BlueField-specific EDAC driver

BlueField DW Multimedia Card driver

SDHCI platform driver for Synopsys DWC MSHC

GPIO driver

GPIO driver

I2C bus driver (i2c-mlixbf.c upstream)

Driver needed to receive IPMB messages from a BMC and send a
response back. This driver works with the 12C driver and a user-space
program such as OpenlPMI.

Driver needed on BlueField to send IPMB messages to the BMC on the
IPMB bus. This driver works with the 12C driver. It only loads
successfully if it executes a successful handshake with the BMC.

Gigabit Ethernet driver

BlueField HCA firmware burning driver. This driver supports burning
firmware for the embedded HCA in the BlueField SoC.

BlueField PKA kernel module

Performance monitoring counters. The driver provides access to
available performance modules through the sysfs interface. The

Software Installation and Upgrade 102

Blu | Blu

Driv Descrintion eFi | eFi
er P eld- | eld-
2 3

performance modules in BlueField are present in several hardware
blocks and each block has a certain set of supported events.

Kernel driver that provides a debufgs interface for the system
software to monitor the BlueField device's power and thermal
management parameters.

mIixbf-
ptm

mixbf-

.| TMFIFO driver for BlueField SoC
tmfifo

mix-
bootc
tl

Boot control driver. This driver provides a sysfs interface for systems
management software to manage reset time actions.

mix-

tio TRIO driver for BlueField SoC

pwr-

mixpf | SUPpoOrts reset or low-power mode handling for BlueField.

pinctrl | Allows multiplexing individual GPIOs to switch from the default
-mixbf | hardware mode to software-controlled mode.

Mixbf- Mellanox PMC driver
pmc

Software Installation and Upgrade 103

Updating BlueField
Software Packages Using
Standard Linux Tools

This upgrade procedure enables upgrading DOCA components using standard Linux
tools (e.g., apt update and yum update). This process utilizes native package manager

repositories to upgrade BlueField networking platforms (DPUs or SuperNICs) without the
need for a full installation.

This process has the following benefits :
e Only updates components that include modifications

o Configurable - user can select specific components (e.g., UEFI-ATF, NIC-FW)

¢ Includes upgrade of:
o DOCA drivers and libraries
o DOCA reference applications
o BSP (UEFI/ATF) upgrade while maintaining the configuration

o NIC firmware upgrade while maintaining the configuration

e Does not:
o Impact user binaries
o Upgrade non-Ubuntu OS kernels
o Upgrade BlueField BMC firmware

e After completion of BlueField upgrade:

Software Installation and Upgrade 104

o If NIC firmware was not updated, perform BlueField Arm reset (software
reset/reboot BlueField)

o If NIC firmware was updated, perform firmware reset (mixfwreset) or perform a
graceful shutdown and power cycle

oS Action Instructions

Ubun | Remove mixbf-

tu/ bootimages <bf> $ apt remove --purge mixbf-bootimages* -y
Debia | package
n

Install the the <bf>$ apt update

GPG key <bf>$ apt install gnupg2

Export DOCA_REPO with the relevant URL. The following is an
example for Ubuntu 22.04:

<bf>$ export

DOCA_REPO="https://linux.mellanox.com/public/repo/doca/2.8.0/ubunt
u22.04/dpu-arm64"

Export the e Ubuntu 22.04 -
d'e5|r'ed . https://linux.mellanox.com/public/repo/doca/2.8.0/ubuntu
distribution 22.04/dpu-arm64
e Ubuntu 20.04 -
https://linux.mellanox.com/public/repo/doca/2.8.0/ubuntu
20.04/dpu-arm64
e Debian 12 -
https://linux.mellanox.com/public/repo/doca/2.8.0/debian
12/dpu-arm64
Add GPG key
to APT <bf> $ curl $DOCA_REPO/GPG-KEY-Mellanox.pub | gpg --dearmor >
trusted /etc/apt/trusted.gpg.d/GPG-KEY-Mellanox.pub
keyring

Software Installation and Upgrade 105

oS Action Instructions

Add DOCA '
online <bf>$ echo "deb [signed-by=/etc/apt/trusted.gpg.d/GPG-KEY-
] Mellanox.pub] $DOCA_REPO ./" > /etc/apt/sources.list.d/doca.list
repository
Update index <bf> $ apt update
Run:
<bf> $ apt install mIxbf-bootimages-signed
Upgrade
UEFI/ATF Then i nitiate upgrade for UEFI/ATF firmware:
firmware
<bf> $ apt install mixbf-scripts
<bf>$ bfrec
The following commands update the firmware package and
flash the firmware to the NIC:
Upgrade
BlueField NIC <bf>$ apt install mInx-fw-updater-signed
firmware <bf> $ sudo /opt/mellanox/minx-fw-updater/minx_fw_updater.pl --force-
fw-update
Remove old
metapackage <bf> $ apt-get remove doca* minx-ofed* kernel-mft* -y
)
Install new
metapackage <bf> $ apt-get install doca-runtime doca-devel -y
S
Upgrade <bf>$ apt upgrade
system

