
NVIDIA Network Operator v24.4.0

Table of contents

Release Notes 5

Platform Support 12

Getting Started with Kubernetes 16

Getting Started with Red Hat OpenShift 42

Customization Options 51

Helm Chart Customization Options 51

CRDs 74

Life Cycle Management 75

Advanced Configurations 89

NVIDIA Network Operator v24.4.0 1

Table of contents

Release Notes

Platform Support

Getting Started with Kubernetes

Getting Started with Red Hat OpenShift

Customization Options

Helm Chart Customization Options

CRDs

Life Cycle Management

Advanced Configurations

NVIDIA Network Operator v24.4.0 2

List of Tables
Table 0.

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

Table 15.

Table 16.

Table 17.

Table 18.

NVIDIA Network Operator v24.4.0 3

Table 19.

Table 20.

Table 21.

Table 22.

Table 23.

Table 24.

Table 25.

Table 26.

NVIDIA Network Operator v24.4.0 4

The NVIDIA Network Operator simplifies the provisioning and management of NVIDIA
networking resources in a Kubernetes cluster. The operator automatically installs the
required host networking software - bringing together all the needed components to
provide high-speed network connectivity. These components include the NVIDIA
networking driver, Kubernetes device plugin, CNI plugins, IP address management (IPAM)
plugin and others. The NVIDIA Network Operator works in conjunction with the NVIDIA
GPU Operator to deliver high-throughput, low-latency networking for scale-out, GPU
computing clusters.

A Helm chart is provided for easily deploying the Network operator in a cluster to
provision the host software on NVIDIA-enabled nodes.

License Agreement

The NVIDIA Network Operator is licensed under Apache 2.0 and contributions are
accepted with a DCO. See the contributing document for more information on how to
contribute and the release artifacts.

Learn More

The Network Operator is open-source. For more information on contributions and
release artifacts, see the GitHub repo.

https://github.com/Mellanox/network-operator

NVIDIA Network Operator v24.4.0 5

Release Notes
On this page

Changes and New Features

General Support

Upgrade Notes

Bug Fixes

Known Limitations

Changes and New Features

Version Description

24.4.0 - Added support for OpenShift Container Platform v4.15.
- Added support for Ubuntu 24.04.
- Added support for NVIDIA Grace based ARM platforms with Ubuntu 22.04 and
Upstream K8s as a Tech Preview feature.
- Added support for NVIDIA IGX Orin based ARM platforms with Ubuntu 22.04
and Upstream K8s as a GA feature.
- Added support for Precompiled DOCA Driver containers for Ubuntu 22.04.
- Added support for Switchdev SR-IOV mode with SR-IOV Network Operator
and OVS CNI as a Tech Preview feature.
- Added support for DOCA Telemetry Service (DTS) integration to expose
network telemetry and NIC metrics in K8s.
- Added support for network namespace isolation of RDMA devices with RDMA
CNI.

NVIDIA Network Operator v24.4.0 6

- Added support for RHEL and OpenShift deployments with Real-time kernels.
- Enhanced DOCA Driver container deployment and significantly reduced
compilation time after node reboots.

24.1.0

- Added support for Ubuntu 22.04 with Upstream K8s on ARM platforms
(NVIDIA IGX Orin) - Tech Preview.
- Added support for CNI bin directory configuration.
- Added support for OpenShift MOFED/DOCA driver container build and
deployment via driver toolkit (DTK).
- Added support for Ubuntu 22.04 deployments with Real-time kernels.
- Added the ability to disable SR-IOV VF for SR-IOV Network Operator (in
systems with pre-configured SR-IOV).
- Added the ability to set resource request and limits on the network operator
and it components.

23.10.
0

- Added support for OpenShift Container Platform v4.14.
- Added support for RHEL v8.8.
- Optimized SR-IOV NIC configuration time with Network Operator (vanilla
Kubernetes only).
- Added a validating admission controller for NVIDIA Network Operator.
- Added support for NIC Feature Discovery (driver version discovery).
- Added CDI support for SR-IOV Network Device Plugin and RDMA Shared
Device Plugin for network device persistency.
- Added support for NVIDIA BlueField-3 NIC mode.
- Added High-Availability and Leader election support for NV-IPAM.
- Added systemd mode support for SR-IOV Network Operator and MOFED
container to optimize cluster/node startup time.

23.7.0

- Added support for OpenShift Container Platform 4.13.
- Added support for RHEL 9.1 and 9.2 with CRI-O container runtime (Beta).
- Added support for NodeFeatureApi in Node Feature Discovery.

23.5.0

- Added support for NVIDIA IPAM Plugin deployment.
- Added support for CRDs upgrade during NVIDIA Network Operator
installation or upgrade.

23.4.0 - Added support for Kubernetes >= 1.21 and <=1.27.
- Added support for NicClusterPolicy update and removal.

NVIDIA Network Operator v24.4.0 7

- Added support for OpenShift Container Platform 4.11 and 4.12.

23.4.0

- Added a calendar versioning schema for Network Operator releases to better
align with the NVIDIA GPU Operator.
- Added support for the following operating systems and Kubernetes
environments:
- RHEL 8.4 and 8.6 with CRI-O container runtime
- Kubernetes >= 1.21 and <=1.26

- Added PKey configuration for IB networks with IB-Kubernetes.
- Added the ability to gracefully terminate the OFED container on DGX systems
running Red Hat OpenShift.

1.4.0

- Added support for Kubernetes >= 1.21 and <=1.25.
- Added support for Ubuntu 22.04.
- Added support for OpenShift Container Platform 4.11 including DGX platform.
- Added Beta support for PKey configuration for IB networks with IB-
Kubernetes.

1.3.0

- Added support for Kubernetes >= 1.17 and <=1.24.
- Added the option to use a single namespace to deploy Network Operator
components.
- Added support for automatic MLNX OFED driver upgrade.
- Added support for IPoIB CNI.
- Added support for Air Gap deployment.

1.2.0

- Added support for OpenShift Container Platform 4.10.
- Added extended selectors support for SR-IOV Device Plugin resources with
Helm chart.
- Added Whereabouts IP reconciler support.
- Added BlueField2 NICs support for SR-IOV operator.

1.1.0 - Added support for OpenShift Container Platform 4.9.
- Added support for Network Operator upgrade from v1.0.0.
- Added support for Kubernetes POD Security Policy.
- Added support for Kubernetes >= 1.17 and <=1.22.
- Added the ability to propagate nodeAffinity property from the

NVIDIA Network Operator v24.4.0 8

NicClusterPolicy to Network Operator dependencies.

1.0.0

- Added Node Feature Discovery that can be used to mark nodes with NVIDIA
SR-IOV NICs.
- Added support for different networking models:
- Macvlan Network
- HostDevice Network
- SR-IOV Network

- Added Kubernetes cluster scale-up support.
- Published Network Operator image at NGC.
- Added support for Kubernetes >= 1.17 and <=1.21.

General Support

Upgrade Notes

Version Notes

23.10.0

- In NV-IPAM v0.1.1, the IP Pools configurations are read from IPPool CRs
instead of using a ConfigMap. Existing ConfigMap configuration will be
automatically migrated to IPPools CRs as part of the upgrade process.

23.7.0
- Dropped MLNX_OFED support for versions older than 5.7-0.1.2.0.
- Removed nv-peer-mem support in favor of nvidia-peer-mem.

1.3.0

- The option of manual gradual upgrade is not supported when upgrading to
Network Operator v1.3.0, since all pods are dropped/restarted in case
components are deployed into the single namespace when the old
namespace is deleted. This could lead to networking connectivity issues
during the upgrade procedure.

1.2.0 - Network Operator 1.2.0 deploys the NVIDIA MLNX_OFED 5.6 driver
container by default. When deployed, depending on your system kernel and
OS configuration, the network device name may change, as it no longer
installs an udev rule to force network device naming scheme. Instead, the
default setting uses the name already configured in the system by either
systemd.network or any pre-existing udev rules (e.g enp3s0f0 netdev will

NVIDIA Network Operator v24.4.0 9

change to enp3s0f0np0). If that is the case in your system, please make sure
to update the following:
- The master network device name in your MacvlanNetwork
- The ifNames selector, if used in RDMA shared device plugin resource
configuration
- The pfNames selector, if used in SR-IOV device plugin configuration
- If the sriov-network-operator is used, any instance of
SriovNetworkNodePolicy which utilizes NicSelector.PfNames field should be
updated to the new network device name.

- When Network Operator 1.2.0 is installed via Helm, it no longer deploys
both RDMA shared device plugin and SR-IOV network device plugin by
default, as it may cause the same device to be registered to two different
device plugins. This is an undesirable behavior. Instead, by default, only
RDMA shared device plugin is deployed via Helm.
If you wish to deploy both device plugins, set the sriovDevicePlugin.deploy
Helm parameter to “true”.

1.1.0 N/A

1.0.0 N/A

Bug Fixes

Version Description

1.4.0
- Fixed a cluster scale-up issue.
- Fixed an issue with IPoIB CNI deployment in OCP.

1.3.0
- N/A

1.2.0
- N/A

1.1.0

- Fixed the Whereabouts IPAM plugin to work with Kubernetes v1.22.
- Fixed imagePullSecrets for Network Operator.
- Enabled resource names for HostDeviceNetwork to be accepted both with
and without a prefix.

NVIDIA Network Operator v24.4.0 10

Known Limitations

Version Description

23.10.0

- IPoIB sub-interface creation does not work on RHEL 8.8 and RHEL 9.2 due to
the kernel limitations in these distributions. This means that IPoIBNetwork
cannot be used with these operating systems.

23.4.0

- In case that the UNLOAD_STORAGE_MODULES parameter is enabled for
MOFED container deployment, it is required to make sure that the relevant
storage modules are not in use in the OS.

23.1.0
- Only a single PKey can be configured per IPoIB workload pod.

1.4.0

- The operator upgrade procedure does not reflect configuration changes.
The RDMA Shared Device Plugin or SR-IOV Device Plugin should be restarted
manually in case of configuration changes.
- The RDMA subsystem could be exclusive or shared only in one cluster.
Mixed configuration is not supported. The RDMA Shared Device Plugin
requires shared RDMA subsystem.

1.3.0

- MOFED container is not a supported configuration on the DGX platform.
- MOFED container deletion may lead to the driver’s unloading: In this case,
the mlx5_core kernel driver must be reloaded manually. Network
connectivity could be affected if there are only NVIDIA NICs on the node.

1.2.0
- N/A

1.1.0 - NicClusterPolicy update is not supported at the moment.
- Network Operator is compatible only with NVIDIA GPU Operator v1.9.0 and
above.
- GPUDirect could have performance degradation if it is used with servers
which are not optimized. Please see official GPUDirect documentation here.
- Persistent NICs configuration for netplan or ifupdown scripts is required for
SR-IOV and Shared RDMA interfaces on the host.
- POD Security Policy admission controller should be enabled to use PSP with
Network Operator. Please see Deployment with Pod Security Policy in the

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html#supported-systems

NVIDIA Network Operator v24.4.0 11

Network Operator Documentation for details.

1.0.0

- Network Operator is only compatible with NVIDIA GPU Operator v1.5.2 and
above.
- Persistent NICs configuration for netplan or ifupdown scripts is required for
SR-IOV and Shared RDMA interfaces on the host.

NVIDIA Network Operator v24.4.0 12

Platform Support
On this page

Prerequisites

Network Operator Component Matrix

System Requirements

Tested Network Adapters

Supported ARM Based Platforms

Supported Operating Systems and Kubernetes Platforms

Supported Container Runtimes

Prerequisites

Component Version Notes

Kubernetes >=1.27 and <=1.29

Helm v3.5+

For information and
methods of Helm
installation, please refer to
the official Helm Website.

Network Operator Component Matrix

The following component versions are deployed by the Network Operator:

Component Version Notes

NVIDIA Network Operator v24.4.0 13

Node Feature Discovery v0.13.2

Optionally deployed. May
already be present in the
cluster with proper
configuration.

NVIDIA MLNX_OFED driver
container

24.04-0.6.6.0-0

k8s-rdma-shared-device-
plugin

1.4.0

sriov-network-device-plugin
e6ead1e8f76a407783430ee
2666b403db2d76f64

containernetworking CNI
plugins

v1.3.0

whereabouts CNI v0.7.0

multus CNI v3.9.3

IPoIB CNI
428715a57c0b633e48ec762
0f6e3af6863149ccf

IB Kubernetes v1.0.2

NV IPAM Plugin v0.1.2

System Requirements

NVIDIA RDMA-capable network adapters:

NVIDIA ConnectX NICs

ConnectX-5 or newer

NVIDIA BlueField Network Platforms

BlueField-2 DPU (NIC mode)

BlueField-3 DPU (NIC mode)

BlueField-3 SuperNIC (NIC mode)

NVIDIA Network Operator v24.4.0 14

NVIDIA GPU Operator Version 24.3.x or newer (required for the workloads using
NVIDIA GPUs and GPUDirect RDMA technology)

Tested Network Adapters

The following network adapters have been tested with the Network Operator:

ConnectX-6 Dx

ConnectX-7

BlueField-2 NIC Mode

BlueField-3 NIC Mode

Supported ARM Based Platforms

The following ARM based systems has been tested with Network Operator:

System Network Adapters OS Notes

NVIDIA IGX Orin ConnectX-7
Ubuntu 22.04
(ARM64)

GA (RoCE only,
without GPUDirect
RDMA)

NVIDIA Grace ARM
Server

ConnectX-7
Ubuntu 22.04
(ARM64)

Tech Preview

Supported Operating Systems and Kubernetes
Platforms

NVIDIA Network Operator has been validated in the following scenarios:

Operating System Kubernetes Red Hat OpenShift Notes

Ubuntu 24.04 LTS 1.27-1.29

Ubuntu 22.04 LTS 1.27-1.29 RT kernels support

Ubuntu 20.04 LTS 1.27-1.29

Red Hat Core OS 4.12-4.15 RT kernels support

NVIDIA Network Operator v24.4.0 15

Red Hat Enterprise
Linux 9.2, 9.0

1.27-1.29

Red Hat Enterprise
Linux 8.8, 8.6

1.27-1.29 RT kernels support

Supported Container Runtimes

NVIDIA Network Operator has been validated in the following scenarios:

Operating System Containerd CRI-O Notes

Ubuntu 24.04 LTS Yes No

Ubuntu 22.04 LTS Yes No

Ubuntu 20.04 LTS Yes No

Red Hat Core OS No Yes

Red Hat Enterprise
Linux 9

Yes Yes

For containerd
support
DOCA/MOFED
drivers must be pre-
installed on host

Red Hat Enterprise
Linux 8

Yes Yes

For containerd
support
DOCA/MOFED
drivers must be pre-
installed on host

NVIDIA Network Operator v24.4.0 16

Getting Started with
Kubernetes
On this page

Network Operator Deployment Guide

Network Operator Deployment on Vanilla Kubernetes Cluster

Deployment Examples

Network Operator Deployment with RDMA Shared Device Plugin

Network Operator Deployment with Multiple Resources in RDMA Shared
Device Plugin

Network Operator Deployment with a Secondary Network

Network Operator Deployment with NVIDIA-IPAM

Network Operator Deployment with a Host Device Network

Network Operator Deployment with a Host Device Network and Macvlan
Network

Network Operator Deployment with an IP over InfiniBand (IPoIB) Network

Network Operator Deployment for GPUDirect Workloads

Network Operator Deployment in SR-IOV Legacy Mode

SR-IOV Network Operator Deployment – Parallel Node Configuration for SR-
IOV

Upgrade from NVIDIA Network Operator v24.1.0

NVIDIA Network Operator v24.4.0 17

SR-IOV Network Operator Deployment – Parallel NIC Configuration for SR-IOV

SR-IOV Network Operator Deployment – SR-IOV Using the systemd Service

Network Operator Deployment with an SR-IOV InfiniBand Network

Network Operator Deployment with an SR-IOV InfiniBand Network with PKey
Management

Network Operator Deployment for DPDK Workloads with NicClusterPolicy

Network Operator Deployment and OpenvSwitch offload

Network Operator Configuration

Prerequisites for Worker Nodes

OVS-kernel

OVS-doca

Test Workload

Troubleshooting OVS

Network Operator Deployment Guide

NVIDIA Network Operator leverages Kubernetes CRDs and Operator SDK to manage
networking related components in order to enable fast networking, RDMA and GPUDirect
for workloads in a Kubernetes cluster. The Network Operator works in conjunction with
the GPU-Operator to enable GPU-Direct RDMA on compatible systems.

