
Virtual Switch on BlueField

Table of contents

Verifying Host Connection on Linux

Verifying Connection from Host to BlueField

Verifying Host Connection on Windows

Enabling OVS HW Offloading

Enabling OVS-DPDK Hardware Offload

Configuring DPDK and Running TestPMD

Flow Statistics and Aging

Connection Tracking Offload

Configuring Connection Tracking Offload

Connection Tracking With NAT

Querying Connection Tracking Offload Status

Performance Tune Based on Traffic Pattern

Connection Tracking Aging

Maximum Tracked Connections

Offloading VLANs

VXLAN Tunneling Offload

Configuring VXLAN Tunnel

Querying OVS VXLAN hw_offload Rules

GRE Tunneling Offload

Configuring GRE Tunnel

Querying OVS GRE hw_offload Rules

Virtual Switch on BlueField 1

Table of contents

Verifying Host Connection on Linux

Verifying Connection from Host to BlueField

Verifying Host Connection on Windows

Enabling OVS HW Offloading

Enabling OVS-DPDK Hardware Offload

Configuring DPDK and Running TestPMD

Flow Statistics and Aging

Connection Tracking Offload

Configuring Connection Tracking Offload

Connection Tracking With NAT

Querying Connection Tracking Offload Status

Performance Tune Based on Traffic Pattern

Connection Tracking Aging

Maximum Tracked Connections

Offloading VLANs

VXLAN Tunneling Offload

Configuring VXLAN Tunnel

Querying OVS VXLAN hw_offload Rules

GRE Tunneling Offload

Configuring GRE Tunnel

Querying OVS GRE hw_offload Rules

GENEVE Tunneling Offload

Configuring GENEVE Tunnel

Using TC Interface to Configure Offload Rules

L2 Rules Example

VLAN Rules Example

VXLAN Encap/Decap Example

VirtIO Acceleration Through Hardware vDPA

Virtual Switch on BlueField 2

GENEVE Tunneling Offload

Configuring GENEVE Tunnel

Using TC Interface to Configure Offload Rules

L2 Rules Example

VLAN Rules Example

VXLAN Encap/Decap Example

VirtIO Acceleration Through Hardware vDPA

Virtual Switch on BlueField 3

NVIDIA® BlueField® networking platforms (DPUs or SuperNICs) support ASAP2

technology. It utilizes the representors mentioned in the previous section. The BlueField
software package includes OVS installation which already supports ASAP2. The virtual
switch running on the Arm cores allows us to pass all the traffic to and from the host
functions through the Arm cores while performing all the operations supported by OVS.
ASAP2 allows us to offload the datapath by programming the NIC embedded switch and
avoiding the need to pass every packet through the Arm cores. The control plane remains
the same as working with standard OVS.

OVS bridges are created by default upon first boot of the BlueField after BFB installation.

If manual configuration of the default settings for the OVS bridge is desired, run:

To verify successful bridging:

Note

For general information on OVS offload using ASAP² direct, please
refer to the MLNX_OFED documentation under OVS Offload Using
ASAP² Direct.

Note

ASAP2 is only supported in Embedded (DPU) mode.

systemctl start openvswitch-switch.service
ovs-vsctl add-port ovsbr1 p0
ovs-vsctl add-port ovsbr1 pf0hpf
ovs-vsctl add-port ovsbr2 p1
ovs-vsctl add-port ovsbr2 pf1hpf

http://www.mellanox.com/page/asap2?mtag=asap2
http://www.mellanox.com/page/asap2?mtag=asap2
https://docs.mellanox.com/category/mlnxofedib

Virtual Switch on BlueField 4

The host is now connected to the network.