Apply the new | For the upgrade to take effect, perform BlueField system reboot.
changes,

Software Installation and Upgrade 106

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-2799458725_id-.NVIDIABlueFieldResetandRebootProceduresv2.7.0-BlueFieldSystemRebootBlueFieldSystemReboot

oS Action

NIC firmware,
and UEFI/ATF

Cent
OS/R Remove mIxbf-
bootimages
HEL/
. | package
Anolis
/Rock
y
Export the
desired
distribution

Instructions

Note
This step triggers immediate reboot of the
BlueField Arm cores.

<bf>$ yum -y remove mixbf-bootimages*
<bf>$ yum makecache

Export DOCA_REPO with the relevant URL. The following is an
example for Rocky Linux 8.6:

<bf>$ export
DOCA_REPO="https://linux.mellanox.com/public/repo/doca/2.8.0/rhel8.6
/dpu-arm64/"

AnolisOS 8.6 -
https://linux.mellanox.com/public/repo/doca/2.8.0/anolis8.
6/dpu-armé64/

OpenEuler 20.03 sp1 -
https://linux.mellanox.com/public/repo/doca/2.8.0/openeu
ler20.03sp1/dpu-armé4/

CentOS 7.6 with 4.19 kernel -
https://linux.mellanox.com/public/repo/doca/2.8.0/rhel7.6-
4.19/dpu-arm64/

CentOS 7.6 with 5.10 kernel -
https://linux.mellanox.com/public/repo/doca/2.8.0/rhel7.6-
5.10/dpu-arm64/

CentOS 7.6 with 5.4 kernel -
https://linux.mellanox.com/public/repo/doca/2.8.0/rhel7.6/
dpu-armé4/

Rocky Linux 8.6 -
https://linux.mellanox.com/public/repo/doca/2.8.0/rhel8.6/
dpu-armé64/

Software Installation and Upgrade 107

oS Action Instructions

echo "[doca]
name=DOCA Online Repo
baseurl=$DOCA_REPO

Add DOCA
i enabled=1
on Ine_ gpgcheck=0
repository oriority=10
cost=10" > /etc/yum.repos.d/doca.repo
A file is created under /etc/yum.repos.d/doca.repo .
Update index <bf> $ yum makecache
Run:
<bf>$ yum install mixbf-bootimages-signed mixbf-bfscripts
Upgrade
UEFI/ATF C .
. Then i nitiate the upgrade for UEFI/ATF firmware:
firmware
<bf> $ bfrec
The following commands update the firmware package and
flash the firmware to the NIC:
Upgrade
BlueField NIC <bf>$ yum install minx-fw-updater-signed
firmware <bf> $ sudo /opt/mellanox/minx-fw-updater/minx_fw_updater.pl --force-
fw-update
Remove old
metapackage <bf>$ yum remove doca* minx-ofed* kernel-mft* -y
S
Install new
metapackage

S () Note

Before installing the metapackages, please
remove strongSwan and libreSwan packages

Software Installation and Upgrade 108

oS Action Instructions

to avoid any conflicts:

<bf> $ yum remove strongswan-bf strongswan-
swanctl

<bf> $ yum remove strongswan-bf strongswan-
swanctl libreswan

<bf>$ yum -y install doca-runtime doca-devel

Upgrade

<bf>$ yum upgrade --nobest
system yum tpe

For the upgrade to take effect, perform BlueField system reboot.

Apply the new

changes, @ Note
NIC firmware, This step triggers immediate reboot of the
and UEFI/ATF BlueField Arm cores.

Upgrading Boot Software

This section describes how to use the NVIDIA® BlueField® networking platform's (DPU or
SuperNIC) alternate boot partition support feature to safely upgrade the boot software.
We give the requirements that motivate the feature and explain the software interfaces
that are used to configure it.

