
Upgrading Boot Software

Table of contents

BFB File Overview

BlueField Boot Process

Upgrading Bootloader

Updating Boot Partition

mlxbf-bootctl

LVFS and fwupd

Updating Boot Partitions with BMC

Creating BlueField Boot File

UEFI Boot Management

Boot Option

List UEFI Boot Options

UEFI System Configuration

Upgrading Boot Software 1

Table of contents

BFB File Overview

BlueField Boot Process

Upgrading Bootloader

Updating Boot Partition

mlxbf-bootctl

LVFS and fwupd

Updating Boot Partitions with BMC

Creating BlueField Boot File

UEFI Boot Management

Boot Option

List UEFI Boot Options

UEFI System Configuration

Upgrading Boot Software 2

This section describes how to use the NVIDIA® BlueField® networking platform's (DPU or
SuperNIC) alternate boot partition support feature to safely upgrade the boot software.
We give the requirements that motivate the feature and explain the software interfaces
that are used to configure it.

BFB File Overview

The default BlueField bootstream (BFB) shown above (located at
/lib/firmware/mellanox/boot/default.bfb) is assumed to be loaded from the eMMC. In it, there is
a hard-coded boot path pointing to a GUID partition table (GPT) on the eMMC device.
Once loaded, as a side effect, this path would be also stored in the UPVS (UEFI Persistent
Variable Store) EEPROM. That is, if you use the bfrec tools provided in the mlxbf-bfscripts

package to write this BFB to the eMMC boot partition (see bfrec man for more
information), then during boot, the BlueField would load this from the boot FIFO, and the
UEFI would assume to boot off the eMMC.

BFB files can be useful for many things such as installing new software on a BlueField. For
example, the installation BFB for BlueField platforms normally contains an initramfs file in
the BFB chain. Using the initramfs (and Linux kernel Image also found in the BFB) you can

https://github.com/Mellanox/bfscripts/blob/master/man/bfrec.8

Upgrading Boot Software 3

do things like set the boot partition on the eMMC using mlx-bootctl or flash new HCA
firmware using MFT utilities. You can also install a full root file system on the eMMC while
running out of the initramfs.

The following table presents the types of files possible in a BFB.

Filename Description ID Read By

Bl2r-cert Secure Firmware BL2R (RIoT Core) certificate 33 BL1

Bl2r Secure Firmware BL2R (RIoT Core) 28 BL1

bl2-cert Trusted Boot Firmware BL2 certificate 6 BL1/BL2R(a)

bl2 Trusted Boot Firmware BL2 1 BL1/BL2R(a)

trusted-key-cert Trusted key certificate 7 BL2

bl31-key-cert EL3 Runtime Firmware BL3-1 key certificate 9 BL2

bl31-cert EL3 Runtime Firmware BL3-1 certificate 13 BL2

bl31 EL3 Runtime Firmware BL3-1 3 BL2

bl32-key-cert Secure Payload BL3-2 (Trusted OS) key certificate 10 BL2

bl32-cert Secure Payload BL3-2 (Trusted OS) certificate 14 BL2

bl32 Secure Payload BL3-2 (Trusted OS) 4 BL2

bl33-key-cert Non-Trusted Firmware BL3-3 key certificate 11 BL2

bl33-cert Non-Trusted Firmware BL3-3 certificate 15 BL2

bl33 Non-Trusted Firmware BL3-3 5 BL2

boot-acpi Name of the ACPI table 55 UEFI

boot-dtb Name of the DTB file 56 UEFI

boot-desc Default boot menu item description 57 UEFI

boot-path Boot image path 58 UEFI

boot-args Arguments for boot image 59 UEFI

boot-timeout Boot menu timeout 60 UEFI

image Boot image 62 UEFI

initramfs In-memory filesystem 63 UEFI

Upgrading Boot Software 4

Before explaining the implementation of the solution, the BlueField boot process needs
to be expanded upon.