Verifying Host Connection on Linux

$ ovs-vsctl show
9f635bd1-a9fd-4f30-9bdc-b3fa21f8940a
 Bridge ovsbr2
 Port ovsbr2
 Interface ovsbr2
 type: internal
 Port p1
 Interface p1
 Port pf1sf0
 Interface en3f1pf1sf0
 Port pf1hpf
 Interface pf1hpf
 Bridge ovsbr1
 Port pf0hpf
 Interface pf0hpf
 Port p0
 Interface p0
 Port ovsbr1
 Interface ovsbr1
 type: internal
 Port pf0sf0
 Interface en3f0pf0sf0
 ovs_version: "2.14.1"

Note

TC-offload is not supported for IPv6 fragment packets. To make IPv6
fragment packets pass through OVS, the MTU of a specific port must
be set to equal to or larger than the fragmented packet size. IPv4
fragment packets can be TC-offloaded as their packet size is not
checked by OVS.

Virtual Switch on BlueField 5

When BlueField is connected to another BlueField on another machine, manually assign
IP addresses with the same subnet to both ends of the connection.

1. Assuming the link is connected to p3p1 on the other host, run:

2. On the host to which BlueField is connected, run:

3. Have one ping the other. This is an example of the BlueField pinging the host:

Verifying Connection from Host to BlueField

There are two SFs configured on the BlueFIeld-2 device, enp3s0f0s0 and enp3s0f1s0, and
their representors are part of the built-in bridge. These interfaces will get IP addresses
from the DHCP server if it is present. Otherwise it is possible to configure IP address from
the host. It is possible to access BlueField via the SF netdev interfaces.

For example:

1. Verify the default OVS configuration. Run:

$ ifconfig p3p1 192.168.200.1/24 up

$ ifconfig p4p2 192.168.200.2/24 up

$ ping 192.168.200.1

ovs-vsctl show
5668f9a6-6b93-49cf-a72a-14fd64b4c82b
 Bridge ovsbr1
 Port pf0hpf
 Interface pf0hpf
 Port ovsbr1
 Interface ovsbr1
 type: internal

Virtual Switch on BlueField 6

2. Verify whether the SF netdev received an IP address from the DHCP server. If not,
assign a static IP. Run:

3. Verify the connection of the configured IP address. Run:

 Port p0
 Interface p0
 Port en3f0pf0sf0
 Interface en3f0pf0sf0
 Bridge ovsbr2
 Port en3f1pf1sf0
 Interface en3f1pf1sf0
 Port ovsbr2
 Interface ovsbr2
 type: internal
 Port pf1hpf
 Interface pf1hpf
 Port p1
 Interface p1
 ovs_version: "2.14.1"

ifconfig enp3s0f0s0
enp3s0f0s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.200.125 netmask 255.255.255.0 broadcast 192.168.200.255
 inet6 fe80::8e:bcff:fe36:19bc prefixlen 64 scopeid 0x20<link>
 ether 02:8e:bc:36:19:bc txqueuelen 1000 (Ethernet)
 RX packets 3730 bytes 1217558 (1.1 MiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 22 bytes 2220 (2.1 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

ping 192.168.200.25 -c 5
PING 192.168.200.25 (192.168.200.25) 56(84) bytes of data.
64 bytes from 192.168.200.25: icmp_seq=1 ttl=64 time=0.228 ms
64 bytes from 192.168.200.25: icmp_seq=2 ttl=64 time=0.175 ms
64 bytes from 192.168.200.25: icmp_seq=3 ttl=64 time=0.232 ms
64 bytes from 192.168.200.25: icmp_seq=4 ttl=64 time=0.174 ms
64 bytes from 192.168.200.25: icmp_seq=5 ttl=64 time=0.168 ms

Virtual Switch on BlueField 7

Verifying Host Connection on Windows

Set IP address on the Windows side for the RShim or Physical network adapter, please
run the following command in Command Prompt:

To get the interface name, please run the following command in Command Prompt:

Output should give us the interface name that matches the description (e.g. NVIDIA
BlueField Management Network Adapter).

Once IP address is set, Have one ping the other.