Software Installation and Upgrade 109

https://docs.nvidia.com/doca/sdk/nvidia+bluefield+reset+and+reboot+procedures/index.html#src-2799458725_id-.NVIDIABlueFieldResetandRebootProceduresv2.7.0-BlueFieldSystemRebootBlueFieldSystemReboot

BL1 (ROM) |«————— reset

BFB File Overview

The default BlueField bootstream (BFB) shown above (located at
/lib/firmware/mellanox/boot/default.bfb) is assumed to be loaded from the eMMC. In it, there is
a hard-coded boot path pointing to a GUID partition table (GPT) on the eMMC device.
Once loaded, as a side effect, this path would be also stored in the UPVS (UEFI Persistent
Variable Store) EEPROM. That is, if you use the bfrec tools provided in the mixbf-bfscripts
package to write this BFB to the eMMC boot partition (see bfrec man for more
information), then during boot, the BlueField would load this from the boot FIFO, and the
UEFI would assume to boot off the eMMC.

BFB files can be useful for many things such as installing new software on a BlueField. For
example, the installation BFB for BlueField platforms normally contains an initramfs file in
the BFB chain. Using the initramfs (and Linux kernel Image also found in the BFB) you can
do things like set the boot partition on the eMMC using mix-bootctl or flash new HCA
firmware using MFT utilities. You can also install a full root file system on the eMMC while
running out of the initramfs.

The following table presents the types of files possible in a BFB.

Software Installation and Upgrade 110

https://github.com/Mellanox/bfscripts/blob/master/man/bfrec.8

Filename
Bl2r-cert
Bl2r

bl2-cert

bl2

trusted-key-cert

bl31-key-cert
bl31-cert
bi31
bl32-key-cert
bl32-cert
bl32
bl33-key-cert
bl33-cert
bi33
boot-acpi
boot-dtb
boot-desc
boot-path
boot-args
boot-timeout
image

initramfs

(D) Note

Description

Secure Firmware BL2R (RloT Core) certificate
Secure Firmware BL2R (RloT Core)

Trusted Boot Firmware BL2 certificate
Trusted Boot Firmware BL2

Trusted key certificate

EL3 Runtime Firmware BL3-1 key certificate
EL3 Runtime Firmware BL3-1 certificate

EL3 Runtime Firmware BL3-1

Secure Payload BL3-2 (Trusted OS) key certificate
Secure Payload BL3-2 (Trusted OS) certificate
Secure Payload BL3-2 (Trusted OS)
Non-Trusted Firmware BL3-3 key certificate
Non-Trusted Firmware BL3-3 certificate
Non-Trusted Firmware BL3-3

Name of the ACPI table

Name of the DTB file

Default boot menu item description

Boot image path

Arguments for boot image

Boot menu timeout

Boot image

In-memory filesystem

Software Installation and Upgrade

33
28

13

10
14

11
15

55
56
57
58
59
60
62
63

Read By
BL1
BL1

BL1/BL2R(@)

BL1/BL2R(@)

BL2
BL2
BL2
BL2
BL2
BL2
BL2
BL2
BL2
BL2
UEFI
UEFI
UEFI
UEFI
UEFI
UEFI
UEFI
UEFI

111

(@ When BL2R is booted in BlueField-2 devices, both the BL2 image
and the BL2 certificate are read by BL2R. Thus, the BL2 image and
certificate are read by BL1. BL2R is not booted in BlueField-1 devices.

Before explaining the implementation of the solution, the BlueField boot process needs
to be expanded upon.

BlueField Boot Process

Arm Trusted Firmware (ATF)

BL1 Boot
ROM

—» Linux Kernel

UEFI
(BL33)

initramfs

reset

The BlueField boot flow is comprised of 4 main phases:
e Hardware loads Arm Trusted Firmware (ATF)
e ATF loads UEFI—together ATF and UEFI make up the booter software
e UEFI loads the operating system, such as the Linux kernel
e The operating system loads applications and user data

When booting from eMMC, these stages make use of two different types of storage
within the eMMC part:

e ATF and UEFI are loaded from a special area known as the eMMC boot partition.
Data from a boot partition is automatically streamed from the eMMC device to the
eMMC controller under hardware control during the initial boot-up. Each eMMC

Software Installation and Upgrade 112

device has two boot partitions, and the partition which is used to stream the boot
data is chosen by a non-volatile configuration register in the eMMC.

e The operating system, applications, and user data come from the remainder of the
chip, known as the user area. This area is accessed via block-size reads and writes,
done by a device driver or similar software routine.

Upgrading Bootloader

In most deployments, the Arm cores of BlueField are expected to obtain their bootloader
from an on-board eMMC device. Even in environments where the final OS kernel is not
kept on eMMC—for instance, systems which boot over a network—the initial booter code
still comes from the eMMC.