BlueField Boot Process

The BlueField boot flow is comprised of 4 main phases:

Hardware loads Arm Trusted Firmware (ATF)

ATF loads UEFI—together ATF and UEFI make up the booter software

UEFI loads the operating system, such as the Linux kernel

The operating system loads applications and user data

When booting from eMMC, these stages make use of two different types of storage
within the eMMC part:

Note

(a) When BL2R is booted in BlueField-2 devices, both the BL2 image
and the BL2 certificate are read by BL2R. Thus, the BL2 image and
certificate are read by BL1. BL2R is not booted in BlueField-1 devices.

Upgrading Boot Software 5

ATF and UEFI are loaded from a special area known as the eMMC boot partition.
Data from a boot partition is automatically streamed from the eMMC device to the
eMMC controller under hardware control during the initial boot-up. Each eMMC
device has two boot partitions, and the partition which is used to stream the boot
data is chosen by a non-volatile configuration register in the eMMC.

The operating system, applications, and user data come from the remainder of the
chip, known as the user area. This area is accessed via block-size reads and writes,
done by a device driver or similar software routine.

Upgrading Bootloader

In most deployments, the Arm cores of BlueField are expected to obtain their bootloader
from an on-board eMMC device. Even in environments where the final OS kernel is not
kept on eMMC—for instance, systems which boot over a network—the initial booter code
still comes from the eMMC.

Most software stacks need to be modified or upgraded in their lifetime. Ideally, the user
can to install the new software version on their BlueField system, test it, and then fall
back to an older version if the new one does not work. In some environments, it is
important that this fallback operation happen automatically since there may be no
physical access to the system. In others, there may be an external agent, such as a
service processor, which could manage the process.

To satisfy the requests listed above, the following must be performed:

1. Provision two software partitions on the eMMC, 0 and 1. At any given time, one area
must be designated the primary partition, and the other the backup partition. The
primary partition is the one booted on the next reboot or reset.

2. Allow software running on the Arm cores to declare that the primary partition is
now the backup partition, and vice versa. (For the remainder of this section, this
operation is referred to as "swapping the partitions" even though only the pointer is
modified, and the data on the partitions does not move.)

3. Allow an external agent, such as a service processor, to swap the primary and
backup partitions.

4. Allow software running on the Arm cores to reboot the system, while activating an
upgrade watchdog timer. If the upgrade watchdog expires (due to the new image

Upgrading Boot Software 6

being broken, invalid, or corrupt), the system automatically reboots after swapping
the primary and backup partitions.

Updating Boot Partition

The Bluefield software distribution provides a boot file that can be used to update the
eMMC boot partitions. The BlueField boot file (BFB) is located in the boot directory
<BF_INST_DIR>/boot/ and contains all the necessary boot loader images (i.e. ATF binary file
images and UEFI binary image).

The table below presents the pre-built boot images included within the BlueField
software release:

Filena
me

Description

bl1.bi
n

The trusted firmware bootloader stage 1 (BL1) image, already stored into the
on-chip boot ROM. It is executed when the device is reset.

bl2r.bi
n

The secure firmware (RIoT core) image. This image provides support for crypto
operation and calculating measurements for security attestation and is relevant
to BlueField-2 devices only.

bl2.bi
n

The trusted firmware bootloader stage 2 (BL2) image

bl31.b
in

The trusted firmware bootloader stage 3-1 (BL31) image

BLUEF
IELD_
EFI.fd

The UEFI firmware image. It is also referred to as the non-trusted firmware
bootloader stage 3-3 (BL33) image.

defaul
t.bfb

The BlueField boot file (BFB) which encapsulates all bootloader components
such as bl2r.bin, bl2.bin, bl31.bin, and BLUEFIELD_EFI.fd. This file may be used
to boot the BlueField devices from the RShim interface. It also could be installed
into the eMMC boot partition.

It is also possible to build bootloader images from sources and create the BlueField boot
file (BFB). Please refer to the sections below for more details.