--- 192.168.200.25 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 91ms
rtt min/avg/max/mdev = 0.168/0.195/0.232/0.031 ms

PS C:\Users\Administrator> New-NetIPAddress -InterfaceAlias "Ethernet 16" -IPAddress "192.168.100.1"
-PrefixLength 22

PS C:\Users\Administrator> Get-NetAdapter

Ethernet 2 NVIDIA ConnectX-4 Lx Ethernet Adapter 6 Not Present 24-8A-07-0D-E8-1D
Ethernet 6 NVIDIA ConnectX-4 Lx Ethernet Ad...#2 23 Not Present 24-8A-07-0D-E8-1C
Ethernet 16 NVIDIA BlueField Management Netw...#2 15 Up CA-FE-01-CA-
FE-02

C:\Windows\system32>ping 192.168.100.2

Pinging 192.168.100.2 with 32 bytes of data:
Reply from 192.168.100.2: bytes=32 time=148ms TTL=64
Reply from 192.168.100.2: bytes=32 time=152ms TTL=64
Reply from 192.168.100.2: bytes=32 time=158ms TTL=64

Virtual Switch on BlueField 8

Enabling OVS HW Offloading

OVS HW offloading is set by default by the /sbin/mlnx_bf_configure script upon first boot after
installation.

1. Enable TC offload on the relevant interfaces. Run:

2. Enable the HW offload: run the following commands (after enabling the HW offload):

3. Restarting OVS is required for the configuration to apply:

For Ubuntu:

For CentOS/RHEL:

To show OVS configuration:

Reply from 192.168.100.2: bytes=32 time=158ms TTL=64

$ ethtool -K <PF> hw-tc-offload on

$ ovs-vsctl set Open_vSwitch . Other_config:hw-offload=true

$ systemctl restart openvswitch-switch

$ systemctl restart openvswitch

$ ovs-dpctl show
system@ovs-system:
 lookups: hit:0 missed:0 lost:0
 flows: 0

Virtual Switch on BlueField 9

At this point OVS would automatically try to offload all the rules.

To see all the rules that are added to the OVS datapath:

To see the rules that are offloaded to the HW:

Enabling OVS-DPDK Hardware Offload

1. Remove previously configured OVS bridges. Run:

Issue the command ovs-vsctl show to see already configured OVS bridges.

2. Enable the Open vSwitch service. Run:

3. Configure huge pages:

 masks: hit:0 total:0 hit/pkt:0.00
 port 0: ovs-system (internal)
 port 1: armbr1 (internal)
 port 2: p0
 port 3: pf0hpf
 port 4: pf0vf0
 port 5: pf0vf1
 port 6: pf0vf2

$ ovs-appctl dpctl/dump-flows

$ ovs-appctl dpctl/dump-flows type=offloaded

ovs-vsctl del-br <bridge-name>

systemctl start openvswitch

Virtual Switch on BlueField 10

4. Configure DPDK socket memory and limit. Run:

5. Enable hardware offload (disabled by default). Run:

6. Configure the DPDK whitelist. Run:

7. Create OVS-DPDK bridge. Run:

8. Add PF to OVS. Run:

9. Add representor to OVS. Run:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

ovs-vsctl set Open_vSwitch . other_config:dpdk-socket-limit=2048
ovs-vsctl set Open_vSwitch . other_config:dpdk-socket-mem=2048

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true
ovs-vsctl --no-wait set Open_vSwitch . other_config:hw-offload=true

ovs-vsctl set Open_vSwitch . other_config:dpdk-extra="-a 0000:03:00.0,representor=
[0,65535],dv_flow_en=1,dv_xmeta_en=1,sys_mem_en=1"

ovs-vsctl add-br br0-ovs -- set Bridge br0-ovs datapath_type=netdev -- br-set-external-id br0-ovs
bridge-id br0-ovs -- set bridge br0-ovs fail-mode=standalone

ovs-vsctl add-port br0-ovs p0 -- set Interface p0 type=dpdk options:dpdk-devargs=0000:03:00.0

Virtual Switch on BlueField 11

10. Restart the Open vSwitch service. This step is required for HW offload changes to
take effect.

For CentOS, run:

For Debian/Ubuntu, run:

For a reference setup configuration for BlueField-2 devices, refer to the article
"Configuring OVS-DPDK Offload with BlueField-2".