Warning

The Network Operator Release Notes chapter is available here.

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/operator-framework/operator-sdk
https://github.com/NVIDIA/gpu-operator
file:///tmp/jsreport/autocleanup/release-notes.html

NVIDIA Network Operator v24.4.0 18

The goal of the Network Operator is to manage the networking related components,
while enabling execution of RDMA and GPUDirect RDMA workloads in a Kubernetes
cluster. This includes:

NVIDIA Networking drivers to enable advanced features - enp1 netdcreate, an NV-
IPAM IPPool

Kubernetes device plugins to provide hardware resources required for an
accelerated network

Kubernetes secondary network components for network intensive workloads

Network Operator Deployment on Vanilla Kubernetes
Cluster

The default installation via Helm as described below will deploy the Network Operator
and related CRDs, after which an additional step is required to create a NicClusterPolicy
custom resource with the configuration that is desired for the cluster.

For more information on NicClusterPolicy custom resource, please refer to the Network-
Operator Project Sources.

The provided Helm chart contains various parameters to facilitate the creation of a
NicClusterPolicy custom resource upon deployment.

Warning

It is recommended to have dedicated control plane nodes for Vanilla
Kubernetes deployments with NVIDIA Network Operator.

Warning

Each Network Operator Release has a set of default version values
for the various components it deploys. It is recommended that these
values will not be changed. Testing and validation were performed

https://github.com/Mellanox/network-operator#nicclusterpolicy-crd
https://github.com/Mellanox/network-operator#nicclusterpolicy-crd

NVIDIA Network Operator v24.4.0 19

Add NVIDIA NGC Helm repository

Update helm repositories

Install Network Operator from the NVIDIA NGC chart using the default values:

helm install network-operator nvidia/network-operator -n nvidia-network-operator --
create-namespace --version v24.4.0 --wait View deployed resources

Install the Network Operator from the NVIDIA NGC chart using custom values:

helm show values nvidia/network-operator --version v24.4.0 > values.yaml helm install
network-operator nvidia/network-operator -n nvidia-network-operator --create-
namespace --version v24.4.0 -f ./values.yaml --wait

Deployment Examples

with these values, and there is no guarantee of interoperability nor
correctness when different versions are used.

helm repo add nvidia https://helm.ngc.nvidia.com/nvidia

helm repo update

kubectl -n nvidia-network-operator get pods

Warning

Since several parameters should be provided when creating custom
resources during operator deployment, it is recommended to use a
configuration file. While it is possible to override the parameters via
CLI, we recommend to avoid the use of CLI arguments in favor of a
configuration file.

NVIDIA Network Operator v24.4.0 20

Below are deployment examples, which the values.yaml file provided to the Helm
during the installation of the network operator. This was achieved by running:

Network Operator Deployment with RDMA Shared Device Plugin

Network operator deployment with the default version of the OFED driver and a single
RDMA resource mapped to ens1f0 netdev.:

values.yaml configuration file for such a deployment:

Network Operator Deployment with Multiple Resources in RDMA
Shared Device Plugin

Network Operator deployment with the default version of OFED and an RDMA device
plugin with two RDMA resources. The first is mapped to ens1f0 and ens1f1, and the
second is mapped to ens2f0 and ens2f1.

values.yaml configuration file for such a deployment:

Warning

Since several parameters should be provided when creating custom
resources during operator deployment, it is recommended to use a
configuration file. While it is possible to override the parameters via
CLI, we recommend to avoid the use of CLI arguments in favor of a
configuration file.

helm install -f ./values.yaml -n nvidia-network-operator --create-namespace --wait
nvidia/network-operator network-operator

nfd: enabled: true sriovNetworkOperator: enabled: false # NicClusterPolicy CR values:
deployCR: true ofedDriver: deploy: true rdmaSharedDevicePlugin: deploy: true
resources: - name: rdma_shared_device_a ifNames: [ens1f0] sriovDevicePlugin:
deploy: false

NVIDIA Network Operator v24.4.0 21

Network Operator Deployment with a Secondary Network

Network Operator deployment with:

RDMA shared device plugin

Secondary network

Mutlus CNI

Container-networking-plugins CNI plugins

Whereabouts IPAM CNI Plugin

values.yaml :

Network Operator Deployment with NVIDIA-IPAM

Network Operator deployment with:

RDMA shared device plugin

Secondary network

Multus CNI

Container-networking-plugins

CNI plugins

nfd: enabled: true sriovNetworkOperator: enabled: false # NicClusterPolicy CR values:
deployCR: true ofedDriver: deploy: true rdmaSharedDevicePlugin: deploy: true
resources: - name: rdma_shared_device_a ifNames: [ens1f0, ens1f1] - name:
rdma_shared_device_b ifNames: [ens2f0, ens2f1] sriovDevicePlugin: deploy: false

nfd: enabled: true sriovNetworkOperator: enabled: false # NicClusterPolicy CR values:
deployCR: true ofedDriver: deploy: false rdmaSharedDevicePlugin: deploy: true
resources: - name: rdma_shared_device_a ifNames: [ens1f0] secondaryNetwork:
deploy: true multus: deploy: true cniPlugins: deploy: true ipamPlugin: deploy: true

NVIDIA Network Operator v24.4.0 22

NVIDIA-IPAM CNI Plugin

values.yaml :

To create an NV-IPAM IPPool, apply:

Example of a MacvlanNetwork that uses NVIDIA-IPAM:

Network Operator Deployment with a Host Device Network

Network Operator deployment with:

SR-IOV device plugin, single SR-IOV resource pool

Secondary network

Multus CNI

Container-networking-plugins CNI plugins

Whereabouts IPAM CNI plugin

nfd: enabled: true sriovNetworkOperator: enabled: false # NicClusterPolicy CR values:
deployCR: true ofedDriver: deploy: false rdmaSharedDevicePlugin: deploy: true
resources: - name: rdma_shared_device_a ifNames: [ens1f0] secondaryNetwork:
deploy: true multus: deploy: true cniPlugins: deploy: true ipamPlugin: deploy: false
nvIpam: deploy: true

apiVersion: nv-ipam.nvidia.com/v1alpha1 kind: IPPool metadata: name: my-pool
namespace: nvidia-network-operator spec: subnet: 192.168.0.0/24
perNodeBlockSize: 100 gateway: 192.168.0.1

apiVersion: mellanox.com/v1alpha1 kind: MacvlanNetwork metadata: name:
example-macvlannetwork spec: networkNamespace: "default" master: "ens2f0"
mode: "bridge" mtu: 1500 ipam: | { "type": "nv-ipam", "poolName": "my-pool" }

NVIDIA Network Operator v24.4.0 23

In this mode, the Network Operator could be deployed on virtualized deployments as
well. It supports both Ethernet and InfiniBand modes. From the Network Operator
perspective, there is no difference between the deployment procedures. To work on a VM
(virtual machine), the PCI passthrough must be configured for SR-IOV devices. The
Network Operator works both with VF (Virtual Function) and PF (Physical Function) inside
the VMs.

values.yaml :

Following the deployment, the network operator should be configured, and K8s
networking should be deployed to use it in pod configuration.

The host-device-net.yaml configuration file for such a deployment:

Warning

If the Host Device Network is used without the MLNX_OFED driver,
the following packages should be installed:

the linux-generic package on Ubuntu hosts

the kernel-modules-extra package on the RedHat-based hosts

nfd: enabled: true sriovNetworkOperator: enabled: false # NicClusterPolicy CR values:
deployCR: true ofedDriver: deploy: false rdmaSharedDevicePlugin: deploy: false
sriovDevicePlugin: deploy: true resources: - name: hostdev vendors: [15b3]
secondaryNetwork: deploy: true multus: deploy: true cniPlugins: deploy: true
ipamPlugin: deploy: true

apiVersion: mellanox.com/v1alpha1 kind: HostDeviceNetwork metadata: name:
hostdev-net spec: networkNamespace: "default" resourceName:
"nvidia.com/hostdev" ipam: | { "type": "whereabouts", "datastore": "kubernetes",
"kubernetes": { "kubeconfig":
"/etc/cni/net.d/whereabouts.d/whereabouts.kubeconfig" }, "range":

NVIDIA Network Operator v24.4.0 24

The host-device-net-ocp.yaml configuration file for such a deployment in the OpenShift
Platform:

The pod.yaml configuration file for such a deployment:

Network Operator Deployment with a Host Device Network and
Macvlan Network

In this combined deployment, different NVIDIA NICs are used for RDMA Shared Device
Plugin and SR-IOV Network Device Plugin in order to work with a Host Device Network or
a Macvlan Network on different NICs. It is impossible to combine different networking
types on the same NICs. The same principle should be applied for other networking
combinations.

values.yaml :

"192.168.3.225/28", "exclude": ["192.168.3.229/30", "192.168.3.236/32"], "log_file":
"/var/log/whereabouts.log", "log_level": "info" }

apiVersion: mellanox.com/v1alpha1 kind: HostDeviceNetwork metadata: name:
hostdev-net spec: networkNamespace: "default" resourceName:
"nvidia.com/hostdev" ipam: | { "type": "whereabouts", "range": "192.168.3.225/28",
"exclude": ["192.168.3.229/30", "192.168.3.236/32"] }

apiVersion: v1 kind: Pod metadata: name: hostdev-test-pod annotations:
k8s.v1.cni.cncf.io/networks: hostdev-net spec: restartPolicy: OnFailure containers: -
image: name: mofed-test-ctr securityContext: capabilities: add: ["IPC_LOCK"]
resources: requests: nvidia.com/hostdev: 1 limits: nvidia.com/hostdev: 1 command:
- sh - -c - sleep inf

nfd: enabled: true # NicClusterPolicy CR values: deployCR: true ofedDriver: deploy:
false rdmaSharedDevicePlugin: deploy: true resources: - name:
rdma_shared_device_a linkTypes: [ether] sriovDevicePlugin: deploy: true resources: -
name: hostdev linkTypes: [“infiniband”] secondaryNetwork: deploy: true multus:
deploy: true cniPlugins: deploy: true ipamPlugin: deploy: true

NVIDIA Network Operator v24.4.0 25

For pods and network configuration examples please refer to the corresponding sections:
Network Operator Deployment with the RDMA Shared Device Plugin and Network
Operator Deployment with a Host Device Network.

Network Operator Deployment with an IP over InfiniBand (IPoIB)
Network

Network Operator deployment with:

RDMA shared device plugin

Secondary network

Multus CNI

IPoIB CNI

Whereabouts IPAM CNI plugin

In this mode, the Network Operator could be deployed on virtualized deployments as
well. It supports both Ethernet and InfiniBand modes. From the Network Operator
perspective, there is no difference between the deployment procedures. To work on a VM
(virtual machine), the PCI passthrough must be configured for SR-IOV devices. The
Network Operator works both with VF (Virtual Function) and PF (Physical Function) inside
the VMs.

values.yaml :

Following the deployment, the network operator should be configured, and K8s
networking deployed to use it in the pod configuration.

The ipoib-net.yaml configuration file for such a deployment:

nfd: enabled: true sriovNetworkOperator: enabled: false # NicClusterPolicy CR values:
deployCR: true ofedDriver: deploy: true rdmaSharedDevicePlugin: deploy: true
resources: - name: rdma_shared_device_a ifNames: [ibs1f0] secondaryNetwork:
deploy: true multus: deploy: true ipoib: deploy: true ipamPlugin: deploy: true

NVIDIA Network Operator v24.4.0 26

The ipoib-net-ocp.yaml configuration file for such a deployment in the OpenShift
Platform:

The pod.yaml configuration file for such a deployment:

Network Operator Deployment for GPUDirect Workloads

GPUDirect requires the following:

MLNX_OFED v5.5-1.0.3.2 or newer

GPU Operator v1.9.0 or newer

NVIDIA GPU and driver supporting GPUDirect e.g Quadro RTX 6000/8000 or NVIDIA
T4/NVIDIA V100/NVIDIA A100

values.yaml example:

apiVersion: mellanox.com/v1alpha1 kind: IPoIBNetwork metadata: name: example-
ipoibnetwork spec: networkNamespace: "default" master: "ibs1f0" ipam: | { "type":
"whereabouts", "datastore": "kubernetes", "kubernetes": { "kubeconfig":
"/etc/cni/net.d/whereabouts.d/whereabouts.kubeconfig" }, "range":
"192.168.5.225/28", "exclude": ["192.168.6.229/30", "192.168.6.236/32"], "log_file" :
"/var/log/whereabouts.log", "log_level" : "info", "gateway": "192.168.6.1" }

apiVersion: mellanox.com/v1alpha1 kind: IPoIBNetwork metadata: name: example-
ipoibnetwork spec: networkNamespace: "default" master: "ibs1f0" ipam: | { "type":
"whereabouts", "range": "192.168.5.225/28", "exclude": ["192.168.6.229/30",
"192.168.6.236/32"] }

apiVersion: v1 kind: Pod metadata: name: iboip-test-pod annotations:
k8s.v1.cni.cncf.io/networks: example-ipoibnetwork spec: restartPolicy: OnFailure
containers: - image: name: mofed-test-ctr securityContext: capabilities: add: [
"IPC_LOCK"] resources: requests: rdma/rdma_shared_device_a: 1 limits:
edma/rdma_shared_device_a: 1 command: - sh - -c - sleep inf

NVIDIA Network Operator v24.4.0 27

host-device-net.yaml:

The host-device-net-ocp.yaml configuration file for such a deployment in the OpenShift
Platform:

host-net-gpudirect-pod.yaml

Network Operator Deployment in SR-IOV Legacy Mode

nfd: enabled: true sriovNetworkOperator: enabled: false # NicClusterPolicy CR values:
ofedDriver: deploy: true deployCR: true sriovDevicePlugin: deploy: true resources: -
name: hostdev vendors: [15b3] secondaryNetwork: deploy: true multus: deploy:
true cniPlugins: deploy: true ipamPlugin: deploy: true

apiVersion: mellanox.com/v1alpha1 kind: HostDeviceNetwork metadata: name:
hostdevice-net spec: networkNamespace: "default" resourceName: "hostdev" ipam:
| { "type": "whereabouts", "datastore": "kubernetes", "kubernetes": { "kubeconfig":
"/etc/cni/net.d/whereabouts.d/whereabouts.kubeconfig" }, "range":
"192.168.3.225/28", "exclude": ["192.168.3.229/30", "192.168.3.236/32"], "log_file" :
"/var/log/whereabouts.log", "log_level" : "info" }

apiVersion: mellanox.com/v1alpha1 kind: HostDeviceNetwork metadata: name:
hostdevice-net spec: networkNamespace: "default" resourceName: "hostdev" ipam:
| { "type": "whereabouts", "range": "192.168.3.225/28", "exclude": [
"192.168.3.229/30", "192.168.3.236/32"] }

apiVersion: v1 kind: Pod metadata: name: testpod1 annotations:
k8s.v1.cni.cncf.io/networks: hostdevice-net spec: containers: - name: appcntr1
image: <image> imagePullPolicy: IfNotPresent securityContext: capabilities: add:
["IPC_LOCK"] command: - sh - -c - sleep inf resources: requests: nvidia.com/hostdev:
'1' nvidia.com/gpu: '1' limits: nvidia.com/hostdev: '1' nvidia.com/gpu: '1'

Warning

NVIDIA Network Operator v24.4.0 28

values.yaml configuration for such a deployment:

Following the deployment, the Network Operator should be configured, and sriovnetwork
node policy and K8s networking should be deployed.