The software image includes various tools and utilities to update the eMMC boot
partitions. It also embeds a boot file in /lib/firmware/mellanox/boot/default.bfb. To update the

Upgrading Boot Software 7

eMMC boot partitions using the embedded boot file, execute the following command
from the BlueField console:

The boot partitions update is initiated by the bfrec tool at runtime. With no options
specified, the "bfrec" uses the default boot file /lib/firmware/mellanox/boot/default.bfb to
update the boot partitions of device /dev/mmcblk0. This might be done directly in an OS
using the "mlxbf-bootctl" utility, or at a later stage after reset using the capsule interface.

The syntax of bfrec is as follows:

When bfrec is called with the option --bootctl, the tool uses the boot file FILE, if given, rather
than the default /lib/firmware/mellanox/boot/default.bfb in order to update the boot partitions.
The command line usage is as follows:

$ /opt/mellanox/scripts/bfrec

Note

bfrec is also available under /usr/bin.

Syntax: bfrec [--help]
 [--bootctl [<FILE>]]
 [--capsule [<FILE>]]

Description:
--help : print help
--bootctl [<FILE>] : update the boot partition via the kernel path. If no FILE is specified, then default is
used.
--capsule [<FILE>] : update the boot partition via the capsule path. If no FILE is specified, then default
is used.
--policy POLICY : determines the update policy. May be: single - updates the secondary partition and
swaps to it, dual - updates both boot partitions, does not swap. If this flag is not specified, 'single' policy
is assumed.

Upgrading Boot Software 8

Where FILE represents the BlueField boot file encapsulating the new bootloader images
to be written to the eMMC boot partitions.

For example, if the new bootstream file which we would like to install and validate is
called newdefault.bfb, download the file to the BlueField and update the eMMC boot
partitions by executing the following commands from the BlueField console:

The --capsule option updates the boot partition via the capsule interface. The capsule
update image is reported in UEFI, so that at a later point the bootloader consumes the
capsule file and performs the boot partition update. This option might be executed with
or without additional arguments. The command line usage is as follows:

Where FILE represents the capsule update image file encapsulating the new boot image
to be written to the eMMC boot partitions.

For example, if the new bootstream file which we want to install and validate is called
"newdefault.bfb", download the file to the BlueField and update the eMMC boot partitions
by executing the following commands from the BlueField console:

For more information about the capsule updates, please refer to
<BF_INST_DIR>/Documentation/HOWTO-capsule.

$ bfrec --bootctl
$ bfrec --bootctl FILE

/opt/mellanox/scripts/bfrec –-bootctl newdefault.bfb

$ bfrec --capsule
$ bfrec –-capsule FILE

$ /opt/mellanox/scripts/bfrec --capsule newdefault.bfb $ reboot

Upgrading Boot Software 9

After reset, the BlueField platform boots from the newly updated boot partition. To verify
the version of ATF and UEFI, execute the following command:

mlxbf-bootctl

It is also possible to update the eMMC boot partitions directly with the mlxbf-bootctl tool.
The tool is shipped as part of the software image (under /sbin) and the sources are
shipped in the src directory in the BlueField Runtime Distribution. A simple make

command builds the utility.

The syntax of mlxbf-bootctl is as follows:

Where:

--device – use a device other than the default /dev/mmcblk0

--bootstream – write the specified bootstream to the alternate partition of the device.
This queries the base device (e.g. /dev/mmcblk0) for the alternate partition, and uses
that information to open the appropriate boot partition device (e.g.
/dev/mmcblk0boot0).

--overwrite-current (used with "--bootstream") – overwrite the current boot partition
instead of the alternate one

$ /opt/mellanox/scripts/bfver

syntax: mlxbf-bootctl [--help | -h] [--swap | -s]
 [--device | -d MMCFILE]
 [--output | -o OUTPUT] [--read | -r INPUT]
 [--bootstream | -b BFBFILE]
 [--overwrite-current]
 [--watchdog-swap interval | --nowatchdog-swap]

Warning

Upgrading Boot Software 10

--output (used with "--bootstream") – specify a file to which to write the boot partition
data (creating it if necessary), rather than using an existing master device and
deriving the boot partition device

--watchdog-swap – arrange to start the Arm watchdog timer with a countdown of the
specified number of seconds until it triggers; also, set the boot software so that it
swaps the primary and alternate partitions at the next reset

--nowatchdog-swap – ensure that after the next reset, no watchdog is started, and no
swapping of boot partitions occurs

To update the boot partitions, execute the following command:

This writes the new bootstream to the alternate boot partition, swaps alternate and
primary so that the new bootstream is used on the next reboot.