Configuring DPDK and Running TestPMD

1. Configure hugepages. Run:

2. Run testpmd.

For Ubuntu/Debian:

ovs-vsctl add-port br0-ovs pf0vf0 -- set Interface pf0vf0 type=dpdk options:dpdk-
devargs=0000:03:00.0,representor=[0]
ovs-vsctl add-port br0-ovs pf0hpf -- set Interface pf0hpf type=dpdk options:dpdk-
devargs=0000:03:00.0,representor=[65535]

systemctl restart openvswitch

systemctl restart openvswitch-switch

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

env LD_LIBRARY_PATH=/opt/mellanox/dpdk/lib/aarch64-linux-gnu
/opt/mellanox/dpdk/bin/dpdk-testpmd -a 03:00.0,representor=[0,65535] --socket-

https://enterprise-support.nvidia.com/s/article/Configuring-OVS-DPDK-Offload-with-BlueField-2

Virtual Switch on BlueField 12

For CentOS:

For a detailed procedure with port display, refer to the article "Configuring DPDK and
Running testpmd on BlueField-2".

Flow Statistics and Aging

The aging timeout of OVS is given in milliseconds and can be configured by running the
following command:

Connection Tracking Offload

This feature enables tracking connections and storing information about the state of
these connections. When used with OVS, BlueField can offload connection tracking, so
that traffic of established connections bypasses the kernel and goes directly to hardware.

Both source NAT (SNAT) and destination NAT (DNAT) are supported with connection
tracking offload.

Configuring Connection Tracking Offload

This section provides an example of configuring OVS to offload all IP connections of host
PF0.

1. Enable OVS HW offloading.

2. Create OVS connection tracking bridge. Run:

mem=1024 -- --total-num-mbufs=131000 -i

env LD_LIBRARY_PATH=/opt/mellanox/dpdk/lib64/ /opt/mellanox/dpdk/bin/dpdk-testpmd
-a 03:00.0,representor=[0,65535] --socket-mem=1024 -- --total-num-mbufs=131000 -i

$ ovs-vsctl set Open_vSwitch . other_config:max-idle=30000

https://enterprise-support.nvidia.com/s/article/Configuring-OVS-DPDK-Offload-with-BlueField-2
https://enterprise-support.nvidia.com/s/article/Configuring-OVS-DPDK-Offload-with-BlueField-2

Virtual Switch on BlueField 13

3. Add p0 and pf0hpf to the bridge. Run:

4. Configure ARP packets to behave normally. Packets which do not comply are routed
to table1. Run:

5. Configure RoCEv2 packets to behave normally. RoCEv2 packets follow UDP port
4791 and a different source port in each direction of the connection. RoCE traffic is
not supported by CT. In order to run RoCE from the host add the following line
before ovs-ofctl add-flow ctBr "table=0,ip,ct_state=-trk,action=ct(table=1)":

This rule allows RoCEv2 UDP packets to skip connection tracking rules.

6. Configure the new established flows to be admitted to the connection tracking
bridge and to then behave normally. Run:

7. Set already established flows to behave normally. Run:

$ ovs-vsctl add-br ctBr

$ ovs-vsctl add-port ctBr p0
$ ovs-vsctl add-port ctBr pf0hpf

$ ovs-ofctl add-flow ctBr "table=0,arp,action=normal"
$ ovs-ofctl add-flow ctBr "table=0,ip,ct_state=-trk,action=ct(table=1)"

$ ovs-ofctl add-flow ctBr table=0,udp,tp_dst=4791,action=normal

$ ovs-ofctl add-flow ctBr "table=1,priority=1,ip,ct_state=+trk+new,action=ct(commit),normal"

Virtual Switch on BlueField 14

Connection Tracking With NAT

This section provides an example of configuring OVS to offload all IP connections of host
PF0, and performing source network address translation (SNAT). The server host sends
traffic via source IP from 2.2.2.1 to 1.1.1.2 on another host. Arm performs SNAT and
changes the source IP to 1.1.1.16. Note that static ARP or route table must be configured
to find that route.