The sriovnetwork-node-policy.yaml configuration file for such a deployment:

The sriovnetwork.yaml configuration file for such a deployment:

The SR-IOV Network Operator will be deployed with the default
configuration. You can override these settings using a CLI argument,
or the ‘sriov-network-operator’ section in the values.yaml file. For
more information, refer to the Project Documentation.

Warning

This deployment mode supports SR-IOV in legacy mode.

nfd: enabled: true sriovNetworkOperator: enabled: true # NicClusterPolicy CR values:
deployCR: true ofedDriver: deploy: true rdmaSharedDevicePlugin: deploy: false
sriovDevicePlugin: deploy: false secondaryNetwork: deploy: true multus: deploy:
true cniPlugins: deploy: true ipamPlugin: deploy: true

apiVersion: sriovnetwork.openshift.io/v1 kind: SriovNetworkNodePolicy metadata:
name: policy-1 namespace: nvidia-network-operator spec: deviceType: netdevice
mtu: 1500 nicSelector: vendor: "15b3" pfNames: ["ens2f0"] nodeSelector:
feature.node.kubernetes.io/pci-15b3.present: "true" numVfs: 8 priority: 90 isRdma:
true resourceName: sriov_resource

apiVersion: sriovnetwork.openshift.io/v1 kind: SriovNetwork metadata: name:
"example-sriov-network" namespace: nvidia-network-operator spec: vlan: 0

https://github.com/k8snetworkplumbingwg/sriov-network-operator/

NVIDIA Network Operator v24.4.0 29

Wait for all required pods to be spawned:

The pod.yaml configuration file for such a deployment:

networkNamespace: "default" resourceName: "sriov_resource" ipam: |- {
"datastore": "kubernetes", "kubernetes": { "kubeconfig":
"/etc/cni/net.d/whereabouts.d/whereabouts.kubeconfig" }, "log_file":
"/tmp/whereabouts.log", "log_level": "debug", "type": "whereabouts", "range":
"192.168.101.0/24" }

Warning

The ens2f0 network interface name has been chosen from the
following command output:
kubectl -n nvidia-network-operator get
sriovnetworknodestates.sriovnetwork.openshift.io -o yaml

.

... status: interfaces: - deviceID: 101d driver: mlx5_core linkSpeed: 100000 Mb/s
linkType: ETH mac: 0c:42:a1:2b:74:ae mtu: 1500 name: ens2f0 pciAddress:
"0000:07:00.0" totalvfs: 8 vendor: 15b3 - deviceID: 101d driver: mlx5_core linkType:
ETH mac: 0c:42:a1:2b:74:af mtu: 1500 name: ens2f1 pciAddress: "0000:07:00.1"
totalvfs: 8 vendor: 15b3 ...

kubectl get pod -n nvidia-network-operator | grep sriov network-operator-sriov-
network-operator-544c8dbbb9-vzkmc 1/1 Running 0 5d sriov-device-plugin-vwpzn
1/1 Running 0 2d6h sriov-network-config-daemon-qv467 3/3 Running 0 5d # kubectl
get pod -n nvidia-network-operator NAME READY STATUS RESTARTS AGE cni-plugins-
ds-kbvnm 1/1 Running 0 5d cni-plugins-ds-pcllg 1/1 Running 0 5d kube-multus-ds-
5j6ns 1/1 Running 0 5d kube-multus-ds-mxgvl 1/1 Running 0 5d mofed-
ubuntu20.04-ds-2zzf4 1/1 Running 0 5d mofed-ubuntu20.04-ds-rfnsw 1/1 Running 0
5d whereabouts-nw7hn 1/1 Running 0 5d whereabouts-zvhrv 1/1 Running 0 5d ...

NVIDIA Network Operator v24.4.0 30

SR-IOV Network Operator Deployment – Parallel Node Configuration
for SR-IOV

To apply SR-IOV configuration on several nodes in parallel, create a
SriovNetworkPoolConfig CR and specify the maximum number or percentage of nodes

that can be unavailable at the same time:

sriov-network-pool-config-number.yaml

sriov-network-pool-config-percent.yaml

apiVersion: v1 kind: Pod metadata: name: testpod1 annotations:
k8s.v1.cni.cncf.io/networks: example-sriov-network spec: containers: - name:
appcntr1 image: <image> imagePullPolicy: IfNotPresent securityContext:
capabilities: add: ["IPC_LOCK"] resources: requests: nvidia.com/sriov_resource: '1'
limits: nvidia.com/sriov_resource: '1' command: - sh - -c - sleep inf

Warning

This feature is supported only for Vanilla Kubernetes deployments
with SR-IOV Network Operator.

apiVersion: sriovnetwork.openshift.io/v1 kind: SriovNetworkPoolConfig metadata:
name: pool-1 namespace: network-operator spec: maxUnavailable: "20"
nodeSelector: - matchExpressions: - key: some-label operator: In values: - val-2 -
matchExpressions: - key: other-label operator: "Exists"

apiVersion: sriovnetwork.openshift.io/v1 kind: SriovNetworkPoolConfig metadata:
name: pool-1 namespace: network-operator spec: maxUnavailable: "10%"
nodeSelector: - matchExpressions: - key: some-label operator: In values: - val-2 -
matchExpressions: - key: other-label operator: "Exists"

NVIDIA Network Operator v24.4.0 31

Upgrade from NVIDIA Network Operator v24.1.0

To upgrade SR-IOV Network operator you need to create SriovNetworkPoolConfig CR
with the number of nodes to be configured in a parallel as we did in SriovOperatorConfig`
in previous releases.

E.g.: old method to configure nodes in a parallel:

New method to configure nodes in a parallel:

sriov-network-pool-config-new.yaml

SR-IOV Network Operator Deployment – Parallel NIC Configuration for
SR-IOV

To apply SriovNetworkNodePolicy on several nodes in parallel, specify the featureGates
option in the SriovOperatorConfig CRD:

kubectl patch sriovoperatorconfigs.sriovnetwork.openshift.io -n network-operator
default --patch '{ "spec": { "maxParallelNodeConfiguration": 5 } }' --type='merge'

apiVersion: sriovnetwork.openshift.io/v1 kind: SriovNetworkPoolConfig metadata:
name: pool-1 namespace: network-operator spec: maxUnavailable: "5"
nodeSelector: - matchExpressions: - key: node-role.kubernetes.io/master operator:
Exists

Warning

This feature is supported only for Vanilla Kubernetes deployments
with SR-IOV Network Operator.

kubectl patch sriovoperatorconfigs.sriovnetwork.openshift.io -n network-operator
default --patch '{ "spec": { "featureGates": { "parallelNicConfig": true } } }' --

NVIDIA Network Operator v24.4.0 32

SR-IOV Network Operator Deployment – SR-IOV Using the systemd
Service

To enable systemd SR-IOV configuration mode, specify the configurationMode option in
the SriovOperatorConfig CRD:

Network Operator Deployment with an SR-IOV InfiniBand Network

Network Operator deployment with InfiniBand network requires the following:

MLNX_OFED and OpenSM running. OpenSM runs on top of the MLNX_OFED stack,
so both the driver and the subnet manager should come from the same installation.
Note that partitions that are configured by OpenSM should specify defmember=full
to enable the SR-IOV functionality over InfiniBand. For more details, please refer to
this article <https://docs.mellanox.com/display/MLNXOFEDv51258060/OpenSM>.

InfiniBand device – Both the host device and switch ports must be enabled in
InfiniBand mode.

rdma-core package should be installed when an inbox driver is used.

values.yaml

sriov-ib-network-node-policy.yaml

type='merge'

kubectl patch sriovoperatorconfigs.sriovnetwork.openshift.io -n network-operator
default --patch '{ "spec": { "configurationMode": "systemd"} }' --type='merge'

nfd: enabled: true sriovNetworkOperator: enabled: true # NicClusterPolicy CR values:
deployCR: true ofedDriver: deploy: true rdmaSharedDevicePlugin: deploy: false
sriovDevicePlugin: deploy: false secondaryNetwork: deploy: true multus: deploy:
true cniPlugins: deploy: true ipamPlugin: deploy: true

apiVersion: sriovnetwork.openshift.io/v1 kind: SriovNetworkNodePolicy metadata:
name: infiniband-sriov namespace: nvidia-network-operator spec: deviceType:

NVIDIA Network Operator v24.4.0 33

sriov-ib-network.yaml

sriov-ib-network-pod.yaml

Network Operator Deployment with an SR-IOV InfiniBand Network
with PKey Management

Network Operator deployment with InfiniBand network requires the following:

MLNX_OFED and OpenSM running. OpenSM runs on top of the MLNX_OFED stack,
so both the driver and the subnet manager should come from the same installation.
Note that partitions that are configured by OpenSM should specify defmember=full
to enable the SR-IOV functionality over InfiniBand. For more details, please refer to
this article.

NVIDIA UFM running on top of OpenSM. For more details, please refer to the project
documentation.

netdevice mtu: 1500 nodeSelector: feature.node.kubernetes.io/pci-15b3.present:
"true" nicSelector: vendor: "15b3" linkType: infiniband isRdma: true numVfs: 8
priority: 90 resourceName: mlnxnics

apiVersion: sriovnetwork.openshift.io/v1 kind: SriovIBNetwork metadata: name:
example-sriov-ib-network namespace: nvidia-network-operator spec: ipam: | {
"type": "whereabouts", "datastore": "kubernetes", "kubernetes": { "kubeconfig":
"/etc/cni/net.d/whereabouts.d/whereabouts.kubeconfig" }, "range":
"192.168.5.225/28", "exclude": ["192.168.5.229/30", "192.168.5.236/32"], "log_file":
"/var/log/whereabouts.log", "log_level": "info" } resourceName: mlnxnics linkState:
enable networkNamespace: default

apiVersion: v1 kind: Pod metadata: name: test-sriov-ib-pod annotations:
k8s.v1.cni.cncf.io/networks: example-sriov-ib-network spec: containers: - name: test-
sriov-ib-pod image: centos/tools imagePullPolicy: IfNotPresent command: - sh - -c -
sleep inf securityContext: capabilities: add: ["IPC_LOCK"] resources: requests:
nvidia.com/mlnxics: "1" limits: nvidia.com/mlnxics: "1"

https://docs.mellanox.com/display/MLNXOFEDv51258060/OpenSM
https://docs.nvidia.com/networking/display/UFMEnterpriseUMv652
https://docs.nvidia.com/networking/display/UFMEnterpriseUMv652

NVIDIA Network Operator v24.4.0 34

InfiniBand device – Both the host device and the switch ports must be enabled in
InfiniBand mode.

rdma-core package should be installed when an inbox driver is used.

Current limitations:

Only a single PKey can be configured per workload pod.

When a single instance of NVIDIA UFM is used with several K8s clusters, different
PKey GUID pools should be configured for each cluster.

ufm-secret.yaml

values.yaml

Wait for MLNX_OFED to install and apply the following CRs:

Warning

ib-kubernetes-ufm-secret should be created before NicClusterPolicy.

apiVersion: v1 kind: Secret metadata: name: ib-kubernetes-ufm-secret namespace:
nvidia-network-operator stringData: UFM_USERNAME: "admin" UFM_PASSWORD:
"123456" UFM_ADDRESS: "ufm-host" UFM_HTTP_SCHEMA: "" UFM_PORT: "" data:
UFM_CERTIFICATE: ""

nfd: enabled: true sriovNetworkOperator: enabled: true resourcePrefix:
"nvidia.com" # NicClusterPolicy CR values: deployCR: true ofedDriver: deploy: true
rdmaSharedDevicePlugin: deploy: false sriovDevicePlugin: deploy: false
ibKubernetes: deploy: true periodicUpdateSeconds: 5 pKeyGUIDPoolRangeStart:
"02:00:00:00:00:00:00:00" pKeyGUIDPoolRangeEnd: "02:FF:FF:FF:FF:FF:FF:FF"
ufmSecret: ufm-secret secondaryNetwork: deploy: true multus: deploy: true
cniPlugins: deploy: true ipamPlugin: deploy: true

NVIDIA Network Operator v24.4.0 35

sriov-ib-network-node-policy.yaml

sriov-ib-network.yaml

sriov-ib-network-pod.yaml

Network Operator Deployment for DPDK Workloads with
NicClusterPolicy

This deployment mode supports DPDK applications. In order to run DPDK applications,
HUGEPAGE should be configured on the required K8s Worker Nodes. By default, the
inbox operating system driver is used. For support of cases with specific requirements,
OFED container should be deployed.