Most software stacks need to be modified or upgraded in their lifetime. Ideally, the user
can to install the new software version on their BlueField system, test it, and then fall
back to an older version if the new one does not work. In some environments, it is
important that this fallback operation happen automatically since there may be no
physical access to the system. In others, there may be an external agent, such as a
service processor, which could manage the process.

To satisfy the requests listed above, the following must be performed:

1. Provision two software partitions on the eMMC, 0 and 1. At any given time, one area
must be designated the primary partition, and the other the backup partition. The
primary partition is the one booted on the next reboot or reset.

2. Allow software running on the Arm cores to declare that the primary partition is
now the backup partition, and vice versa. (For the remainder of this section, this
operation is referred to as "swapping the partitions" even though only the pointer is
modified, and the data on the partitions does not move.)

3. Allow an external agent, such as a service processor, to swap the primary and
backup partitions.

4. Allow software running on the Arm cores to reboot the system, while activating an
upgrade watchdog timer. If the upgrade watchdog expires (due to the new image
being broken, invalid, or corrupt), the system automatically reboots after swapping
the primary and backup partitions.

Updating Boot Partition

Software Installation and Upgrade 113

The Bluefield software distribution provides a boot file that can be used to update the
eMMC boot partitions. The BlueField boot file (BFB) is located in the boot directory
<BF_INST_DIR>/boot/ and contains all the necessary boot loader images (i.e. ATF binary file
images and UEFI binary image).

The table below presents the pre-built boot images included within the BlueField
software release:

Filena i
Description

bl1.bi | The trusted firmware bootloader stage 1 (BL1) image, already stored into the

n on-chip boot ROM. It is executed when the device is reset.
bI2r bi The secure firmware (RIOT core) image. This image provides support for crypto
N " | operation and calculating measurements for security attestation and is relevant
to BlueField-2 devices only.
bl2.bi : ,
N The trusted firmware bootloader stage 2 (BL2) image
bi31.b , .
i The trusted firmware bootloader stage 3-1 (BL31) image
BLUEF : : : ,
The UEFI firmware image. It is also referred to as the non-trusted firmware
|IELD_ :
EFIf bootloader stage 3-3 (BL33) image.

The BlueField boot file (BFB) which encapsulates all bootloader components
defaul | such as bl2r.bin, bl2.bin, bl31.bin, and BLUEFIELD_EFI.fd. This file may be used
t.bfb | to boot the BlueField devices from the RShim interface. It also could be installed

into the eMMC boot partition.

It is also possible to build bootloader images from sources and create the BlueField boot
file (BFB). Please refer to the sections below for more details.

The software image includes various tools and utilities to update the eMMC boot
partitions. It also embeds a boot file in /lib/firmware/mellanox/boot/default.bfb. To update the

eMMC boot partitions using the embedded boot file, execute the following command
from the BlueField console:

$ /opt/mellanox/scripts/bfrec

Software Installation and Upgrade 114

() Note

bfrec is also available under /usr/bin.

The boot partitions update is initiated by the bfrec tool at runtime. With no options
specified, the "bfrec" uses the default boot file /lib/firmware/mellanox/boot/default.bfb to
update the boot partitions of device /devvmmcblko. This might be done directly in an OS
using the "mixbf-bootctl" utility, or at a later stage after reset using the capsule interface.

The syntax of bfrec is as follows:
Syntax: bfrec [--help]

[--bootctl [<FILE>]]
[--capsule [<FILE>]]

Description:

--help : print help

--bootctl [<FILE>] :update the boot partition via the kernel path. If no FILE is specified, then default is
used.

--capsule [<FILE>] :update the boot partition via the capsule path. If no FILE is specified, then default
is used.

--policy POLICY : determines the update policy. May be: single - updates the secondary partition and
swaps to it, dual - updates both boot partitions, does not swap. If this flag is not specified, 'single' policy
is assumed.

When bfrec is called with the option --bootctl, the tool uses the boot file FILE, if given, rather
than the default /lib/firmware/mellanox/boot/default.bfb in order to update the boot partitions.
The command line usage is as follows:

$ bfrec --bootctl
$ bfrec --bootct! FILE

Where FILE represents the BlueField boot file encapsulating the new bootloader images
to be written to the eMMC boot partitions.