1. Configure untracked IP packets to do nat. Run:

2. Configure new established flows to do SNAT, and change source IP to 1.1.1.16. Run:

3. Configure already established flows act normal. Run:

Conntrack shows the connection with SNAT applied. Run conntrack -L for Ubuntu
22.04 kernel or cat /proc/net/nf_conntrack for older kernel versions. Example output:

$ ovs-ofctl add-flow ctBr "table=1,priority=1,ip,ct_state=+trk+est,action=normal"

ovs-ofctl add-flow ctBr "table=0,ip,ct_state=-trk,action=ct(table=1,nat)"

ovs-ofctl add-flow ctBr
"table=1,in_port=pf0hpf,ip,ct_state=+trk+new,action=ct(commit,nat(src=1.1.1.16)), p0"

ovs-ofctl add-flow ctBr "table=1,ip,ct_state=+trk+est,action=normal"

ipv4 2 tcp 6 src=2.2.2.1 dst=1.1.1.2 sport=34541 dport=5001 src=1.1.1.2 dst=1.1.1.16
sport=5001 dport=34541 [OFFLOAD] mark=0 zone=1 use=3

Virtual Switch on BlueField 15

Querying Connection Tracking Offload Status

Start traffic on PF0 from the server host (e.g., iperf) with an external network. Note that
only established connections can be offloaded. TCP should have already finished the
handshake, UDP should have gotten the reply.

To check if specific connections are offloaded from Arm, run conntrack -L for Ubuntu 22.04
kernel or cat /proc/net/nf_conntrack for older kernel versions.

The following is example output of offloaded TCP connection:

Performance Tune Based on Traffic Pattern

Offloaded flows (including connection tracking) are added to virtual switch FDB flow
tables. FDB tables have a set of flow groups. Each flow group saves the same traffic
pattern flows. For example, for connection tracking offloaded flow, TCP and UDP are
different traffic patterns which end up in two different flow groups.

A flow group has a limited size to save flow entries. By default, the driver has 4 big FDB
flow groups. Each of these big flow groups can save at most 4000000/(4+1)=800k
different 5-tuple flow entries. For scenarios with more than 4 traffic patterns, the driver
provides a module parameter (num_of_groups) to allow customization and performance
tune.

Note

ICMP is not currently supported.

ipv4 2 tcp 6 src=1.1.1.2 dst=1.1.1.3 sport=51888 dport=5001 src=1.1.1.3 dst=1.1.1.2 sport=5001
dport=51888 [HW_OFFLOAD] mark=0 zone=0 use=3

Virtual Switch on BlueField 16

To change the number of big FDB flow groups, run:

The change takes effect immediately if there is no flow inside the FDB table (no traffic
running and all offloaded flows are aged out), and it can be dynamically changed without
reloading the driver.

If there are residual offloaded flows when changing this parameter, then the new
configuration only takes effect after all flows age out.

Connection Tracking Aging

Aside from the aging of OVS, connection tracking offload has its own aging mechanism
with a default aging time of 30 seconds.

Maximum Tracked Connections

Note

The size of each big flow groups can be calculated according to
formula: size = 4000000/(num_of_groups+1)

$ echo <num_of_groups> > /sys/module/mlx5_core/parameters/num_of_groups

Note

The maximum number for tracked offloaded connections is limited to
1M by default.

Virtual Switch on BlueField 17

The OS has a default setting of maximum tracked connections which may be configured
by running:

This changes the maximum tracked connections (both offloaded and non-offloaded)
setting to 1 million.

The following option specifies the limit on the number of offloaded connections. For
example:

This value is set to 1 million by default from BlueFiled. Users may choose a different
number by using the devlink command.

Offloading VLANs

OVS enables VF traffic to be tagged by the virtual switch.

For BlueField, the OVS can add VLAN tag (VLAN push) to all the packets sent by a network
interface running on the host (either PF or VF) and strip the VLAN tag (VLAN pop) from the
traffic going from the wire to that interface. Here we operate in Virtual Switch Tagging
(VST) mode. This means that the host/VM interface is unaware of the VLAN tagging. Those
rules can also be offloaded to the HW embedded switch.