Network Operator deployment with:

apiVersion: sriovnetwork.openshift.io/v1 kind: SriovNetworkNodePolicy metadata:
name: infiniband-sriov namespace: nvidia-network-operator spec: deviceType:
netdevice mtu: 1500 nodeSelector: feature.node.kubernetes.io/pci-15b3.present:
"true" nicSelector: vendor: "15b3" linkType: ib isRdma: true numVfs: 8 priority: 90
resourceName: mlnxnics

apiVersion: "k8s.cni.cncf.io/v1" kind: NetworkAttachmentDefinition metadata: name:
ib-sriov-network annotations: k8s.v1.cni.cncf.io/resourceName: nvidia.com/mlnxnics
spec: config: '{ "type":"ib-sriov", "cniVersion":"0.3.1", "name":"ib-sriov-network",
"pkey":"0x6", "link_state":"enable", "ibKubernetesEnabled":true, "ipam":{
"type":"whereabouts", "datastore":"kubernetes", "kubernetes":{
"kubeconfig":"/etc/cni/net.d/whereabouts.d/whereabouts.kubeconfig" },
"range":"10.56.217.0/24", "log_file":"/var/log/whereabouts.log", "log_level":"info" } }'

apiVersion: v1 kind: Pod metadata: name: test-sriov-ib-pod annotations:
k8s.v1.cni.cncf.io/networks: ib-sriob-network spec: containers: - name: test-sriov-ib-
pod image: centos/tools imagePullPolicy: IfNotPresent command: - sh - -c - sleep inf
securityContext: capabilities: add: ["IPC_LOCK"] resources: requests:
nvidia.com/mlnxics: "1" limits: nvidia.com/mlnxics: "1"

https://docs.nvidia.com/http://manpages.ubuntu.com/manpages/focal/man8/hugeadm.8.html

NVIDIA Network Operator v24.4.0 36

Host Device Network

DPDK pod

nicclusterpolicy.yaml

apiVersion: mellanox.com/v1alpha1 kind: NicClusterPolicy metadata: name: nic-cluster-
policy spec: ofedDriver: image: doca-driver repository: nvcr.io/nvidia/mellanox version:
24.04-0.6.6.0-0 sriovDevicePlugin: image: sriov-network-device-plugin repository:
ghcr.io/k8snetworkplumbingwg version: e6ead1e8f76a407783430ee2666b403db2d76f64
config: | { "resourceList": [{ "resourcePrefix": "nvidia.com", "resourceName":
"rdma_host_dev", "selectors": { "vendors": ["15b3"], "devices": ["1018"], "drivers":
["mlx5_core"] } }] } secondaryNetwork: cniPlugins: image: plugins repository:
ghcr.io/k8snetworkplumbingwg version: v1.3.0-amd64 ipamPlugin: image: whereabouts
repository: ghcr.io/k8snetworkplumbingwg version: v0.7.0-amd64 multus: image: multus-
cni repository: ghcr.io/k8snetworkplumbingwg version: v3.9.3

host-device-net.yaml

pod.yaml

apiVersion: mellanox.com/v1alpha1 kind: HostDeviceNetwork metadata: name:
example-hostdev-net spec: networkNamespace: "default" resourceName:
"rdma_host_dev" ipam: | { "type": "whereabouts", "datastore": "kubernetes",
"kubernetes": { "kubeconfig":
"/etc/cni/net.d/whereabouts.d/whereabouts.kubeconfig" }, "range":
"192.168.3.225/28", "exclude": ["192.168.3.229/30", "192.168.3.236/32"], "log_file" :
"/var/log/whereabouts.log", "log_level" : "info" }

apiVersion: v1 kind: Pod metadata: name: testpod1 annotations:
k8s.v1.cni.cncf.io/networks: example-hostdev-net spec: containers: - name:
appcntr1 image: <dpdk image> imagePullPolicy: IfNotPresent securityContext:
capabilities: add: ["IPC_LOCK"] volumeMounts: - mountPath: /dev/hugepages name:
hugepage resources: requests: memory: 1Gi hugepages-1Gi: 2Gi
nvidia.com/rdma_host_dev: '1' command: ["/bin/bash", "-c", "--"] args: [
"whiletrue;dosleep300000;done;"] volumes: - name: hugepage emptyDir: medium:
HugePages

NVIDIA Network Operator v24.4.0 37

Network Operator Deployment and OpenvSwitch offload

Network Operator Configuration

Deploy network-operator by Helm with sriov-network-operator and nv-ipam.

values.yaml

Enable manageSoftwareBridges featureGate for sriov-network-operator

Warning

This feature is supported only for Vanilla Kubernetes deployments
with SR-IOV Network Operator.

Warning

This mode of operation is not compatible with OFED container.

Warning

Tech Preview feature.

sriovNetworkOperator: enabled: true deployCR: true nvIpam: deploy: true

kubectl patch sriovoperatorconfigs.sriovnetwork.openshift.io -n network-operator
default --patch '{ "spec": { "featureGates": { "manageSoftwareBridges": true } } }' --

NVIDIA Network Operator v24.4.0 38

Create IPPool object for nv-ipam

Prerequisites for Worker Nodes

Supported operating systems:

Ubuntu 22.04

OpenvSwitch from the NVIDIA DOCA for Host package with doca-all or
doca-networking profile should be installed on each worker node.

Check NVIDIA DOCA Official installation guide for details.

Supported OpenvSwitch dataplanes:

OVS-kernel

OVS-doca

Check OpenvSwitch Offload document to know about differences.

OVS-kernel

These steps are for OVS-kernel data plane, to use OVS-doca follow instructions from the
relevant section.

Prepare Worker Nodes

Configure Open_vSwitch

type='merge'

apiVersion: nv-ipam.nvidia.com/v1alpha1 kind: IPPool metadata: name: pool1
namespace: network-operator spec: subnet: 192.168.0.0/16 perNodeBlockSize: 100
gateway: 192.168.0.1 nodeSelector: nodeSelectorTerms: - matchExpressions: - key:
node-role.kubernetes.io/worker operator: Exists

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

https://docs.nvidia.com/doca/sdk/nvidia+doca+installation+guide+for+linux/index.html
https://docs.nvidia.com/doca/sdk/openvswitch+offload+(ovs+in+doca)/index.html

NVIDIA Network Operator v24.4.0 39

Restart Open_vSwitch

Sriov Network Operator Configuration

Create SriovNetworkNodePolicy for selected NIC

Create OVSNetwork CR

OVS-doca

These steps are for OVS-doca data plane, to use OVS-kernel follow instructions from the
relevant section.

Prepare Worker Nodes

Configure hugepages

Note: for multi CPU system hugepages should be created for each NUMA node: node0, node1,
…

Configure system to create hugepages on boot

systemctl restart openvswitch-switch.service

kind: SriovNetworkNodePolicy metadata: name: ovs-switchdev namespace:
network-operator spec: eSwitchMode: switchdev mtu: 1500 nicSelector: deviceID:
101d vendor: 15b3 nodeSelector: node-role.kubernetes.io/worker: "" numVfs: 4
isRdma: true linkType: ETH resourceName: switchdev bridge: ovs: {}

apiVersion: sriovnetwork.openshift.io/v1 kind: OVSNetwork metadata: name: ovs
namespace: network-operator spec: networkNamespace: default ipam: | { "type":
"nv-ipam", "poolName": "pool1" } resourceName: switchdev

mkdir -p /hugepages mount -t hugetlbfs hugetlbfs /hugepages echo 4096 >
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages

NVIDIA Network Operator v24.4.0 40

Note: this example is for a server with two CPU

Configure Open_vSwitch

Restart Open_vSwitch

Sriov Network Operator Configuration

Create SriovNetworkNodePolicy for selected NIC

Create OVSNetwork CR

Test Workload

echo "vm.nr_hugepages=8192" > /etc/sysctl.d/99-hugepages.conf

ovs-vsctl --no-wait set Open_vSwitch . other_config:doca-init=true ovs-vsctl set
Open_vSwitch . other_config:hw-offload=true

systemctl restart openvswitch-switch.service

kind: SriovNetworkNodePolicy metadata: name: ovs-switchdev namespace:
network-operator spec: eSwitchMode: switchdev mtu: 1500 nicSelector: deviceID:
101d vendor: 15b3 nodeSelector: node-role.kubernetes.io/worker: "" numVfs: 4
isRdma: true linkType: ETH resourceName: switchdev bridge: ovs: bridge:
datapathType: netdev uplink: interface: type: dpdk

apiVersion: sriovnetwork.openshift.io/v1 kind: OVSNetwork metadata: name: ovs
namespace: network-operator spec: networkNamespace: default ipam: | { "type":
"nv-ipam", "poolName": "pool1" } resourceName: switchdev interfaceType: dpdk

apiVersion: apps/v1 kind: Deployment metadata: name: ovs-offload labels: app: ovs-
offload spec: replicas: 2 selector: matchLabels: app: ovs-offload template: metadata:
labels: app: ovs-offload annotations: k8s.v1.cni.cncf.io/networks: ovs spec:

NVIDIA Network Operator v24.4.0 41

Troubleshooting OVS

For OVS hardware offload verification and troubleshooting steps, please refer to the
following DOCA documentation:

OVS-Kernel Hardware Offloads

OVS-DOCA Hardware Offloads

containers: - name: ovs-offload-container command: ["/bin/bash", "-c"] args: - |
while true; do sleep 1000; done image: mellanox/rping-test securityContext:
capabilities: add: ["IPC_LOCK"] resources: requests: nvidia.com/switchdev: 1 limits:
nvidia.com/switchdev: 1

https://docs.nvidia.com/doca/sdk/ovs-kernel+hardware+offloads/index.html
https://docs.nvidia.com/doca/sdk/ovs-doca+hardware+offloads/index.html

NVIDIA Network Operator v24.4.0 42

Getting Started with Red
Hat OpenShift
On this page

Network Operator Deployment on an OpenShift Container Platform

Node Feature Discovery

SR-IOV Network Operator

GPU Operator

Network Operator Installation

Network Operator Installation Using OpenShift Catalog

Network Operator Installation using OpenShift OC CLI

Verification

Using Network Operator to Create NicClusterPolicy in OpenShift Container
Platform

Deployment Examples For OpenShift Container Platform

Network Operator Deployment with a Host Device Network - OCP

Network Operator Deployment with SR-IOV Legacy Mode - OCP

Network Operator Deployment with the RDMA Shared Device
Plugin - OCP

Network Operator Deployment for DPDK Workloads - OCP

NVIDIA Network Operator v24.4.0 43

Network Operator Deployment on an OpenShift
Container Platform

Node Feature Discovery

To enable Node Feature Discovery, please follow the official guide.

An example of Node Feature Discovery configuration:

Verify that the following label is present on the nodes containing NVIDIA networking
hardware: feature.node.kubernetes.io/pci-15b3.present=true

Warning

Currently, NVIDIA Network Operator does not support Single Node
OpenShift (SNO) deployments.

Warning

It is recommended to have dedicated control plane nodes for
OpenShift deployments with NVIDIA Network Operator.

apiVersion: nfd.openshift.io/v1 kind: NodeFeatureDiscovery metadata: name: nfd-
instance namespace: openshift-nfd spec: operand: namespace: openshift-nfd
image: registry.redhat.io/openshift4/ose-node-feature-discovery:v4.10
imagePullPolicy: Always workerConfig: configData: | sources: pci:
deviceClassWhitelist: - "02" - "03" - "0200" - "0207" deviceLabelFields: - vendor
customConfig: configData: ""

https://docs.openshift.com/container-platform/latest/hardware_enablement/psap-node-feature-discovery-operator.html

NVIDIA Network Operator v24.4.0 44

SR-IOV Network Operator

If you are planning to use SR-IOV, follow these instructions to install SR-IOV Network
Operator on an OpenShift Container Platform.

For the default SriovOperatorConfig CR to work with the MLNX_OFED container, please
run this command to update the following values:

oc describe node | grep -E 'Roles|pci' | grep -v "control-plane" Roles: worker cpu-
feature.node.kubevirt.io/invpcid=true cpu-feature.node.kubevirt.io/pcid=true
feature.node.kubernetes.io/pci-102b.present=true feature.node.kubernetes.io/pci-
10de.present=true feature.node.kubernetes.io/pci-10de.sriov.capable=true
feature.node.kubernetes.io/pci-14e4.present=true feature.node.kubernetes.io/pci-
15b3.present=true feature.node.kubernetes.io/pci-15b3.sriov.capable=true Roles:
worker cpu-feature.node.kubevirt.io/invpcid=true cpu-
feature.node.kubevirt.io/pcid=true feature.node.kubernetes.io/pci-
102b.present=true feature.node.kubernetes.io/pci-10de.present=true
feature.node.kubernetes.io/pci-10de.sriov.capable=true
feature.node.kubernetes.io/pci-14e4.present=true feature.node.kubernetes.io/pci-
15b3.present=true feature.node.kubernetes.io/pci-15b3.sriov.capable=true

Warning

The SR-IOV resources created will have the openshift.io prefix.

oc patch sriovoperatorconfig default \ --type=merge -n openshift-sriov-network-
operator \ --patch '{ "spec": { "configDaemonNodeSelector": {
"network.nvidia.com/operator.mofed.wait": "false", "node-
role.kubernetes.io/worker": "", "feature.node.kubernetes.io/pci-15b3.sriov.capable":
"true" } } }'

https://docs.openshift.com/container-platform/latest/networking/hardware_networks/installing-sriov-operator.html

NVIDIA Network Operator v24.4.0 45

GPU Operator

If you plan to use GPUDirect, follow this to install GPU Operator on an OpenShift
Container Platform.

Make sure to enable RDMA and disable useHostMofed in the driver section in the spec of
the ClusterPolicy CR.

Network Operator Installation

Network Operator Installation Using OpenShift Catalog

In the OpenShift Container Platform web console side menu, select Operators >
OperatorHub, and search for the NVIDIA Network Operator.

Select NVIDIA Network Operator, and click Install in the first screen and in the
subsequent one.

For additional information, see the Red Hat OpenShift Container Platform
Documentation.

Network Operator Installation using OpenShift OC CLI

1. Create a namespace for the Network Operator.

2. Install the Network Operator in the namespace created in the previous step by
creating the below objects. Run the following command to get the channel value
required for the next step:

Warning

SR-IOV Network Operator configuration documentation can be found
on the Official Website.

oc create namespace nvidia-network-operator

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/openshift/contents.html
https://docs.openshift.com/container-platform/latest/operators/admin/olm-adding-operators-to-cluster.html
https://docs.openshift.com/container-platform/latest/operators/admin/olm-adding-operators-to-cluster.html
https://docs.openshift.com/container-platform/latest/networking/hardware_networks/configuring-sriov-operator.html#configuring-sriov-operator

NVIDIA Network Operator v24.4.0 46

Example output:

3. Create the following Subscription CR, and save the YAML in the network-operator-
sub.yaml file:

apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name:
nvidia-network-operator namespace: nvidia-network-operator spec: channel:
"v24.4.0" installPlanApproval: Manual name: nvidia-network-operator source:
certified-operators sourceNamespace: openshift-marketplace

4. Create the subscription object by running the following command:

5. Change to the network-operator project:

Verification

To verify that the operator deployment is successful, run:

Example output:

A successful deployment shows a Running status.

oc get packagemanifest nvidia-network-operator -n openshift-marketplace -o
jsonpath='{.status.defaultChannel}'

stable

oc create -f network-operator-sub.yaml

oc project nvidia-network-operator

oc get pods -n nvidia-network-operator

NAME READY STATUS RESTARTS AGE nvidia-network-operator-controller-manager-
8f8ccf45c-zgfsq 2/2 Running 0 1m

NVIDIA Network Operator v24.4.0 47

Using Network Operator to Create NicClusterPolicy in OpenShift
Container Platform

See Deployment Examples for OCP:

Deployment Examples For OpenShift Container Platform

In OCP, some components are deployed by default like Multus and WhereAbouts,
whereas others, such as NFD and SR-IOV Network Operator must be deployed manually,
as described in the Installation section.

In addition, since there is no use of the Helm chart, the configuration should be done via
the NicClusterPolicy CRD.

Following are examples of NicClusterPolicy configuration for OCP.