Software Installation and Upgrade 115

For example, if the new bootstream file which we would like to install and validate is
called newdefault.bfb, download the file to the BlueField and update the eMMC boot
partitions by executing the following commands from the BlueField console:

/opt/mellanox/scripts/bfrec --bootctl newdefault.bfb

The --capsule option updates the boot partition via the capsule interface. The capsule
update image is reported in UEFI, so that at a later point the bootloader consumes the
capsule file and performs the boot partition update. This option might be executed with
or without additional arguments. The command line usage is as follows:

$ bfrec --capsule
$ bfrec —-capsule FILE

Where FILE represents the capsule update image file encapsulating the new boot image
to be written to the eMMC boot partitions.

For example, if the new bootstream file which we want to install and validate is called
"newdefault.bfb", download the file to the BlueField and update the eMMC boot partitions
by executing the following commands from the BlueField console:

$ /opt/mellanox/scripts/bfrec --capsule newdefault.bfb $ reboot
For more information about the capsule updates, please refer to
<BF_INST_DIR>/Documentation/HOWTO-capsule.
After reset, the BlueField platform boots from the newly updated boot partition. To verify

the version of ATF and UEFI, execute the following command:

$ /opt/mellanox/scripts/bfver

mixbf-bootctl

Software Installation and Upgrade 116

It is also possible to update the eMMC boot partitions directly with the mixbf-bootctl tool.
The tool is shipped as part of the software image (under /sbin) and the sources are
shipped in the src directory in the BlueField Runtime Distribution. A simple make
command builds the utility.

The syntax of mixbf-bootctl is as follows:

syntax: mixbf-bootctl [--help | -h] [--swap | -s]
[--device | -d MMCFILE]
[--output | -0 OUTPUT] [--read | -r INPUT]
[--bootstream | -b BFBFILE]
[--overwrite-current]
[--watchdog-swap interval | --nowatchdog-swap]

Where:
e _device - Use a device other than the default /dev/mmcblk0

e —bootstream - write the specified bootstream to the alternate partition of the device.
This queries the base device (e.g. /devymmcblko) for the alternate partition, and uses
that information to open the appropriate boot partition device (e.g.
/dev/mmcblkOboot0).

e —overwrite-current (Uused with "--bootstream") - overwrite the current boot partition
instead of the alternate one

/\ Warning

Not recommended as there is no easy way to recover if the new
bootloader code does not bring the system up. Use --swap
instead.

e —output (Used with "--bootstream") - specify a file to which to write the boot partition
data (creating it if necessary), rather than using an existing master device and
deriving the boot partition device

Software Installation and Upgrade 117

e --watchdog-swap - arrange to start the Arm watchdog timer with a countdown of the
specified number of seconds until it triggers; also, set the boot software so that it
swaps the primary and alternate partitions at the next reset

e -nowatchdog-swap - ensure that after the next reset, no watchdog is started, and no
swapping of boot partitions occurs

To update the boot partitions, execute the following command:

$ mixbf-bootctl —-swap --device /dev/mmcblkO0 --bootstream default.bfb

This writes the new bootstream to the alternate boot partition, swaps alternate and
primary so that the new bootstream is used on the next reboot.

It is recommended to enable the watchdog when calling mixbf-bootcl in order to ensure
that the Arm bootloader can perform alternate boot in case of a nonfunctional
bootloader code within the primary boot partition. If something goes wrong on the next
reboot and the system does not come up properly, it will reboot and return to the
original configuration. To do so, the user may run:

$ mixbf-bootctl --bootstream bootstream.new --swap --watchdog-swap 60

This reboots the system, and if it hangs for 60 seconds or more, the watchdog fires and
resets the chip, the bootloader swaps the partitions back again to the way they were
before, and the system reboots back with the original boot partition data. Similarly, if the
system comes up but panics and resets, the bootloader will again swap the boot partition
back to the way it was before.

The user must ensure that Linux after the reboot is configured to boot up with the
sbsa_gwdt driver enabled. This is the Server Base System Architecture (SBSA) Generic
WatchDog Timer. As soon as the driver is loaded, it begins refreshing the watchdog and
preventing it from firing, which allows the system to finish booting up safely. In the
example above, 60 seconds are allowed from system reset until the Linux watchdog
kernel driver is loaded. At that point, the user’s application may open /dev/watchdog
explicitly, and the application would then become responsible for refreshing the
watchdog frequently enough to keep the system from rebooting.

Software Installation and Upgrade 118

For documentation on the Linux watchdog subsystem, see Linux watchdog
documentation.