$ /sbin/sysctl -w net.netfilter.nf_conntrack_max=1000000

devlink dev param set pci/${pci_dev} name ct_max_offloaded_conns value $max cmode runtime

Note

Make sure net.netfilter.nf_conntrack_tcp_be_liberal=1 when using connection
tracking.

Virtual Switch on BlueField 18

To configure OVS to push/pop VLAN you need to add the tag=$TAG section for the OVS
command line that adds the representor ports. So if you want to tag all the traffic of VF0
with VLAN ID 52, you should use the following command when adding its representor to
the bridge:

In this scenario all the traffic being sent by VF 0 will have the same VLAN tag. We could set
a VLAN tag by flow when using the TC interface, this is explained in section "Using TC
Interface to Configure Offload Rules".

VXLAN Tunneling Offload

VXLAN tunnels are created on the Arm side and attached to the OVS. VXLAN
decapsulation/encapsulation behavior is similar to normal VXLAN behavior, including
over hw_offload=true.

To allow VXLAN encapsulation, the uplink representor (p0) should have an MTU value at
least 50 bytes greater than that of the host PF/VF. Please refer to "Configuring Uplink
MTU" for more information.

Configuring VXLAN Tunnel

1. Consider p0 to be the local VXLAN tunnel interface (or VTEP).

$ ovs-vsctl add-port armbr1 pf0vf0 tag=52

Note

If the virtual port is already connected to the bridge prior to
configuring VLAN, you would need to remove it first:

$ ovs-vsctl del-port pf0vf0

file:///networking/display/bluefieldbsp480/Configuring+Uplink+MTU
file:///networking/display/bluefieldbsp480/Configuring+Uplink+MTU

Virtual Switch on BlueField 19

2. Remove p0 from any OVS bridge.

3. Build a VXLAN tunnel over OVS arm-ovs. Run:

4. Connect any host representor (e.g., pf0hpf) for which VXLAN is desired to the same
arm-ovs bridge.

5. Configure the MTU of the VTEP (p0) used by VXLAN to at least 50 bytes larger than
the host representor's MTU.

At this point, the host is unaware of any VXLAN operations done by the BlueField's OVS. If
the remote end of the VXLAN tunnel is properly set, any network traffic traversing arm-
ovs undergoes VXLAN encap/decap.

Querying OVS VXLAN hw_offload Rules

Run the following:

Note

To be consistent with the examples below, it is assumed that p0

is configured with a 1.1.1.1 IPv4 address.

ovs-vsctl add-br arm-ovs -- add-port arm-ovs vxlan11 -- set interface vxlan11 type=vxlan
options:local_ip=1.1.1.1 options:remote_ip=1.1.1.2 options:key=100
options:dst_port=4789

ovs-appctl dpctl/dump-flows type=offloaded
in_port(2),eth(src=ae:fd:f3:31:7e:7b,dst=a2:fb:09:85:84:48),eth_type(0x0800), packets:1, bytes:98,
used:0.900s, actions:set(tunnel(tun_id=0x64,src=1.1.1.1,dst=1.1.1.2,tp_dst=4789,flags(key))),3
tunnel(tun_id=0x64,src=1.1.1.2,dst=1.1.1.1,tp_dst=4789,flags(+key)),in_port(3),eth(src=a2:fb:09:85:84:48,ds
packets:75, bytes:7350, used:0.900s, actions:2

Virtual Switch on BlueField 20

GRE Tunneling Offload

GRE tunnels are created on the Arm side and attached to the OVS. GRE
decapsulation/encapsulation behavior is similar to normal GRE behavior, including over
hw_offload=true.

To allow GRE encapsulation, the uplink representor (p0) should have an MTU value at
least 50 bytes greater than that of the host PF/VF.

Please refer to "Configuring Uplink MTU" for more information.

Configuring GRE Tunnel

1. Consider p0 to be the local GRE tunnel interface. p0 should not be attached to any
OVS bridge.

Note

For the host PF, in order for VXLAN to work properly with the default
1500 MTU, follow these steps.