Network Operator Deployment with a Host Device Network - OCP

Network Operator deployment with:

SR-IOV device plugin, single SR-IOV resource pool:

There is no need for a secondary network configuration, as it is installed by default
in OCP.

apiVersion: mellanox.com/v1alpha1 kind: NicClusterPolicy metadata: name: nic-cluster-
policy spec: ofedDriver: image: doca-driver repository: nvcr.io/nvidia/mellanox version:
24.04-0.6.6.0-0 startupProbe: initialDelaySeconds: 10 periodSeconds: 20 livenessProbe:
initialDelaySeconds: 30 periodSeconds: 30 readinessProbe: initialDelaySeconds: 10
periodSeconds: 30 sriovDevicePlugin: image: sriov-network-device-plugin repository:
ghcr.io/k8snetworkplumbingwg version: e6ead1e8f76a407783430ee2666b403db2d76f64
config: | { "resourceList": [{ "resourcePrefix": "nvidia.com", "resourceName": "hostdev",
"selectors": { "vendors": ["15b3"], "isRdma": true } }] }

Following the deployment, the Network Operator should be configured, and K8s
networking deployed to use it in pod configuration. The host-device-net.yaml`
configuration file for such a deployment:

apiVersion: mellanox.com/v1alpha1 kind: HostDeviceNetwork metadata: name:
hostdev-net spec: networkNamespace: "default" resourceName:

NVIDIA Network Operator v24.4.0 48

The pod.yaml configuration file for such a deployment:

Network Operator Deployment with SR-IOV Legacy Mode - OCP

This deployment mode supports SR-IOV in legacy mode. Note that the SR-IOV Network
Operator is required as described in the Deployment for OCP section.

apiVersion: mellanox.com/v1alpha1 kind: NicClusterPolicy metadata: name: nic-cluster-
policy spec: ofedDriver: image: doca-driver repository: nvcr.io/nvidia/mellanox version:
24.04-0.6.6.0-0 startupProbe: initialDelaySeconds: 10 periodSeconds: 20 livenessProbe:
initialDelaySeconds: 30 periodSeconds: 30 readinessProbe: initialDelaySeconds: 10
periodSeconds: 30

Sriovnetwork node policy and K8s networking should be deployed. sriovnetwork-node-
policy.yaml configuration file for such a deployment:

The sriovnetwork.yaml configuration file for such a deployment:

"nvidia.com/hostdev" ipam: | { "type": "whereabouts", "datastore": "kubernetes",
"kubernetes": { "kubeconfig":
"/etc/cni/net.d/whereabouts.d/whereabouts.kubeconfig" }, "range":
"192.168.3.225/28", "exclude": ["192.168.3.229/30", "192.168.3.236/32"], "log_file" :
"/var/log/whereabouts.log", "log_level" : "info" }

apiVersion: v1 kind: Pod metadata: name: hostdev-test-pod annotations:
k8s.v1.cni.cncf.io/networks: hostdev-net spec: restartPolicy: OnFailure containers: -
image: <rdma image> name: mofed-test-ctr securityContext: capabilities: add: [
"IPC_LOCK"] resources: requests: nvidia.com/hostdev: 1 limits: nvidia.com/hostdev:
1 command: - sh - -c - sleep inf

apiVersion: sriovnetwork.openshift.io/v1 kind: SriovNetworkNodePolicy metadata:
name: policy-1 namespace: openshift-sriov-network-operator spec: deviceType:
netdevice mtu: 1500 nicSelector: vendor: "15b3" pfNames: ["ens2f0"] nodeSelector:
feature.node.kubernetes.io/pci-15b3.present: "true" numVfs: 8 priority: 90 isRdma:
true resourceName: sriovlegacy

NVIDIA Network Operator v24.4.0 49

apiVersion: sriovnetwork.openshift.io/v1 kind: SriovNetwork metadata: name: "sriov-
network" namespace: openshift-sriov-network-operator spec: vlan: 0
networkNamespace: "default" resourceName: "sriovlegacy" ipam: |- { "datastore":
"kubernetes", "kubernetes": { "kubeconfig":
"/etc/cni/net.d/whereabouts.d/whereabouts.kubeconfig" }, "log_file":
"/tmp/whereabouts.log", "log_level": "debug", "type": "whereabouts", "range":
"192.168.101.0/24" }

Note that the resource prefix in this case will be openshift.io. The pod.yaml configuration
file for such a deployment:

Network Operator Deployment with the RDMA Shared Device Plugin - OCP

The following is an example of RDMA Shared with MacVlanNetwork:

apiVersion: mellanox.com/v1alpha1 kind: NicClusterPolicy metadata: name: nic-cluster-
policy spec: ofedDriver: image: doca-driver repository: nvcr.io/nvidia/mellanox version:
24.04-0.6.6.0-0 startupProbe: initialDelaySeconds: 10 periodSeconds: 20 livenessProbe:
initialDelaySeconds: 30 periodSeconds: 30 readinessProbe: initialDelaySeconds: 10
periodSeconds: 30 rdmaSharedDevicePlugin: config: | { "configList": [{ "resourceName":
"rdmashared", "rdmaHcaMax": 1000, "selectors": { "ifNames": ["enp4s0f0np0"] } }] }
image: k8s-rdma-shared-dev-plugin repository: nvcr.io/nvidia/cloud-native version: 1.4.0

The macvlan-net-ocp.yaml configuration file for such a deployment in an OpenShift
Platform:

The pod.yaml configuration file for such a deployment:

apiVersion: v1 kind: Pod metadata: name: testpod1 annotations:
k8s.v1.cni.cncf.io/networks: sriov-network spec: containers: - name: appcntr1 image:
<image> imagePullPolicy: IfNotPresent securityContext: capabilities: add:
["IPC_LOCK"] command: - sh - -c - sleep inf resources: requests:
openshift.io/sriovlegacy: '1' limits: openshift.io/sriovlegacy: '1'

apiVersion: mellanox.com/v1alpha1 kind: MacvlanNetwork metadata: name:
rdmashared-net spec: networkNamespace: default master: enp4s0f0np0 mode:
bridge mtu: 1500 ipam:
'{"type":"whereabouts","range":"16.0.2.0/24","gateway":"16.0.2.1"}'

NVIDIA Network Operator v24.4.0 50

Network Operator Deployment for DPDK Workloads - OCP

In order to configure HUGEPAGES in OpenShift, refer to this steps.

For SR-IOV Network Operator configuration instructions, visit the Official Website.

apiVersion: v1 kind: Pod metadata: name: test-rdma-shared-1 annotations:
k8s.v1.cni.cncf.io/networks: rdmashared-net spec: containers: - image: myimage
name: rdma-shared-1 securityContext: capabilities: add: - IPC_LOCK resources:
limits: rdma/rdmashared: 1 requests: rdma/rdmashared: 1 restartPolicy: OnFailure

https://docs.openshift.com/container-platform/latest/scalability_and_performance/what-huge-pages-do-and-how-they-are-consumed-by-apps.html
https://docs.openshift.com/container-platform/latest/networking/hardware_networks/configuring-sriov-operator.html#configuring-sriov-operator

NVIDIA Network Operator v24.4.0 51

Customization Options
Helm Chart

General Parameters
ImagePullSecrets customization

NFD labels
SR-IOV Network Operator
Container Resources
MLNX_OFED Driver
MLNX_OFED Driver Environment Variables
RDMA Shared Device Plugin
RDMA Device Plugin Resource Configurations
SR-IOV Network Device Plugin
SR-IOV Network Device Plugin Resource Configuration
IB Kubernetes
UFM Secret
Secondary Network
CNI Plugin
Multus CNI
IPoIB CNI
IPAM CNI Plugin
NVIDIA IPAM Plugin
NVIDIA NIC Feature Discovery
DOCA Telemetry Service
Helm customization file

CRDs
NicClusterPolicy CRD
MacVlanNetwork CRD
HostDeviceNetwork CRD
IPoIBNetwork CRD

Helm Chart Customization Options

https://docs.nvidia.com/helm.html
https://docs.nvidia.com/helm.html#general-parameters
https://docs.nvidia.com/helm.html#imagepullsecrets-customization
https://docs.nvidia.com/helm.html#nfd-labels
https://docs.nvidia.com/helm.html#sr-iov-network-operator
https://docs.nvidia.com/helm.html#container-resources
https://docs.nvidia.com/helm.html#mlnx-ofed-driver
https://docs.nvidia.com/helm.html#mlnx-ofed-driver-environment-variables
https://docs.nvidia.com/helm.html#rdma-shared-device-plugin
https://docs.nvidia.com/helm.html#rdma-device-plugin-resource-configurations
https://docs.nvidia.com/helm.html#sr-iov-network-device-plugin
https://docs.nvidia.com/helm.html#sr-iov-network-device-plugin-resource-configuration
https://docs.nvidia.com/helm.html#ib-kubernetes
https://docs.nvidia.com/helm.html#ufm-secret
https://docs.nvidia.com/helm.html#secondary-network
https://docs.nvidia.com/helm.html#cni-plugin
https://docs.nvidia.com/helm.html#id7
https://docs.nvidia.com/helm.html#id9
https://docs.nvidia.com/helm.html#ipam-cni-plugin
https://docs.nvidia.com/helm.html#nvidia-ipam-plugin
https://docs.nvidia.com/helm.html#nvidia-nic-feature-discovery
https://docs.nvidia.com/helm.html#doca-telemetry-service
https://docs.nvidia.com/helm.html#helm-customization-file
https://docs.nvidia.com/crds.html
https://docs.nvidia.com/crds.html#nicclusterpolicy-crd
https://docs.nvidia.com/crds.html#macvlannetwork-crd
https://docs.nvidia.com/crds.html#hostdevicenetwork-crd
https://docs.nvidia.com/crds.html#ipoibnetwork-crd

NVIDIA Network Operator v24.4.0 52

There are various customizations you can do to tailor the deployment of the Network
Operator to your cluster needs. You can find those below.

General Parameters

ImagePullSecrets customization

NFD labels

SR-IOV Network Operator

Container Resources

MLNX_OFED Driver

MLNX_OFED Driver Environment Variables

RDMA Shared Device Plugin

RDMA Device Plugin Resource Configurations

SR-IOV Network Device Plugin

SR-IOV Network Device Plugin Resource Configuration

IB Kubernetes

UFM Secret

Secondary Network

CNI Plugin

Multus CNI

IPoIB CNI

IPAM CNI Plugin

NVIDIA IPAM Plugin

NVIDIA NIC Feature Discovery

NVIDIA Network Operator v24.4.0 53

DOCA Telemetry Service

Helm customization file

General Parameters

Name Type Default Description

operator.admission
Controller.enabled

Bool False
Deploy with
admission controller

operator.admission
Controller.useCertM
anager

Bool True
Use cert-manager
for generating self-
signed certificate

operator.admission
Controller.certificate
.tlsCrt

String “”

External TLS
certificate. Ignored if
cert-manager is
used

operator.admission
Controller.certificate
.tlsKey

String “”
External TLS private
key. Ignored if cert-
manager is used

nfd.enabled Bool True
Deploy Node
Feature Discovery

nfd.deployNodeFeat
ureRules

Bool True
Deploy Node
Feature Rules to
label the nodes

sriovNetworkOperat
or.enabled

Bool False
Deploy SR-IOV
Network Operator

sriovNetworkOperat
or.configDaemonNo
deSelectorExtra

List
node-
role.kubernetes.io/w
orker: “”

Additional values for
SR-IOV Config
Daemon nodes
selector

upgradeCRDs Bool True

Enable CRDs
upgrade with helm
pre-install and pre-
upgrade hooks

NVIDIA Network Operator v24.4.0 54

operator.repository String nvcr.io/nvidia
Network Operator
image repository

operator.image String network-operator
Network Operator
image name

operator.tag String None

Network Operator
image tag. If set to
None , the chart’s
appVersion will be

used

operator.imagePullS
ecrets

List []

An optional list of
references to
secrets to use for
pulling Network
Operator image

operator.cniBinDirec
tory

String /opt/cni/bin

Directory, where CNI
binaries will be
deployed on the
nodes. Setting for
the sriov-network-
operator is set with
sriov-network-
operator.cniBinPat
h

parameter. Note
that the CNI bin
directory should be
aligned with the CNI
bin directory in the
container runtime.

operator.resources Yaml resources:
limits:
cpu: 500m
memory: 128Mi

requests:
cpu: 5m
memory: 64Mi

Optional resource
requests and limits
for the operator

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

NVIDIA Network Operator v24.4.0 55

imagePullSecrets List []

An optional list of
references to
secrets to use for
pulling any of the
Network Operator
image, if it is not
overridden

deployCR Bool False

Deploy
NicClusterPolicy

custom resource
according to the
provided
parameters

nodeAffinity Yaml

requiredDuringSche
dulingIgnoredDuring
Execution:
nodeSelectorTerms:
- matchExpressions:
- key: node-
role.kubernetes.io/
master
operator:
DoesNotExist

- key: node-
role.kubernetes.io/c
ontrol-plane
operator:
DoesNotExist

Configure node
affinity settings for
Network Operator
components

tolerations Yaml “” Set additional
tolerations for

NVIDIA Network Operator v24.4.0 56

various Daemonsets
deployed by the
network operator,
e.g. whereabouts,
multus, cni-plugins.

useDTK Bool True

Enable the use of
Driver ToolKit to
compile OFED
drivers (OpenShift
only)

ImagePullSecrets customization

To provide imagePullSecrets` object references, you need to specify them using a following
structure:

NFD labels

The NFD labels required by the Network Operator and GPU Operator:

Label Location

feature.node.kubernetes.io/pci-
15b3.present

Nodes containing NVIDIA Networking
hardware

feature.node.kubernetes.io/pci-
10de.present

Nodes containing NVIDIA GPU hardware

SR-IOV Network Operator

SR-IOV Network Operator Helm chart customization options can be found here. Following
is a list of overriden values by NVIDIA Operator Helm Chart:

Name Type
Default in NVIDIA
Network Operator

Notes

sriov-network-
operator.operator.re

String nvidia.com

imagePullSecrets: - image-pull-secret1 - image-pull-secret2

https://github.com/k8snetworkplumbingwg/sriov-network-operator/blob/master/deployment/sriov-network-operator/README.md

NVIDIA Network Operator v24.4.0 57

sourcePrefix

sriov-network-
operator.images.op
erator

String

nvcr.io/nvidia/mella
nox/sriov-network-
operator:network-
operator-24.4.0

sriov-network-
operator.images.srio
vConfigDaemon

String

nvcr.io/nvidia/mella
nox/sriov-network-
operator-config-
daemon:network-
operator-24.4.0

sriov-network-
operator.images.srio
vCni

String

ghcr.io/k8snetworkp
lumbingwg/sriov-
cni:3e6368077716f6
b8368b0e036a1290
d1c64cf1fb

For ARM-based
deployments, it is
recommended to
use the
ghcr.io/k8snetwork
plumbingwg/sriov-
cni:v2.8.0-arm64

image

sriov-network-
operator.images.ibS
riovCni

String

ghcr.io/k8snetworkp
lumbingwg/ib-sriov-
cni:fc002af57a81855
542759d0f77d16dac
d7e1aa38

For ARM-based
deployments, it is
recommended to
use the
ghcr.io/k8snetwork
plumbingwg/ib-
sriov-cni:1.1.0-
arm64

image

sriov-network-
operator.images.srio
vDevicePlugin

String

ghcr.io/k8snetworkp
lumbingwg/sriov-
network-device-
plugin:e6ead1e8f76
a407783430ee2666
b403db2d76f64

For ARM-based
deployments, it is
recommended to
use the
ghcr.io/k8snetwork
plumbingwg/sriov-
network-device-
plugin:v3.6.2-
arm64

image

NVIDIA Network Operator v24.4.0 58

sriov-network-
operator.images.we
bhook

String

nvcr.io/nvidia/mella
nox/sriov-network-
operator-
webhook:network-
operator-24.4.0

Container Resources

Optional requests and limits can be configured for each container of the sub-resources
deployed by the Network Operator by setting the parameter containerResources .