It is recommended to enable the watchdog when calling mlxbf-bootcl in order to ensure
that the Arm bootloader can perform alternate boot in case of a nonfunctional
bootloader code within the primary boot partition. If something goes wrong on the next
reboot and the system does not come up properly, it will reboot and return to the
original configuration. To do so, the user may run:

This reboots the system, and if it hangs for 60 seconds or more, the watchdog fires and
resets the chip, the bootloader swaps the partitions back again to the way they were
before, and the system reboots back with the original boot partition data. Similarly, if the
system comes up but panics and resets, the bootloader will again swap the boot partition
back to the way it was before.

Not recommended as there is no easy way to recover if the new
bootloader code does not bring the system up. Use --swap

instead.

$ mlxbf-bootctl –-swap –-device /dev/mmcblk0 --bootstream default.bfb

$ mlxbf-bootctl --bootstream bootstream.new --swap --watchdog-swap 60

Upgrading Boot Software 11

The user must ensure that Linux after the reboot is configured to boot up with the
sbsa_gwdt driver enabled. This is the Server Base System Architecture (SBSA) Generic
WatchDog Timer. As soon as the driver is loaded, it begins refreshing the watchdog and
preventing it from firing, which allows the system to finish booting up safely. In the
example above, 60 seconds are allowed from system reset until the Linux watchdog
kernel driver is loaded. At that point, the user’s application may open /dev/watchdog
explicitly, and the application would then become responsible for refreshing the
watchdog frequently enough to keep the system from rebooting.

For documentation on the Linux watchdog subsystem, see Linux watchdog
documentation.

To disable the watchdog completely, run:

The user may select to incorporate other features of the Arm generic watchdog into their
application code using the programming API as well.

Once the system has booted up, in addition to disabling or reconfiguring the watchdog
itself if the user desires, they must also clear the "swap on next reset" functionality from
the bootloader by running:

Otherwise, next time the system is reset (via reboot, external reset, etc.) it assumes a
failure or watchdog reset occurred and swaps the eMMC boot partition automatically.

LVFS and fwupd

Officially released bootloaders (ATF and UEFI) may be alternatively installed from the
LVFS (Linux Vendor Firmware Service). LVFS is a free service operated by the Linux
Foundation, which allows vendors to host stable firmware images for easy download and
installation.

$ echo V > /dev/watchdog

$ mlxbf-bootctl --nowatchdog-swap

https://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt
https://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt

Upgrading Boot Software 12

Interaction with LVFS is carried out through a standard open-source tool called fwupd.
fwupd is an updater daemon that runs in the background, waiting for commands from a
management application. fwupd and the command line manager, fwupdmgr, comes pre-
installed on the BlueField Ubuntu image.

To verify bootloader support for a fwupd update, run the following command:

If "UEFI Device Firmware" device appears, then your currently installed bootloader
supports the update process. Other devices may appear depending on your distribution
of choice. Version numbers similar to 0.0.0.1 may appear if you are using an older version
of the bootloader.

1. Before updating, a fresh list of release metadata must be obtained. Run:

2. Optionally, to confirm if a new release is available, run:

3. Update your system bootloader, run "upgrade" with the GUID of the UEFI device.
Run:

Note

BlueField must have a functioning connection to the Internet.

$ fwupdmgr get-devices

$ fwupdmgr refresh

$ fwupdmgr get-releases

$ fwupdmgr upgrade 39342586-4e0e-4833-b4ba-1256b0ffb471

Upgrading Boot Software 13

This will upgrade the ATF and UEFI to the latest available stable version of the
bootloader through a UEFI capsule update, without upgrading the root file system. If
your system is already at the latest available version, this upgrade command will do
nothing.