1. Disable host PF as the port owner from Arm (see section "Zero-
trust Mode"). Run:

2. The MTU of the end points (pf0hpf in the example above) of the
VXLAN tunnel must be smaller than the MTU of the tunnel
interfaces (p0) to account for the size of the VXLAN headers. For
example, you can set the MTU of P0 to 2000.

$ mlxprivhost -d /dev/mst/mt41682_pciconf0 --disable_port_owner r

Note

file:///networking/display/bluefieldbsp480/Configuring+Uplink+MTU
file:///networking/display/bluefieldbsp480/Modes+of+Operation
file:///networking/display/bluefieldbsp480/Modes+of+Operation

Virtual Switch on BlueField 21

2. Create an OVS bridge, br0, with a GRE tunnel interface, gre0. Run:

3. Add pf0hpf to br0.

4. At this point, any network traffic sent or received by the host's PF0 undergoes GRE
processing inside the BlueField OS.

Querying OVS GRE hw_offload Rules

Run the following:

To be consistent with the examples below, it is assumed that p0

is configured with a 1.1.1.1 IPv4 address and that the remote
end of the tunnel is 1.1.1.2.

ovs-vsctl add-port br0 gre0 -- set interface gre0 type=gre options:local_ip=1.1.1.1
options:remote_ip=1.1.1.2 options:key=100

ovs-vsctl add-port br0 pf0hpf

ovs-appctl dpctl/dump-flows type=offloaded
recirc_id(0),in_port(3),eth(src=50:6b:4b:2f:0b:74,dst=de:d0:a3:63:0b:30),eth_type(0x0800),ipv4(frag=no),
packets:878, bytes:122802, used:0.440s,
actions:set(tunnel(tun_id=0x64,src=1.1.1.1,dst=1.1.1.2,ttl=64,flags(key))),2
tunnel(tun_id=0x64,src=1.1.1.1,dst=1.1.1.2,flags(+key)),recirc_id(0),in_port(2),eth(src=de:d0:a3:63:0b:30,dst
packets:995, bytes:97510, used:0.440s, actions:3

Note

Virtual Switch on BlueField 22

GENEVE Tunneling Offload

GENEVE tunnels are created on the Arm side and attached to the OVS. GENEVE
decapsulation/encapsulation behavior is similar to normal GENEVE behavior, including
over hw_offload=true.

To allow GENEVE encapsulation, the uplink representor (p0) must have an MTU value at
least 50 bytes greater than that of the host PF/VF.

Please refer to "Configuring Uplink MTU" for more information.

Configuring GENEVE Tunnel

1. Consider p0 to be the local GENEVE tunnel interface. p0 should not be attached to
any OVS bridge.

2. Create an OVS bridge, br0, with a GENEVE tunnel interface, gnv0. Run:

For the host PF, in order for GRE to work properly with the default
1500 MTU, follow these steps.

1. Disable host PF as the port owner from Arm (see section "Zero-
trust Mode"). Run:

2. The MTU of the end points (pf0hpf in the example above) of the
GRE tunnel must be smaller than the MTU of the tunnel
interfaces (p0) to account for the size of the GRE headers. For
example, you can set the MTU of P0 to 2000.

$ mlxprivhost -d /dev/mst/mt41682_pciconf0 --disable_port_owner r

ovs-vsctl add-port br0 gnv0 -- set interface gnv0 type=geneve options:local_ip=1.1.1.1

file:///networking/display/bluefieldbsp480/Configuring+Uplink+MTU
file:///networking/display/bluefieldbsp480/Modes+of+Operation
file:///networking/display/bluefieldbsp480/Modes+of+Operation

Virtual Switch on BlueField 23

3. Add pf0hpf to br0.

4. At this point, any network traffic sent or received by the host's PF0 undergoes
GENEVE processing inside the BlueField OS.