For example:

MLNX_OFED Driver

Name Type Default Description

ofedDriver.deploy Bool false
Deploy the
MLNX_OFED driver
container

ofedDriver.repositor
y

String
nvcr.io/nvidia/mella
nox

MLNX_OFED driver
image repository

ofedDriver.image String doca-driver
MLNX_OFED driver
image name

ofedDriver.version String 24.04-0.6.6.0-0
MLNX_OFED driver
version

ofedDriver.initContai
ner.enable

Bool true Deploy init container

ofedDriver.initContai
ner.repository

string ghcr.io/mellanox
init container image
repository

ofedDriver.initContai
ner.image

string
network-operator-
init-container

init container image
name

containerResources: - name: "mofed-container" requests: cpu: "200m" memory:
"150Mi" limits: cpu: "300m" memory: "300Mi"

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

NVIDIA Network Operator v24.4.0 59

ofedDriver.initContai
ner.version

string v0.0.2
init container image
version

ofedDriver.certConfi
g.name

String “”

Custom TLS
key/certificate
configuration
configMap name

ofedDriver.repoConf
ig.name

String “”

Private mirror
repository
configuration
configMap name

ofedDriver.terminati
onGracePeriodSeco
nds

Int 300
NVIDIA OFED
termination grace
periods in seconds

ofedDriver.imagePul
lSecrets

List []

An optional list of
references to
secrets to use for
pulling any of the
MLNX_OFED driver
images

ofedDriver.env List []

An optional list of
environment
variables passed to
the NVIDIA OFED
driver image

ofedDriver.startupPr
obe.initialDelaySeco
nds

Int 10
MLNX_OFED startup
probe initial delay

ofedDriver.startupPr
obe.periodSeconds

Int 20
MLNX_OFED startup
probe interval

ofedDriver.livenessP
robe.initialDelaySec
onds

Int 30
MLNX_OFED liveness
probe initial delay

ofedDriver.livenessP
robe.periodSeconds

Int 30
MLNX_OFED liveness
probe interval

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.29/#envvar-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.29/#envvar-v1-core

NVIDIA Network Operator v24.4.0 60

ofedDriver.readines
sProbe.initialDelayS
econds

Int 10
MLNX_OFED
readiness probe
initial delay

ofedDriver.readines
sProbe.periodSecon
ds

Int 30
MLNX_OFED
readiness probe
interval

ofedDriver.upgrade
Policy.autoUpgrade

Bool true

A global switch for
the automatic
upgrade feature. If
set to false, all other
options are ignored.

ofedDriver.upgrade
Policy.maxParallelU
pgrades

Int 1

The amount of
nodes that can be
upgraded in parallel.
0 means no limit. All
nodes will be
upgraded in parallel.

ofedDriver.upgrade
Policy.safeLoad

Bool false

Cordon and drain (if
enabled) a node
before loading the
driver on it, requires
ofedDriver.initCont
ainer

to be enabled and
ofedDriver.upgrad
ePolicy.autoUpgra
de

to be true

ofedDriver.upgrade
Policy.drain.enable

Bool true

Options for node
drain (
kubectl drain)

before driver reload,
if auto upgrade is
enabled.

ofedDriver.upgrade
Policy.drain.force

Bool true
Use force drain of
pods

NVIDIA Network Operator v24.4.0 61

ofedDriver.upgrade
Policy.drain.podSele
ctor

String “”

Pod selector to
specify which pods
will be drained from
the node. An empty
selector means all
pods.

ofedDriver.upgrade
Policy.drain.timeout
Seconds

Int 300
Number of seconds
to wait for pod
eviction

ofedDriver.upgrade
Policy.drain.deleteE
mptyDir

Bool false
Delete pods local
storage

ofedDriver.upgrade
Policy.waitForCompl
etion.podSelector

String Not set

Specifies a label
selector for the pods
to wait for
completion before
starting the driver
upgrade

ofedDriver.upgrade
Policy.waitForCompl
etion.timeoutSecon
ds

int Not set

Specify the length of
time in seconds to
wait before giving
up for workload to
finish. Zero means
infinite

ofedDriver.container
Resources

List Not set

Optional resource
requests and limits
and limits for the
mofed-container

ofedDriver.forcePrec
ompiled

Bool false

Fail Mellanox OFED
deployment if
precompiled OFED
driver container
image does not
exists

MLNX_OFED Driver Environment Variables

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

NVIDIA Network Operator v24.4.0 62

The following are special environment variables supported by the MLNX_OFED container
to configure its behavior:

Name Default Description

CREATE_IFNAMES_UDEV

* “true” for Ubuntu 20.04,
RHEL v8.x and OCP <=
v4.13.
* “false” for newer OS.

Create an udev rule to
preserve “old-style” path
based netdev names e.g
enp3s0f0

UNLOAD_STORAGE_MODUL
ES

“false”

Unload host storage
modules prior to loading
MLNX_OFED modules:
* ib_isert
* nvme_rdma
* nvmet_rdma
* rpcrdma
* xprtrdma
* ib_srpt

ENABLE_NFSRDMA “false”

Enable loading of NFS
related storage modules
from a MLNX_OFED
container

RESTORE_DRIVER_ON_POD_
TERMINATION

“true”
Restore host drivers when a
container

In addition, it is possible to specify any environment variables to be exposed to the
MLNX_OFED container, such as the standard “HTTP_PROXY”, “HTTPS_PROXY”,
“NO_PROXY”.

Warning

NVIDIA Network Operator v24.4.0 63

To set these variables, change them into Helm values. For example:

The variables can also be configured directly via the NicClusterPolicy CRD.

RDMA Shared Device Plugin

Name Type Default Description

rdmaSharedDeviceP
lugin.deploy

Bool true
Deploy RDMA
shared device plugin

rdmaSharedDeviceP
lugin.repository

String
nvcr.io/nvidia/cloud-
native

RDMA shared device
plugin image
repository

rdmaSharedDeviceP
lugin.image

String
k8s-rdma-shared-
dev-plugin

RDMA shared device
plugin image name

rdmaSharedDeviceP
lugin.version

String 1.4.0
RDMA shared device
plugin version

rdmaSharedDeviceP
lugin.imagePullSecre
ts

List []

An optional list of
references to
secrets to use for
pulling any of the
RDMA Shared device
plugin image

rdmaSharedDeviceP
lugin.resources

List See below
RDMA shared device
plugin resources

CREATE_IFNAMES_UDEV is set automatically by the Network
Operator, depending on the Operating System of the worker nodes in
the cluster (the cluster is assumed to be homogenous).

ofedDriver: env: - name: RESTORE_DRIVER_ON_POD_TERMINATION value: "true" -
name: UNLOAD_STORAGE_MODULES value: "true" - name: CREATE_IFNAMES_UDEV
value: "true"

NVIDIA Network Operator v24.4.0 64

rdmaSharedDeviceP
lugin.useCdi

Bool false

Enable Container
Device Interface
(CDI) mode.
NOTE: NVIDIA
Network Operator
does not configure
container runtime to
enable CDI

rdmaSharedDeviceP
lugin.containerReso
urces

List Not set

Optional resource
requests and limits
for the
rdma-shared-dp

container

RDMA Device Plugin Resource Configurations

These configurations consist of a list of RDMA resources, each with a name and a selector
of RDMA capable network devices to be associated with the resource. Refer to RDMA
Shared Device Plugin Selectors for supported selectors.

SR-IOV Network Device Plugin

Name Type Default Description

sriovDevicePlugin.de
ploy

Bool false
Deploy SR-IOV
Network device
plugin

sriovDevicePlugin.re
pository

String
ghcr.io/k8snetworkp
lumbingwg

SR-IOV Network
device plugin image
repository

sriovDevicePlugin.im
age

String sriov-network-
device-plugin

SR-IOV Network
device plugin image

resources: - name: rdma_shared_device_a vendors: [15b3] deviceIDs: [1017]
ifNames: [enp5s0f0] rdmaHcaMax: 63 - name: rdma_shared_device_b vendors:
[15b3] deviceIDs: [1017] ifNames: [ib0, ib1] rdmaHcaMax: 63

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://github.com/Mellanox/k8s-rdma-shared-dev-plugin#devices-selectors
https://github.com/Mellanox/k8s-rdma-shared-dev-plugin#devices-selectors

NVIDIA Network Operator v24.4.0 65

name

sriovDevicePlugin.ve
rsion

String
e6ead1e8f76a40778
3430ee2666b403db
2d76f64

SR-IOV Network
device plugin
version
For ARM-based
deployments, it is
recommended to
use the
ghcr.io/k8snetwork
plumbingwg/sriov-
network-device-
plugin:v3.6.2-
amd64

image

sriovDevicePlugin.im
agePullSecrets

List []

An optional list of
references to
secrets to use for
pulling any of the
SR-IOV Network
device plugin image

sriovDevicePlugin.re
sources

List See below
SR-IOV Network
device plugin
resources

sriovDevicePlugin.us
eCdi

Bool false

Enable Container
Device Interface
(CDI) mode.
NOTE: NVIDIA
Network Operator
does not configure
container runtime to
enable CD.

sriovDevicePlugin.co
ntainerResources

List Not set

Optional resource
requests and limits
for the
kube-sriovdp

container

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

NVIDIA Network Operator v24.4.0 66

SR-IOV Network Device Plugin Resource Configuration

Consists of a list of RDMA resources, each with a name and a selector of RDMA capable
network devices to be associated with the resource. Refer to SR-IOV Network Device
Plugin Selectors for supported selectors.

IB Kubernetes

ib-kubernetes provides a daemon that works in conjunction with the SR-IOV Network
Device Plugin. It acts on Kubernetes pod object changes (Create/Update/Delete), reading
the pod’s network annotation, fetching its corresponding network CRD and reading the
PKey. This is done in order to add the newly generated GUID or the predefined GUID in
the GUID field of the CRD cni-args to that PKey for pods with mellanox.infiniband.app
annotation.

Name Type Default Description

ibKubernetes.deploy bool false
Deploy IB
Kubernetes

ibKubernetes.reposi
tory

string ghcr.io/mellanox
IB Kubernetes image
repository

ibKubernetes.image string ib-kubernetes
IB Kubernetes image
name

ibKubernetes.versio
n

string v1.0.2
IB Kubernetes
version

ibKubernetes.image
PullSecrets

list []

An optional list of
references to
secrets used for
pulling any of the IB
Kubernetes images

ibKubernetes.period
icUpdateSeconds

int 5
Interval of periodic
update in seconds

resources: - name: hostdev vendors: [15b3] - name: ethernet_rdma vendors: [15b3]
linkTypes: [ether] - name: sriov_rdma vendors: [15b3] devices: [1018] drivers:
[mlx5_ib]

https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin#device-selectors
https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin#device-selectors
https://github.com/openshift/sriov-network-operator
https://github.com/openshift/sriov-network-operator

NVIDIA Network Operator v24.4.0 67

ibKubernetes.pKeyG
UIDPoolRangeStart

string
02:00:00:00:00:00:00
:00

Minimal available
GUID value to be
allocated for the pod

ibKubernetes.pKeyG
UIDPoolRangeEnd

string
02:FF:FF:FF:FF:FF:FF:F
F

Maximal available
GUID value to be
allocated for the pod

ibKubernetes.ufmSe
cret

string See below

Name of the Secret
with the NVIDIA UFM
access credentials,
deployed in advance

ibKubernetes.contai
nerResources

List Not set

Optional resource
requests and limits
for the
ib-kubernetes

container

UFM Secret

IB Kubernetes must access NVIDIA UFM in order to manage pods’ GUIDs. To provide its
credentials, the secret of the following format should be deployed in advance:

apiVersion: v1 kind: Secret metadata: name: ib-kubernetes-ufm-secret namespace:
nvidia-network-operator stringData: UFM_USERNAME: "admin" UFM_PASSWORD:
"123456" UFM_ADDRESS: "ufm-hostname" UFM_HTTP_SCHEMA: "" UFM_PORT: ""
data: UFM_CERTIFICATE: ""

Warning

The InfiniBand Fabric manages a single pool of GUIDs. In order to use
IB Kubernetes in different clusters, different GUID ranges must be
specified to avoid collisions.

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://www.nvidia.com/en-us/networking/infiniband/ufm/

NVIDIA Network Operator v24.4.0 68

Secondary Network

Name Type Default Description

secondaryNetwork.d
eploy

Bool true
Deploy Secondary
Network

Specifies components to deploy in order to facilitate a secondary network in Kubernetes.
It consists of the following optionally deployed components:

Multus-CNI: Delegate CNI plugin to support secondary networks in Kubernetes

CNI plugins: Currently only containernetworking-plugins is supported

IPAM CNI: Currently only Whereabout IPAM CNI is supported as a part of the
secondaryNetwork section. NVIDIA-IPAM is configured separately.

IPoIB CNI: Allows the user to create IPoIB child link and move it to the pod

CNI Plugin

Name Type Default Description

secondaryNetwork.c
niPlugins.deploy

Bool true
Deploy CNI Plugins
Secondary Network

secondaryNetwork.c
niPlugins.image

String plugins
CNI Plugins image
name

secondaryNetwork.c
niPlugins.repository

String
ghcr.io/k8snetworkp
lumbingwg

CNI Plugins image
repository

secondaryNetwork.c
niPlugins.version

String v1.3.0-amd64
CNI Plugins image
version

secondaryNetwork.c
niPlugins.imagePullS
ecrets

List []

An optional list of
references to
secrets to use for
pulling any of the
CNI Plugins images

secondaryNetwork.c
niPlugins.containerR
esources

List Not set Optional resource
requests and limits

https://github.com/k8snetworkplumbingwg/multus-cni
https://github.com/containernetworking/plugins
https://github.com/k8snetworkplumbingwg/whereabouts
https://github.com/Mellanox/ipoib-cni
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

NVIDIA Network Operator v24.4.0 69

for the cni-plugins
container

Multus CNI

Name Type Default Description

secondaryNetwork.
multus.deploy

Bool true
Deploy Multus
Secondary Network

secondaryNetwork.
multus.image

String multus-cni Multus image name

secondaryNetwork.
multus.repository

String
ghcr.io/k8snetworkp
lumbingwg

Multus image
repository

secondaryNetwork.
multus.version

String v3.9.3
Multus image
version

secondaryNetwork.
multus.imagePullSec
rets

List []

An optional list of
references to
secrets to use for
pulling any of the
Multus images

secondaryNetwork.
multus.config

String “”

Multus CNI config. If
empty, the config
will be automatically
generated from the
CNI configuration
file of the master
plugin (the first file
in lexicographical
order in the cni-
confg-dir).

secondaryNetwork.
multus.containerRes
ources

List Not set

Optional resource
requests and limits
for the
kube-multus

container

IPoIB CNI

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

NVIDIA Network Operator v24.4.0 70

Name Type Default Description

secondaryNetwork.i
poib.deploy

Bool false Deploy IPoIB CNI

secondaryNetwork.i
poib.image

String ipoib-cni
IPoIB CNI image
name

secondaryNetwork.i
poib.repository

String “”
IPoIB CNI image
repository

secondaryNetwork.i
poib.version

String
428715a57c0b633e4
8ec7620f6e3af68631
49ccf

IPoIB CNI image
version

secondaryNetwork.i
poib.imagePullSecre
ts

List []

An optional list of
references to
secrets to use for
pulling any of the
IPoIB CNI images

secondaryNetwork.i
poib.containerResou
rces

List Not set

Optional resource
requests and limits
for the ipoib-cni
container

IPAM CNI Plugin

Name Type Default Description

secondaryNetwork.i
pamPlugin.deploy

Bool true
Deploy IPAM CNI
Plugin Secondary
Network

secondaryNetwork.i
pamPlugin.image

String whereabouts
IPAM CNI Plugin
image name

secondaryNetwork.i
pamPlugin.repositor
y

String
ghcr.io/k8snetworkp
lumbingwg

IPAM CNI Plugin
image repository

secondaryNetwork.i
pamPlugin.version

String v0.7.0-amd64
IPAM CNI Plugin
image version

secondaryNetwork.i
pamPlugin.imagePul

List [] An optional list of
references to

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

NVIDIA Network Operator v24.4.0 71

lSecrets secrets to use for
pulling any of the
IPAM CNI Plugin
images

secondaryNetwork.i
pamPlugin.container
Resources

List Not set

Optional resource
requests and limits
for the
whereabouts

container

NVIDIA IPAM Plugin

NVIDIA IPAM Plugin is recommended to be used on large-scale deployments of the
NVIDIA Network Operator.