4. Reboot BlueField to complete the upgrade.

For more information about LVFS and fwupd, please refer to the official website of LVFS.

Updating Boot Partitions with BMC

The Arm cores notify the BMC prior to the reboot that an upgrade is about to happen.
Software running on the BMC can then be implemented to watch the Arm cores after
reboot. If after some time the BMC does not detect the Arm cores come up properly, it
can use its USB debug connection to the Arm cores to properly reset the Arm cores. It
first sets a suitable mode bit that the Arm bootloader responds to by switching the
primary and alternating boot partitions as part of resetting into its original state.

Creating BlueField Boot File

The BlueField software distribution provides tools to format and to package the
bootloader images into a single bootable file.

To create the BlueField boot file, use the mlx-mkbfb tool with the appropriate images. The
bootloader images are embedded within the BSD under <BF_INST_DIR>/boot/. It is also

Note

Installing boot firmware directly through mlxbf-bootctl may cause
fwupdmgr to detect an incorrect version string. If your workflow
depends on fwupd, try to update the bootloader through capsule
update (i.e. bfrec --capsule) or fwupdmgr only.

https://fwupd.org/

Upgrading Boot Software 14

possible to build the binary images from sources. Please refer to the following sections
for further details.

1. First, set the PATH variable:

2. Then, generate the boot file by using the mlx-mkbfb command:

This command creates the default.bfb from bl2.bin, bl31.bin, and BLUEFILED_EFI.fd. The
generated file might be used to update the eMMC boot partitions.

To verify the content of the boot file, run:

To extract the bootloader images from the boot file, run:

To obtain further details about the tool options, run the tool with -h or --help.

UEFI Boot Management

The UEFI firmware provides boot management function that can be configured by
modifying architecturally defined global variables which are stored in the UPVS EEPROM.
The boot manager will attempt to load and boot the OS in an order defined by the
persistent variables.

$ export PATH=$PATH:<BF_INST_DIR>/bin

$ mlx-mkbfb \ --bl2 bl2.bin \ --bl31 bl31.bin \ --bl33 BLUEFIELD_EFI.fd \ --boot-acpi "=default" \
default.bfb

$ mlx-mkbfb -d default.bfb

$ mlx-mkbfb -x default.bfb

Upgrading Boot Software 15

The UEFI boot manager can be configured; boot entries may be added or removed from
the boot menu. The UEFI firmware can also effectively generate entries in this boot menu,
according to the available network interfaces and possibly the disks attached to the
system.

Boot Option

The boot option is a unique identifier for a UEFI boot entry. This identifier is assigned
when the boot entry is created, and it does not change. It also represents the boot option
in several lists, including the BootOrder array, and it is the name of the directory on disk
in which the system stores data related to the boot entry, including backup copies of the
boot entry. A UEFI boot entry ID has the format "Bootxxxx" where xxxx is a hexadecimal
number that reflects the order in which the boot entries are created.

Besides the boot entry ID, the UEFI boot entry has the following fields:

Description (e.g. Yocto, CentOS, Linux from RShim)

Device Path (e.g. VenHw(F019E406-8C9C-11E5-8797-001ACA00BFC4)/Image)

Boot arguments (e.g. console=ttyAMA0 earlycon=pl011,0x01000000 initrd=initramfs)

List UEFI Boot Options

To display the boot option already installed in the NVIDIA® BlueField® system, reboot
and go to the UEFI menu screen. To get to the UEFI menu, hit Esc when prompted (in the
RShim or UART console) before the countdown timer runs out.

Boot options are listed as soon as you select the "Boot Manager" entry.

Press <ESC> twice to enter UEFI menu
3 seconds remaining
2 seconds remaining
1 seconds remaining

��

Upgrading Boot Software 16

It is also possible to retrieve more details about the boot entries. To do so, select "EFI
Internal Shell" entry from the Boot Manager screen.