To disable the watchdog completely, run:

$ echo V > /dev/watchdog
The user may select to incorporate other features of the Arm generic watchdog into their
application code using the programming API as well.
Once the system has booted up, in addition to disabling or reconfiguring the watchdog

itself if the user desires, they must also clear the "swap on next reset" functionality from
the bootloader by running:

$ mixbf-bootctl --nowatchdog-swap

Otherwise, next time the system is reset (via reboot, external reset, etc.) it assumes a
failure or watchdog reset occurred and swaps the eMMC boot partition automatically.

LVFS and fwupd

Officially released bootloaders (ATF and UEFI) may be alternatively installed from the
LVFS (Linux Vendor Firmware Service). LVFS is a free service operated by the Linux
Foundation, which allows vendors to host stable firmware images for easy download and
installation.

(D) Note

BlueField must have a functioning connection to the Internet.

Software Installation and Upgrade 119

https://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt
https://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt

Interaction with LVFS is carried out through a standard open-source tool called fwupd.
fwupd is an updater daemon that runs in the background, waiting for commands from a
management application. fwupd and the command line manager, fwupdmgr, comes pre-
installed on the BlueField Ubuntu image.

To verify bootloader support for a fwupd update, run the following command:

$ fwupdmgr get-devices

If "UEFI Device Firmware" device appears, then your currently installed bootloader
supports the update process. Other devices may appear depending on your distribution
of choice. Version numbers similar to 0.0.0.1 may appear if you are using an older version
of the bootloader.

1. Before updating, a fresh list of release metadata must be obtained. Run:

$ fwupdmgr refresh

2. Optionally, to confirm if a new release is available, run:

$ fwupdmgr get-releases

3. Update your system bootloader, run "upgrade" with the GUID of the UEFI device.
Run:

$ fwupdmgr upgrade 39342586-4e0e-4833-b4ba-1256b0ffb471

This will upgrade the ATF and UEFI to the latest available stable version of the
bootloader through a UEFI capsule update, without upgrading the root file system. If
your system is already at the latest available version, this upgrade command will do
nothing.

4. Reboot BlueField to complete the upgrade.

Software Installation and Upgrade 120

() Note

Installing boot firmware directly through mixbf-bootctl may cause
fwupdmgr to detect an incorrect version string. If your workflow
depends on fwupd, try to update the bootloader through capsule
update (i.e. bfrec --capsule) or fwupdmgr only.

For more information about LVFS and fwupd, please refer to the official website of LVFS.

Updating Boot Partitions with BMC

The Arm cores notify the BMC prior to the reboot that an upgrade is about to happen.
Software running on the BMC can then be implemented to watch the Arm cores after
reboot. If after some time the BMC does not detect the Arm cores come up properly, it
can use its USB debug connection to the Arm cores to properly reset the Arm cores. It
first sets a suitable mode bit that the Arm bootloader responds to by switching the
primary and alternating boot partitions as part of resetting into its original state.

Creating BlueField Boot File

The BlueField software distribution provides tools to format and to package the
bootloader images into a single bootable file.

To create the BlueField boot file, use the mix-mkbfb tool with the appropriate images. The
bootloader images are embedded within the BSD under <BF_INST_DIR>/boot/. It is also
possible to build the binary images from sources. Please refer to the following sections
for further details.

1. First, set the PATH variable:

$ export PATH=$PATH:<BF_INST_DIR>/bin

Software Installation and Upgrade 121

https://fwupd.org/

2. Then, generate the boot file by using the mix-mkbfb command:

$ mix-mkbfb \ --bl2 bl2.bin \ --bI31 bI31.bin \ --bI33 BLUEFIELD_EFI.fd \ --boot-acpi "=default" \
default.bfb

This command creates the default.bfb from bl2.bin, bl31.bin, and BLUEFILED_EFL.fd. The
generated file might be used to update the eMMC boot partitions.

To verify the content of the boot file, run:

$ mix-mkbfb -d default.bfb

To extract the bootloader images from the boot file, run:

$ mix-mkbfb -x default.bfb

To obtain further details about the tool options, run the tool with -h or --help.

UEFI Boot Management

The UEFI firmware provides boot management function that can be configured by
modifying architecturally defined global variables which are stored in the UPVS EEPROM.
The boot manager will attempt to load and boot the OS in an order defined by the
persistent variables.

The UEFI boot manager can be configured; boot entries may be added or removed from
the boot menu. The UEFI firmware can also effectively generate entries in this boot menu,
according to the available network interfaces and possibly the disks attached to the
system.