Name Type Default Description

nvIpam.deploy Bool false
Deploy NVIDIA IPAM
Plugin

nvIpam.image String nvidia-k8s-ipam
NVIDIA IPAM Plugin
image name

nvIpam.repository String ghcr.io/mellanox
NVIDIA IPAM Plugin
image repository

nvIpam.version String v0.1.2
NVIDIA IPAM Plugin
image version

nvIpam.imagePullSe
crets

List []

An optional list of
references to
secrets to use for
pulling any of the
Plugin images

nvIpam.enableWebh
ook

Bool false

Enable deployment
of the validataion
webhook for IPPool
CRD

nvIpam.containerRe
sources

List Not set Optional resource
requests and limits
for the

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://github.com/Mellanox/nvidia-k8s-ipam
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

NVIDIA Network Operator v24.4.0 72

nv-ipam-node and
nv-ipam-controller

containers

NVIDIA NIC Feature Discovery

NVIDIA NIC Feature Discovery leverages Node Feature Discovery to advertise NIC specific
labels on K8s Node objects.

Name Type Default Description

nicFeatureDiscovery.
deploy

Bool false
Deploy NVIDIA NIC
Feature Discovery

nicFeatureDiscovery.
image

String
nic-feature-
discovery

NVIDIA NIC Feature
Discovery image
name

nicFeatureDiscovery.
repository

String ghcr.io/mellanox
NVIDIA NIC Feature
Discovery repository

nicFeatureDiscovery.
version

String v0.0.1
NVIDIA NIC Feature
Discovery image
version

nicFeatureDiscovery.
containerResources

List Not set

Optional resource
requests and limits
for the
nic-feature-
discovery

container

Warning

Supported X.509 certificate management system should be available
in the cluster to enable the validation webhook. Currently, the
supported systems are certmanager and Openshift certificate
management.

https://github.com/Mellanox/nic-feature-discovery
https://kubernetes-sigs.github.io/node-feature-discovery/stable/get-started/index.html
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://cert-manager.io/
https://docs.openshift.com/container-platform/latest/security/certificates/service-serving-certificate.html
https://docs.openshift.com/container-platform/latest/security/certificates/service-serving-certificate.html

NVIDIA Network Operator v24.4.0 73

DOCA Telemetry Service

DOCA Telemetry Service exports metrics from NVIDIA NICs on K8s Nodes.

Name Type Default Description

docaTelemetryServic
e.deploy

Bool false
Deploy DOCA
Telemetry Service

docaTelemetryServic
e.image

String doca_telemetry
DOCA Telemetry
Service image name

docaTelemetryServic
e.repository

String nvcr.io/nvidia/doca
DOCA Telemetry
Service image
repository

docaTelemetryServic
e.version

String
1.16.5-doca2.6.0-
host

DOCA Telemetry
Service image
version

docaTelemetryServic
e.containerResource
s

List Not set

Optional resource
requests and limits
for the
doca-telemetry-
service

container

Helm customization file

Warning

Since several parameters should be provided when creating custom
resources during operator deployment, it is recommended to use a
configuration file. While it is possible to override the parameters via
CLI, we recommend to avoid the use of CLI arguments in favor of a
configuration file.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_telemetry
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

NVIDIA Network Operator v24.4.0 74

CRDs
NicClusterPolicy CRD

MacVlanNetwork CRD

HostDeviceNetwork CRD

IPoIBNetwork CRD

NicClusterPolicy CRD

To change NicClusterPolicy CRD object manually without helm you need to change
nic-cluster-policy CR like a regular Kubernetes resource. For more information on

NicClusterPolicy custom resource, please refer to the Network-Operator Project Sources.

MacVlanNetwork CRD

For more information on MacVlanNetwork custom resource, please refer to the Network-
Operator Project Sources.

HostDeviceNetwork CRD

For more information on HostDeviceNetwork custom resource, please refer to the
Network-Operator Project Sources.

IPoIBNetwork CRD

For more information on IPoIBNetwork custom resource, please refer to the Network-
Operator Project Sources.

$ helm install -f ./values.yaml -n nvidia-network-operator --create-namespace --wait
nvidia/network-operator network-operator

https://github.com/Mellanox/network-operator#nicclusterpolicy-crd
https://github.com/Mellanox/network-operator#macvlannetwork-crd
https://github.com/Mellanox/network-operator#macvlannetwork-crd
https://github.com/Mellanox/network-operator#hostdevicenetwork-crd
https://github.com/Mellanox/network-operator#ipoibnetwork-crd
https://github.com/Mellanox/network-operator#ipoibnetwork-crd

NVIDIA Network Operator v24.4.0 75

Life Cycle Management
On this page

Ensuring Deployment Readiness

Status Field Example of a NICClusterPolicy Instance

Network Operator Upgrade

Downloading a New Helm Chart

Upgrading CRDs for a Specific Release

Preparing the Helm Values for the New Release

Applying the Helm Chart Update

OFED Driver Manual Upgrade

Restarting Pods with a Containerized OFED Driver

Removing Pods with a Secondary Network from the Node

Restarting the OFED Driver Pod

Deleting the OFED Driver Pod from the Node

Returning Pods with a Secondary Network to the Node

Automatic OFED Driver Upgrade

Node Upgrade States

Safe Driver Loading

Troubleshooting

NVIDIA Network Operator v24.4.0 76

Uninstalling the Network Operator

Uninstalling Network Operator on a Vanilla Kubernetes Cluster

Uninstalling the Network Operator on an OpenShift Cluster

Additional Steps

NicClusterPolicy CRD Update

Ensuring Deployment Readiness

Once the Network Operator is deployed, and a NicClusterPolicy resource is created, the
operator will reconcile the state of the cluster until it reaches the desired state, as
defined in the resource.

Alignment of the cluster to the defined policy can be verified in the custom resource
status.

a “Ready” state indicates that the required components were deployed, and that the
policy is applied on the cluster.

Status Field Example of a NICClusterPolicy Instance

Get the NicClusterPolicy status:

kubectl get -n nvidia-network-operator nicclusterpolicies.mellanox.com nic-cluster-
policy -o yaml

status: appliedStates: - name: state-pod-security-policy state: ignore - name: state-
multus-cni state: ready - name: state-container-networking-plugins state: ignore -
name: state-ipoib-cni state: ignore - name: state-whereabouts-cni state: ready -
name: state-OFED state: ready - name: state-SRIOV-device-plugin state: ignore -
name: state-RDMA-device-plugin state: ready - name: state-NV-Peer state: ignore -
name: state-ib-kubernetes state: ignore - name: state-nv-ipam-cni state: ready state:
ready

NVIDIA Network Operator v24.4.0 77

Network Operator Upgrade

Before upgrading to Network Operator v1.0 or newer with SR-IOV Network Operator
enabled, the following manual actions are required:

The network operator provides limited upgrade capabilities, which require additional
manual actions if a containerized OFED driver is used. Future releases of the network
operator will provide an automatic upgrade flow for the containerized driver.

Since Helm does not support auto-upgrade of existing CRDs, the user must follow a two-
step process to upgrade the network-operator release:

Upgrade the CRD to the latest version

Apply Helm chart update

Downloading a New Helm Chart

To obtain new releases, run:

Download Helm chart $ helm fetch https://helm.ngc.nvidia.com/nvidia/charts/network-
operator-24.4.0.tgz $ ls network-operator-*.tgz | xargs -n 1 tar xf

Upgrading CRDs for a Specific Release

It is possible to retrieve updated CRDs from the Helm chart or from the release branch on
GitHub. The example below shows how to upgrade CRDs from the downloaded chart.

Note

An “Ignore” state indicates that the sub-state was not defined in the
custom resource, and thus, it is ignored.

$ kubectl -n nvidia-network-operator scale deployment network-operator-sriov-
network-operator --replicas 0 $ kubectl -n nvidia-network-operator delete
sriovnetworknodepolicies.sriovnetwork.openshift.io default

NVIDIA Network Operator v24.4.0 78

Preparing the Helm Values for the New Release

Edit the values-<VERSION>.yaml file as required for your cluster. The network operator
has some limitations as to which updates in the NicClusterPolicy it can handle
automatically. If the configuration for the new release is different from the current
configuration in the deployed release, some additional manual actions may be required.

Known limitations:

If component configuration was removed from the NicClusterPolicy, manual clean
up of the component’s resources (DaemonSets, ConfigMaps, etc.) may be required.

If the configuration for devicePlugin changed without image upgrade, manual
restart of the devicePlugin may be required.

These limitations will be addressed in future releases.

Applying the Helm Chart Update

To apply the Helm chart update, run:

$ kubectl apply \ -f network-operator/crds \ -f network-operator/charts/sriov-
network-operator/crds

Warning

Changes that were made directly in the NicClusterPolicy CR (e.g. with
kubectl edit) will be overwritten by the Helm upgrade due to the force
flag.

$ helm upgrade -n nvidia-network-operator network-operator nvidia/network-
operator --version=<VERSION> -f values-<VERSION>.yaml --force

NVIDIA Network Operator v24.4.0 79

OFED Driver Manual Upgrade

Restarting Pods with a Containerized OFED Driver

When a containerized OFED driver is reloaded on the node, all pods that use a secondary
network based on NVIDIA NICs will lose network interface in their containers. To prevent
outage, remove all pods that use a secondary network from the node before you reload
the driver pod on it.

The Helm upgrade command will only upgrade the DaemonSet spec of the OFED driver
to point to the new driver version. The OFED driver’s DaemonSet will not automatically
restart pods with the driver on the nodes, as it uses “OnDelete” updateStrategy. The old
OFED version will still run on the node until you explicitly remove the driver pod or
reboot the node:

It is possible to remove all pods with secondary networks from all cluster nodes, and then
restart the OFED pods on all nodes at once.

The alternative option is to perform an upgrade in a rolling manner to reduce the impact
of the driver upgrade on the cluster. The driver pod restart can be done on each node
individually. In this case, pods with secondary networks should be removed from the
single node only. There is no need to stop pods on all nodes.

Warning

The –devel option is required if you wish to use the Beta release.

Warning

This operation is required only if containerized OFED is in use.

$ kubectl delete pod -l app=mofed-<OS_NAME> -n nvidia-network-operator

NVIDIA Network Operator v24.4.0 80

For each node, follow these steps to reload the driver on the node:

1. Remove pods with a secondary network from the node.

2. Restart the OFED driver pod.

3. Return the pods with a secondary network to the node.

When the OFED driver is ready, proceed with the same steps for other nodes.

Removing Pods with a Secondary Network from the Node

To remove pods with a secondary network from the node with node drain, run the
following command:

Restarting the OFED Driver Pod

Find the OFED driver pod name for the node:

Example for Ubuntu 20.04:

Deleting the OFED Driver Pod from the Node

$ kubectl drain <NODE_NAME> --pod-selector=<SELECTOR_FOR_PODS>

Warning

Replace <NODE_NAME> with -l
“network.nvidia.com/operator.mofed.wait=false” if you wish to drain
all nodes at once.

$ kubectl get pod -l app=mofed-<OS_NAME> -o wide -A

kubectl get pod -l app=mofed-ubuntu20.04 -o wide -A

NVIDIA Network Operator v24.4.0 81

To delete the OFED driver pod from the node, run:

A new version of the OFED pod will automatically start.

Returning Pods with a Secondary Network to the Node

After the OFED pod is ready on the node, you can make the node schedulable again.

The command below will uncordon (remove
node.kubernetes.io/unschedulable:NoSchedule taint) the node, and return the pods to it:

Automatic OFED Driver Upgrade

To enable automatic OFED upgrade, define the UpgradePolicy section for the ofedDriver
in the NicClusterPolicy spec, and change the OFED version.

nicclusterpolicy.yaml :

apiVersion: mellanox.com/v1alpha1 kind: NicClusterPolicy metadata: name: nic-cluster-
policy namespace: nvidia-network-operator spec: ofedDriver: image: doca-driver
repository: nvcr.io/nvidia/mellanox version: 24.04-0.6.6.0-0 upgradePolicy: #
autoUpgrade is a global switch for automatic upgrade feature # if set to false all other
options are ignored autoUpgrade: true # maxParallelUpgrades indicates how many
nodes can be upgraded in parallel # 0 means no limit, all nodes will be upgraded in
parallel maxParallelUpgrades: 0 # cordon and drain (if enabled) a node before loading
the driver on it safeLoad: false # describes the configuration for waiting on job

$ kubectl delete pod -n <DRIVER_NAMESPACE> <OFED_POD_NAME>

Warning

Replace <OFED_POD_NAME> with -l app=mofed-ubuntu20.04 if you
wish to remove OFED pods on all nodes at once.

$ kubectl uncordon -l "network.nvidia.com/operator.mofed.wait=false"

NVIDIA Network Operator v24.4.0 82

completions waitForCompletion: # specifies a label selector for the pods to wait for
completion podSelector: "app=myapp" # specify the length of time in seconds to wait
before giving up for workload to finish, zero means infinite # if not specified, the default
is 300 seconds timeoutSeconds: 300 # describes configuration for node drain during
automatic upgrade drain: # allow node draining during upgrade enable: true # allow
force draining force: false # specify a label selector to filter pods on the node that need to
be drained podSelector: "" # specify the length of time in seconds to wait before giving up
drain, zero means infinite # if not specified, the default is 300 seconds timeoutSeconds:
300 # specify if should continue even if there are pods using emptyDir deleteEmptyDir:
false

Apply NicClusterPolicy CRD:

Node Upgrade States

The status upgrade of each node is reflected in its nvidia.com/ofed-driver-upgrade-state
label . This label can have the following values:

Name Description

$ kubectl apply -f nicclusterpolicy.yaml

Warning

To be able to drain nodes, make sure to fill the PodDisruptionBudget
field for all the pods that use it. On some clusters (e.g. Openshift),
many pods use PodDisruptionBudget, which makes draining multiple
nodes at once impossible. Since evicting several pods that are
controlled by the same deployment or replica set, violates their
PodDisruptionBudget, those pods are not evicted and in drain failure.

To perform a driver upgrade, the network-operator must evict pods
that are using network resources. Therefore, in order to ensure that
the network-operator is evicting only the required pods, the
upgradePolicy.drain.podSelector field must be configured.

NVIDIA Network Operator v24.4.0 83

Unknown (empty)
The node has this state when the upgrade
flow is disabled or the node has not been
processed yet.

upgrade-done
Set when OFED POD is up-to-date and
running on the node, the node is
schedulable.

upgrade-required
Set when OFED POD on the node is not up-
to-date and requires upgrade. No actions
are performed at this stage.

cordon-required
Set when the node needs to be made
unschedulable in preparation for driver
upgrade.

wait-for-jobs-required
Set on the node when waiting is required
for jobs to complete until the given
timeout.

drain-required
Set when the node is scheduled for drain.
After the drain, the state is changed either
to pod-restart-required or upgrade-failed.

pod-restart-required
Set when the OFED POD on the node is
scheduled for restart. After the restart, the
state is changed to uncordon-required.

uncordon-required

Set when OFED POD on the node is up-to-
date and has “Ready” status. After
uncordone, the state is changed to
upgrade-done

upgrade-failed

Set when the upgrade on the node has
failed. Manual interaction is required at
this stage. See Troubleshooting section for
more details.