� Boot Manager �
��
 Device Path :
 Boot Option Menu HD(1,GPT,B55B6B71-964E
 -714B-AAF8-7AE8D768372
 focal0 7,0x800,0x19000)/\EFI\
 ubuntu ubuntu\shimaa64.efi
 Linux from rshim
 Linux from mmc0
 EFI Internal Shell
 EFI Misc Device
 EFI Network
 EFI Network 1
 EFI Network 2
 EFI Network 3
 EFI Network 4
 EFI Network 5
 v
��
� �
� ^v=Move Highlight <Enter>=Select Entry Esc=Exit �
��

UEFI Interactive Shell v2.1
EDK II
UEFI v2.50 (EDK II, 0x00010000)
Mapping table
 FS1: Alias(s):F1:
 VenHw(F019E406-8C9C-11E5-8797-001ACA00BFC4)
 FS0: Alias(s):HD0b:;BLK1:
 VenHw(8C91E049-9BF9-440E-BBAD-7DC5FC082C02)/HD(1,GPT,3DCADB7E-BCCC-4897-A766-
3C070EDD)
 BLK0: Alias(s):
 VenHw(8C91E049-9BF9-440E-BBAD-7DC5FC082C02)
 BLK2: Alias(s):
 VenHw(8C91E049-9BF9-440E-BBAD-7DC5FC082C02)/HD(2,GPT,9E61E8B5-EC9C-4299-8A0B-
1B42E3DB)

Upgrading Boot Software 17

From the UEFI shell, you may run the following command to display the option list:

Here -v displays the option list with extra info including boot parameters. The following is
an output example:

Press ESC in 4 seconds to skip startup.nsh or any other key to continue.
Shell>

Shell> bcfg boot dump -v

Option: 00. Variable: Boot0000
 Desc - Linux from rshim
 DevPath - VenHw(F019E406-8C9C-11E5-8797-001ACA00BFC4)/Image
 Optional- Y
 00000000: 63 00 6F 00 6E 00 73 00-6F 00 6C 00 65 00 3D 00 *c.o.n.s.o.l.e.=.*
 00000010: 74 00 74 00 79 00 41 00-4D 00 41 00 30 00 20 00 *t.t.y.A.M.A.0. .*
 00000020: 65 00 61 00 72 00 6C 00-79 00 63 00 6F 00 6E 00 *e.a.r.l.y.c.o.n.*
 00000030: 3D 00 70 00 6C 00 30 00-31 00 31 00 2C 00 30 00 *=.p.l.0.1.1.,.0.*
 00000040: 78 00 30 00 31 00 30 00-30 00 30 00 30 00 30 00 *x.0.1.0.0.0.0.0.*
 00000050: 30 00 20 00 20 00 69 00-6E 00 69 00 74 00 72 00 *0. . .i.n.i.t.r.*
 00000060: 64 00 3D 00 69 00 6E 00-69 00 74 00 72 00 61 00 *d.=.i.n.i.t.r.a.*
 00000070: 6D 00 66 00 73 00 00 00- *m.f.s...*
Option: 01. Variable: Boot0002
 Desc - Yocto Poky
 DevPath - HD(1,GPT,3DCADB7E-BCCC-4897-A766-3C070EDD7C25,0x800,0xAE800)/Image
 Optional- Y
 00000000: 63 00 6F 00 6E 00 73 00-6F 00 6C 00 65 00 3D 00 *c.o.n.s.o.l.e.=.*
 00000010: 74 00 74 00 79 00 41 00-4D 00 41 00 30 00 20 00 *t.t.y.A.M.A.0. .*
 00000020: 65 00 61 00 72 00 6C 00-79 00 63 00 6F 00 6E 00 *e.a.r.l.y.c.o.n.*
 00000030: 3D 00 70 00 6C 00 30 00-31 00 31 00 2C 00 30 00 *=.p.l.0.1.1.,.0.*
 00000040: 78 00 30 00 31 00 30 00-30 00 30 00 30 00 30 00 *x.0.1.0.0.0.0.0.*
 00000050: 30 00 20 00 72 00 6F 00-6F 00 74 00 3D 00 2F 00 *0. .r.o.o.t.=./.*
 00000060: 64 00 65 00 76 00 2F 00-6D 00 6D 00 63 00 62 00 *d.e.v./.m.m.c.b.*
 00000070: 6C 00 6B 00 30 00 70 00-32 00 20 00 72 00 6F 00 *l.k.0.p.2. .r.o.*
 00000080: 6F 00 74 00 77 00 61 00-69 00 74 00 *o.t.w.a.i.t.*
 Option: 02. Variable: Boot0003
 Desc - EFI Misc Device
 DevPath - VenHw(8C91E049-9BF9-440E-BBAD-7DC5FC082C02)