Boot Option

The boot option is a unique identifier for a UEFI boot entry. This identifier is assigned
when the boot entry is created, and it does not change. It also represents the boot option
in several lists, including the BootOrder array, and it is the name of the directory on disk

Software Installation and Upgrade 122

in which the system stores data related to the boot entry, including backup copies of the
boot entry. A UEFI boot entry ID has the format "Bootxxxx" where xxxx is a hexadecimal
number that reflects the order in which the boot entries are created.

Besides the boot entry ID, the UEFI boot entry has the following fields:
e Description (e.g. Yocto, CentQOS, Linux from RShim)
e Device Path (e.g. VenHw(FO19E406-8C9C-11E5-8797-001ACAO0BFC4)/Image)

e Boot arguments (e.g. console=ttyAMAO earlycon=pl011,0x01000000 initrd=initramfs)

List UEFI Boot Options

To display the boot option already installed in the NVIDIA® BlueField® system, reboot
and go to the UEFI menu screen. To get to the UEFI menu, hit Esc when prompted (in the
RShim or UART console) before the countdown timer runs out.

Press <ESC> twice to enter UEFI menu
3 seconds remaining
2 seconds remaining
1 seconds remaining

Boot options are listed as soon as you select the "Boot Manager" entry.

900600

© Boot Manager 223
0006006
Device Path :
Boot Option Menu HD(1,GPT,B55B6B71-964E
-714B-AAF8-7AE8D768372
focalO 7,0x800,0x19000)/\EFI\
ubuntu ubuntu\shimaa64.efi

Linux from rshim
Linux from mmc0
EFI Internal Shell

EFI Misc Device

Software Installation and Upgrade 123

EFI Network

EFI Network 1

EFI Network 2

EFI Network 3

EFl Network 4

EFI Network 5

%

00
o o
€@ "v=Move Highlight = <Enter>=Select Entry Esc=Exit 224
0090006

It is also possible to retrieve more details about the boot entries. To do so, select "EFI
Internal Shell" entry from the Boot Manager screen.

UEFI Interactive Shell v2.1
EDK II
UEFI v2.50 (EDK I, 0x00010000)
Mapping table
FS1: Alias(s):F1:
VenHw(FO19E406-8C9C-11E5-8797-001ACAQ00BFC4)
FSO: Alias(s):HDOb:;BLK1:
VenHw(8C91E049-9BF9-440E-BBAD-7DC5FC082C02)/HD(1,GPT,3DCADB7E-BCCC-4897-A766-
3C070EDD)
BLKO: Alias(s):
VenHw(8C91E049-9BF9-440E-BBAD-7DC5FC082C02)
BLK2: Alias(s):
VenHw(8C91E049-9BF9-440E-BBAD-7DC5FC082C02)/HD(2,GPT,9E61E8B5-EC9C-4299-8A0B-
1B42E3DB)

Press ESC in 4 seconds to skip startup.nsh or any other key to continue.
Shell>

From the UEFI shell, you may run the following command to display the option list:

Shell> bcfg boot dump -v

Software Installation and Upgrade 124

Here -v displays the option list with extra info including boot parameters. The following is

an output example:

Option: 00. Variable: Boot0000
Desc - Linux from rshim
DevPath - VenHw(FO19E406-8C9C-11E5-8797-001ACAOOBFC4)/Image
Optional-Y
00000000: 63 00 6F 00 6E 00 73 00-6F 00 6C 00 65 00 3D 00 *c.o.n.s.o.l.e.=*
00000010: 74 00 74 00 79 00 41 00-4D 00 41 00 30 00 20 00 *t.t.y.A.M.A.0. .*
00000020: 65 00 61 00 72 00 6C 00-79 00 63 00 6F 00 6E 00 *e.a.r.l.y.c.o.n.*
00000030: 3D 00 70 00 6C 00 30 00-31 00 31 002C 003000 *=.p.l.0.1.1.,.0.*
00000040: 78 00 30 00 31 00 30 00-30 00 30 00 30 00 30 00 *x.0.1.0.0.0.0.0.*
00000050: 30 00 20 00 20 00 69 00-6E 00 69 00 74 00 72 00 *O.. .i.n.i.t.r.*
00000060: 64 00 3D 00 69 00 6E 00-69 00 74 00 72 00 61 00 *d.=.i.n.i.t.r.a.*
00000070: 6D 00 66 00 73 00 00 00- *m.f.s..*