Options are supported for GENEVE. For example, you may add option 0xea55 to tunnel
metadata, run:

options:remote_ip=1.1.1.2 options:key=100

ovs-vsctl add-port br0 pf0hpf

ovs-ofctl add-tlv-map geneve_br "{class=0xffff,type=0x0,len=4}->tun_metadata0"
ovs-ofctl add-flow geneve_br ip,actions="set_field:0xea55->tun_metadata0",normal

Note

For the host PF, in order for GENEVE to work properly with the
default 1500 MTU, follow these steps.

1. Disable host PF as the port owner from Arm (see section "Zero-
trust Mode"). Run:

2. The MTU of the end points (pf0hpf in the example above) of the
GENEVE tunnel must be smaller than the MTU of the tunnel
interfaces (p0) to account for the size of the GENEVE headers.
For example, you can set the MTU of P0 to 2000.

$ mlxprivhost -d /dev/mst/mt41682_pciconf0 --disable_port_owner r

file:///networking/display/bluefieldbsp480/Modes+of+Operation
file:///networking/display/bluefieldbsp480/Modes+of+Operation

Virtual Switch on BlueField 24

Using TC Interface to Configure Offload Rules

Offloading rules can also be added directly, and not just through OVS, using the tc utility.
To enable TC ingress on all the representors (i.e., uplink, PF, and VF).

L2 Rules Example

The rule below drops all packets matching the given source and destination MAC
addresses.

VLAN Rules Example

The following rules push VLAN ID 100 to packets sent from VF0 to the wire (and forward it
through the uplink representor) and strip the VLAN when sending the packet to the VF.

$ tc qdisc add dev p0 ingress
$ tc qdisc add dev pf0hpf ingress
$ tc qdisc add dev pf0vf0 ingress

$ tc filter add dev pf0hpf protocol ip parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action drop

$ tc filter add dev pf0vf0 protocol 802.1Q parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action vlan push id 100 \
 action mirred egress redirect dev p0

Virtual Switch on BlueField 25

VXLAN Encap/Decap Example

$ tc filter add dev p0 protocol 802.1Q parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 vlan_ethtype 0x800 \
 vlan_id 100 \
 vlan_prio 0 \
 action vlan pop \
 action mirred egress redirect dev pf0vf0

$ tc filter add dev pf0vf0 protocol 0x806 parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action tunnel_key set \
 src_ip 20.1.12.1 \
 dst_ip 20.1.11.1 \
 id 100 \
 action mirred egress redirect dev vxlan100

$ tc filter add dev vxlan100 protocol 0x806 parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 enc_src_ip 20.1.11.1 \
 enc_dst_ip 20.1.12.1 \
 enc_key_id 100 \
 enc_dst_port 4789 \
 action tunnel_key unset \
 action mirred egress redirect dev pf0vf0

Virtual Switch on BlueField 26

VirtIO Acceleration Through Hardware vDPA

For configuration procedure, please refer to the MLNX_OFED documentation under OVS
Offload Using ASAP² Direct > VirtIO Acceleration through Hardware vDPA.

© Copyright 2024, NVIDIA. PDF Generated on 08/20/2024

https://docs.mellanox.com/category/mlnxofedib

	Verifying Host Connection on Linux
	Verifying Connection from Host to BlueField
	Verifying Host Connection on Windows
	Enabling OVS HW Offloading
	Enabling OVS-DPDK Hardware Offload
	Configuring DPDK and Running TestPMD
	Flow Statistics and Aging
	Connection Tracking Offload
	Configuring Connection Tracking Offload
	Connection Tracking With NAT
	Querying Connection Tracking Offload Status
	Performance Tune Based on Traffic Pattern
	Connection Tracking Aging
	Maximum Tracked Connections

	Offloading VLANs
	VXLAN Tunneling Offload
	Configuring VXLAN Tunnel
	Querying OVS VXLAN hw_offload Rules

	GRE Tunneling Offload
	Configuring GRE Tunnel
	Querying OVS GRE hw_offload Rules

	GENEVE Tunneling Offload
	Configuring GENEVE Tunnel

	Using TC Interface to Configure Offload Rules
	L2 Rules Example
	VLAN Rules Example
	VXLAN Encap/Decap Example

	VirtIO Acceleration Through Hardware vDPA