Upgrading Boot Software 18

UEFI System Configuration

UEFI System Configuration menu can be accessed under UEFI menu → Device Manager →
System Configuration.

The following options are supported:

 Optional- N
 Option: 03. Variable: Boot0004
 Desc - EFI Network
 DevPath - MAC(001ACAFFFF01,0x1)
 Optional- N
 Option: 04. Variable: Boot0005
 Desc - EFI Network 1
 DevPath - MAC(001ACAFFFF01,0x1)/IPv4(0.0.0.0)
 Optional- N
 Option: 05. Variable: Boot0006
 Desc - EFI Network 2
 DevPath - MAC(001ACAFFFF01,0x1)/IPv6(0000:0000:0000:0000:0000:0000:0000:0000)
 Optional- N
 Option: 06. Variable: Boot0007
 Desc - EFI Network 3
 DevPath - MAC(001ACAFFFF01,0x1)/IPv4(0.0.0.0)/Uri()
 Optional- N
 Option: 07. Variable: Boot0008
 Desc - EFI Internal Shell
 DevPath - MemoryMapped(0xB,0xFE5FE000,0xFEAE357F)/FvFile(7C04A583-9E3E-4F1C-AD65-
E05268D0B4D1)
 Optional- N

Note

Boot arguments are printed in Hex mode, but you may recognize the
boot parameters printed on the side in ASCII format.

Upgrading Boot Software 19

Set Password – set a password for UEFI. Default: No password.

Select SPCR UART – choose UART for Port Console Redirection. Default: Disabled.

Enable SMMU – enable SMMU in ACPI. Default: Disabled.

Disable SPMI – disable/enable ACPI SPMI Table. Default: Enabled.

Enable 2nd eMMC – this option is relevant only for some BlueField Reference
Platform boards. Default: Disabled.

Boot Partition Protection – enable eMMC boot partition so it can be updated by the
UEFI capsule only

Disable PCIe – disable PCIe in ACPI. Default: Enabled.

Disable ForcePXERetry – if ForcePXE is enabled from the BMC, the boot process
keeps retrying PXE boot if it fails unless this option is enabled. If ForcePXERetry is
disabled, the boot process only attempts PXE boot once, then it retries the normal
boot flow if all PXE boot entries fail.

Reset EFI Variables – clears all EFI variables to factory default state and disables
SMMU and wipes the BOOT option variables and secure boot keys

Reset MFG Info – clears the manufacturing information

© Copyright 2024, NVIDIA. PDF Generated on 08/20/2024

Note

All the above options, except for password and the two reset options,
are also programmatically configurable via the BlueField Linux
/etc/bf.cfg. Refer to section "bf.cfg Parameters" for further information.

file:///networking/display/bluefieldbsp480/Deploying+BlueField+Software+Using+BFB+from+Host#src-3094733887_DeployingBlueFieldSoftwareUsingBFBfromHost-bf.cfgParameters

	BFB File Overview
	BlueField Boot Process
	Upgrading Bootloader
	Updating Boot Partition
	mlxbf-bootctl
	LVFS and fwupd
	Updating Boot Partitions with BMC

	Creating BlueField Boot File
	UEFI Boot Management
	Boot Option
	List UEFI Boot Options
	UEFI System Configuration