Option: 01. Variable: Boot0002
Desc - Yocto Poky

DevPath - HD(1,GPT,3DCADB7E-BCCC-4897-A766-3C070EDD7C25,0x800,0xAE800)/Image

Optional-Y
00000000: 63 00 6F 00 6E 00 73 00-6F 00 6C 00 65 00 3D 00 *c.o.n.s.o.l.e.=*
00000010: 74 00 74 00 79 00 41 00-4D 00 41 00 30 00 20 00 *t.t.y.A.M.A.0. .*
00000020: 65 00 61 00 72 00 6C 00-79 00 63 00 6F 00 6E 00 *e.a.r.l.y.c.o.n.*
00000030: 3D 00 70 00 6C 00 30 00-31 00 31 002C003000 *=.p.l.0.1.1.,.0.*
00000040: 78 00 30 00 31 00 30 00-30 00 30 00 30 00 30 00 *x.0.1.0.0.0.0.0.*
00000050: 30 00 20 00 72 00 6F 00-6F 00 74 00 3D 00 2F 00 *0..r.0.0.t.=./.*
00000060: 64 00 65 00 76 00 2F 00-6D 00 6D 00 63 00 62 00 *d.e.v./.m.m.c.b.*
00000070: 6C 00 6B 00 30 00 70 00-32 00 20 00 72 00 6F 00 *1.k.0.p.2..r.0.*
00000080: 6F 00 74 00 77 00 61 00-69 00 74 00 *o.tw.a.it*
Option: 02. Variable: Boot0003
Desc - EFI Misc Device
DevPath - VenHw(8C91E049-9BF9-440E-BBAD-7DC5FC082C02)
Optional- N
Option: 03. Variable: Boot0004
Desc - EFI Network
DevPath - MAC(001ACAFFFFO1,0x1)
Optional- N
Option: 04. Variable: Boot0005
Desc - EFI Network 1
DevPath - MAC(001ACAFFFF01,0x1)/IPv4(0.0.0.0)
Optional- N
Option: 05. Variable: Boot0006
Desc - EFI Network 2
DevPath - MAC(001ACAFFFF01,0x1)/IPv6(0000:0000:0000:0000:0000:0000:0000:0000)

Software Installation and Upgrade

125

Optional- N
Option: 06. Variable: Boot0007
Desc - EFI Network 3
DevPath - MAC(001ACAFFFF01,0x1)/IPv4(0.0.0.0)/Uri()
Optional- N
Option: 07. Variable: Boot0008
Desc - EFl Internal Shell
DevPath - MemoryMapped(0xB,0xFE5FE000,0xFEAE357F)/FvFile(7C04A583-9E3E-4F1C-AD65-
E05268D0B4D1)
Optional- N

() Note

Boot arguments are printed in Hex mode, but you may recognize the
boot parameters printed on the side in ASCIl format.

UEFI System Configuration

UEFI System Configuration menu can be accessed under UEFI menu Device Manager
System Configuration.

The following options are supported:
e Set Password - set a password for UEFI. Default: No password.
e Select SPCR UART - choose UART for Port Console Redirection. Default: Disabled.
e Enable SMMU - enable SMMU in ACPI. Default: Disabled.
e Disable SPMI - disable/enable ACPI SPMI Table. Default: Enabled.

e Enable 2nd eMMC - this option is relevant only for some BlueField Reference
Platform boards. Default: Disabled.

Software Installation and Upgrade

126

e Boot Partition Protection - enable eMMC boot partition so it can be updated by the
UEFI capsule only

e Disable PCle - disable PCle in ACPI. Default: Enabled.

e Disable ForcePXERetry - if ForcePXE is enabled from the BMC, the boot process
keeps retrying PXE boot if it fails unless this option is enabled. If ForcePXERetry is
disabled, the boot process only attempts PXE boot once, then it retries the normal
boot flow if all PXE boot entries fail.

e Reset EFl Variables - clears all EFl variables to factory default state and disables
SMMU and wipes the BOOT option variables and secure boot keys

e Reset MFG Info - clears the manufacturing information

() Note

All the above options, except for password and the two reset options,
are also programmatically configurable via the BlueField Linux
/etc/bf.cfg. Refer to section "bf.cfg Parameters" for further information.

Software Installation and Upgrade 127

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-bf.cfgParameters

	Deploying BlueField Software Using BFB from Host
	Deploying BlueField Software Using BFB from BMC
	Deploying BlueField Software Using PXE
	Deploying BlueField Software Using BFB with PXE
	Deploying BlueField Software Using ISO with PXE

	Customizing BlueField Software Deployment Using bf.cfg
	Deploying NVIDIA Converged Accelerator
	Installing Repo Package on Host Side
	Installing Popular Linux Distributions on BlueField
	Updating BlueField Software Packages Using Standard Linux Tools
	Upgrading Boot Software