Warning

Depending on your cluster workloads and pod Disruption Budget, set
the following values for auto upgrade:

NVIDIA Network Operator v24.4.0 84

Safe Driver Loading

Upon node startup, the OFED container takes some time to compile and load the driver.
During that time, workloads might get scheduled on that node. When OFED is loaded, all
existing PODs that use NVIDIA NICs will lose their network interfaces. Some such PODs
might silently fail or hang. To avoid this situation, before the OFED container is loaded,
the node should get cordoned and drained to ensure all workloads are rescheduled. The
node should be un-cordoned when the driver is ready on it.

The safe driver loading feature is implemented as a part of the upgrade flow, meaning
safe driver loading is a special scenario of the upgrade procedure, where we upgrade
from the inbox driver to the containerized OFED.

When this feature is enabled, the initial OFED driver rollout on the large cluster can take a
while. To speed up the rollout, the initial deployment can be done with the safe driver
loading feature disabled, and this feature can be enabled later by updating the
NicClusterPolicy CRD.

Troubleshooting

Issue Required Action

The node is in upgrade-failed state. Drain the node manually by running
kubectl drain –ignore-daemonsets.

apiVersion: mellanox.com/v1alpha1 kind: NicClusterPolicy metadata:
name: nic-cluster-policy namespace: nvidia-network-operator spec:
ofedDriver: image: doca-driver repository: nvcr.io/nvidia/mellanox
version: 24.04-0.6.6.0-0 upgradePolicy: autoUpgrade: true
maxParallelUpgrades: 1 drain: enable: true force: false
deleteEmptyDir: true podSelector: ""

Warning

The state of this feature can be controlled with the
ofedDriver.upgradePolicy.safeLoad option.

NVIDIA Network Operator v24.4.0 85

Delete the MLNX_OFED pod on the
node manually, by running the
following command:
kubectl delete pod -n `kubectl get
pods --A --field-selector
spec.nodeName=<node name>
-l nvidia.com/ofed-driver --no-
headers | awk '{print $1 " "$2}'`

.

NOTE: If the “Safe driver loading” feature is
enabled, you may also need to remove the
nvidia.com/ofed-driver-upgrade.driver-
wait-for-safe-load

annotation from the node object to
unblock the loading of the driver
kubectl annotate node
<node_name> nvidia.com/ofed-
driver-upgrade.driver-wait-for-safe-load-

Wait for the node to complete the
upgrade.

The updated MLNX_OFED pod failed to
start/ a new version of MLNX_OFED cannot
be installed on the node.

Manually delete the pod by using
kubectl delete -n <Network Operator
Namespace> <pod name>

. If following the restart the pod still fails,
change the MLNX_OFED version in the
NicClusterPolicy to the previous version or
to another working version.

Uninstalling the Network Operator

Uninstalling Network Operator on a Vanilla Kubernetes Cluster

Uninstall the Network Operator:

helm uninstall network-operator -n nvidia-network-operator

NVIDIA Network Operator v24.4.0 86

You should now see all the pods being deleted:

Make sure that the CRDs created during the operator installation have been removed:

Uninstalling the Network Operator on an OpenShift Cluster

From the console:

In the OpenShift Container Platform web console side menu, select Operators
>Installed Operators, search for the NVIDIA Network Operator, and click on it.

On the right side of the Operator Details page, select Uninstall Operator from the
Actions drop-down menu.

For additional information, see the Red Hat OpenShift Container Platform
Documentation.

From the CLI:

Check the current version of the Network Operator in the currentCSV field:

Example output:

Delete the subscription:

kubectl get pods -n nvidia-network-operator

kubectl get nicclusterpolicies.mellanox.com No resources found

oc get subscription -n nvidia-network-operator nvidia-network-operator -o
yaml | grep currentCSV

currentCSV: nvidia-network-operator.v24.1.0

oc delete subscription -n nvidia-network-operator nvidia-network-operator

https://docs.openshift.com/container-platform/4.10/operators/admin/olm-deleting-operators-from-cluster.html
https://docs.openshift.com/container-platform/4.10/operators/admin/olm-deleting-operators-from-cluster.html

NVIDIA Network Operator v24.4.0 87

Example output:

Delete the CSV using the currentCSV value from the previous step:

Example output:

The SR-IOV Network Operator uninstallation procedure is described in this document. For
additional information, see the Red Hat OpenShift Container Platform Documentation.

Additional Steps

Delete the Network Operator CRDs:

NicClusterPolicy CRD Update

subscription.operators.coreos.com "nvidia-network-operator" deleted

subscription.operators.coreos.com "nvidia-network-operator" deleted

clusterserviceversion.operators.coreos.com "nvidia-network-operator.v10.0"
deleted

Warning

In OCP, uninstalling an operator does not remove its managed
resources, including CRDs and CRs. To remove them, you must
manually delete the Operator CRDs following the operator
uninstallation.

oc delete crds hostdevicenetworks.mellanox.com macvlannetworks.mellanox.com
nicclusterpolicies.mellanox.com

https://docs.openshift.com/container-platform/4.10/operators/admin/olm-deleting-operators-from-cluster.html

NVIDIA Network Operator v24.4.0 88

If the NicClusterPolicy manual update affects the device plugin configuration (e.g. NICs
selectors), manual device plugin pods restart is required.

NVIDIA Network Operator v24.4.0 89

Advanced Configurations
On this page

Network Operator Deployment with Admission Controller

Network Operator Deployment with Pod Security Admission

Network Operator Deployment in a Proxy Environment

Prerequisites

HTTP Proxy Configuration for Openshift

HTTP Proxy Configuration

Network Operator Deployment in an Air-gapped Environment

Local Image Registry

Pulling and Pushing Container Images to a Local Registry

Local Package Repository

Precompiled Container Build Instructions for DOCA Drivers

Prerequisites

Dockerfile Overview

Common mandatory build parameters

RHEL-specific build parameters

NVIDIA Network Operator v24.4.0 90

Network Operator Deployment with Admission
Controller

The Admission Controller can be optionally included as part of the Network Operator
installation process. It has the capability to validate supported Custom Resource
Definitions (CRDs), which currently include NicClusterPolicy and HostDeviceNetwork. By
default, the deployment of the admission controller is disabled. To enable it, you must set
operator.admissionController.enabled to true .

Enabling the admission controller provides you with two options for managing
certificates. You can either utilize the cert-manager for generating a self-signed certificate
automatically, or, alternatively, provide your own self-signed certificate.

To use cert-manager, ensure that operator.admissionController.useCertManager is set
to true . Additionally, make sure that you deploy the cert-manager before initiating the
Network Operator deployment.

If you prefer not to use the cert-manager, set
operator.admissionController.useCertManager to false , and then provide your custom

certificate and key using operator.admissionController.certificate.tlsCrt and
operator.admissionController.certificate.tlsKey .

Network Operator Deployment with Pod Security
Admission

Warning

When using your own certificate, the certificate must be valid for
<Release_Name>-webhook-
service.<Release_Namespace>.svc

, e.g.
network-operator-webhook-service.nvidia-network-operator.svc .

https://cert-manager.io/docs/installation/

NVIDIA Network Operator v24.4.0 91

The Pod Security admission controller replaces PodSecurityPolicy, enforcing predefined
Pod Security Standards by adding a label to a namespace.

There are three levels defined by the Pod Security Standards : privileged , baseline and
restricted .

If required, enforce PSA privileged level on the Network Operator namespace by running:

In case that baseline or restricted levels are being enforced on the Network Operator
namespace, events for pods creation failures will be triggered:

Network Operator Deployment in a Proxy Environment

This section describes how to successfully deploy the Network Operator in clusters
behind an HTTP Proxy. By default, the Network Operator requires internet access for the

Warning

In case you wish to enforce a PSA to the Network Operator
namespace, the privileged level is required. Enforcing baseline or
restricted levels will prevent the creation of required Network

Operator pods.

kubectl label --overwrite ns nvidia-network-operator pod-
security.kubernetes.io/enforce=privileged

kubectl get events -n nvidia-network-operator --field-selector reason=FailedCreate
LAST SEEN TYPE REASON OBJECT MESSAGE 2m36s Warning FailedCreate
daemonset/mofed-ubuntu22.04-ds Error creating: pods "mofed-ubuntu22.04-ds-
rwmgs" is forbidden: violates PodSecurity "baseline:latest": host namespaces
(hostNetwork=true), hostPath volumes (volumes "run-mlnx-ofed", "etc-network",
"host-etc", "host-usr", "host-udev"), privileged (container "mofed-container" must
not set securityContext.privileged=true)

https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-standards

NVIDIA Network Operator v24.4.0 92

following reasons:

Container images must be pulled during the NVIDIA Network Operator installation.

The driver container must download several OS packages prior to the driver
installation.

To address these requirements, all Kubernetes nodes, as well as the driver container,
must be properly configured in order to direct traffic through the proxy.

This section demonstrates how to configure the NVIDIA Network Operator, so that the
driver container could successfully download packages behind an HTTP proxy. Since
configuring Kubernetes/container runtime components for proxy use is not specific to
the Network Operator, those instructions are not detailed here.

Prerequisites

Kubernetes cluster is configured with HTTP proxy settings (container runtime should be
enabled with HTTP proxy).

HTTP Proxy Configuration for Openshift

For Openshift, it is recommended to use the cluster-wide Proxy object to provide proxy
information for the cluster. Please follow the procedure described in Configuring the
Cluster-wide Proxy via the Red Hat Openshift public documentation. The NVIDIA Network
Operator will automatically inject proxy related ENV into the driver container, based on
the information present in the cluster-wide Proxy object.

HTTP Proxy Configuration

Warning

If you are not running OpenShift, please skip the section titled HTTP
Proxy Configuration for OpenShift, as Openshift configuration
instructions are different.

https://docs.openshift.com/container-platform/latest/networking/enable-cluster-wide-proxy.html
https://docs.openshift.com/container-platform/latest/networking/enable-cluster-wide-proxy.html

NVIDIA Network Operator v24.4.0 93

Specify the ofedDriver.env in your values.yaml file with appropriate HTTP_PROXY ,
HTTPS_PROXY , and NO_PROXY environment variables (in both uppercase and

lowercase).

Network Operator Deployment in an Air-gapped
Environment

This section describes how to successfully deploy the Network Operator in clusters with
restricted internet access. By default, the Network Operator requires internet access for
the following reasons:

The container images must be pulled during the Network Operator installation.

The OFED driver container must download several OS packages prior to the driver
installation.

To address these requirements, it may be necessary to create a local image registry
and/or a local package repository, so that the necessary images and packages will be
available for your cluster. Subsequent sections of this document detail how to configure
the Network Operator to use local image registries and local package repositories. If your
cluster is behind a proxy, follow the steps listed in Network Operator Deployment in
Proxy Environments.

Local Image Registry

Without internet access, the Network Operator requires all images to be hosted in a local
image registry that is accessible to all nodes in the cluster. To allow Network Operator to
work with a local registry, users can specify local repository, image, tag along with pull
secrets in the values.yaml file.

ofedDriver: env: - name: HTTPS_PROXY value: http://<example.proxy.com:port> -
name: HTTP_PROXY value: http://<example.proxy.com:port> - name: NO_PROXY
value: <example.com> - name: https_proxy value: http://<example.proxy.com:port>
- name: http_proxy value: http://<example.proxy.com:port> - name: no_proxy value:
<example.com>

NVIDIA Network Operator v24.4.0 94

Pulling and Pushing Container Images to a Local Registry

To pull the correct images from the NVIDIA registry, you can leverage the fields
repository , image and version specified in the values.yaml file.

Local Package Repository

The OFED driver container deployed as part of the Network Operator requires certain
packages to be available for the driver installation. In restricted internet access or air-
gapped installations, users are required to create a local mirror repository for their OS
distribution, and make the following packages available:

For RT kernels following packages should be available:

For Ubuntu, these packages can be found at archive.ubuntu.com, and be used as the
mirror that must be replicated locally for your cluster. By using apt-mirror or apt-get
download, you can create a full or a partial mirror to your repository server.

For RHCOS, dnf reposync can be used to create the local mirror. This requires an active
Red Hat subscription for the supported OpenShift version. For example:

Warning

The instructions below are provided as reference examples to set up
a local package repository for NVIDIA Network Operator.

ubuntu: linux-headers-${KERNEL_VERSION} linux-modules-${KERNEL_VERSION} pkg-
config rhel, rhcos: kernel-headers-${KERNEL_VERSION} kernel-
devel-${KERNEL_VERSION} kernel-core-${KERNEL_VERSION} createrepo elfutils-
libelf-devel kernel-rpm-macros umactl-libs lsof pm-build patch hostname

kernel-rt-devel-${KERNEL_VERSION} kernel-rt-modules-${KERNEL_VERSION}

https://docs.nvidia.com/http://archive.ubuntu.com/

NVIDIA Network Operator v24.4.0 95

Once all the above required packages are mirrored to the local repository, repo lists must
be created following distribution specific documentation. A ConfigMap containing the
repo list file should be created in the namespace where the NVIDIA Network Operator is
deployed.

Following is an example of a repo list for Ubuntu 20.04 (access to a local package
repository via HTTP):

custom-repo.list :

Following is an example of a repo list for RHCOS (access to a local package repository via
HTTP):

cuda.repo (a mirror of
https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64):

redhat.repo :

dnf --releasever=8.4 reposync --repo rhel-8-for-x86_64-appstream-rpms --download-
metadata

deb [arch=amd64 trusted=yes] http://<local pkg
repository>/ubuntu/mirror/archive.ubuntu.com/ubuntu focal main universe deb
[arch=amd64 trusted=yes] http://<local pkg
repository>/ubuntu/mirror/archive.ubuntu.com/ubuntu focal-updates main universe
deb [arch=amd64 trusted=yes] http://<local pkg
repository>/ubuntu/mirror/archive.ubuntu.com/ubuntu focal-security main universe

[cuda] name=cuda baseurl=http://<local pkg repository>/cuda priority=0 gpgcheck=0
enabled=1

[baseos] name=rhel-8-for-x86_64-baseos-rpms baseurl=http://<local pkg
repository>/rhel-8-for-x86_64-baseos-rpms gpgcheck=0 enabled=1 [baseoseus]
name=rhel-8-for-x86_64-baseos-eus-rpms baseurl=http://<local pkg repository>/rhel-
8-for-x86_64-baseos-eus-rpms gpgcheck=0 enabled=1 [rhocp] name=rhocp-4.10-for-

https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64

NVIDIA Network Operator v24.4.0 96

ubi.repo :

Create the ConfigMap for Ubuntu:

Create the ConfigMap for RHCOS:

Once the ConfigMap is created using the above command, update the values.yaml file
with this information to let the Network Operator mount the repo configuration within
the driver container and pull the required packages. Based on the OS distribution, the
Network Operator will automatically mount this ConfigMap into the appropriate
directory.

rhel-8-x86_64-rpms baseurl=http://<local pkg repository>/rhocp-4.10-for-rhel-8-
x86_64-rpms gpgcheck=0 enabled=1 [apstream] name=rhel-8-for-x86_64-
appstream-rpms baseurl=http://<local pkg repository>/rhel-8-for-x86_64-appstream-
rpms gpgcheck=0 enabled=1

[ubi-8-baseos] name = Red Hat Universal Base Image 8 (RPMs) - BaseOS baseurl =
http://<local pkg repository>/ubi-8-baseos enabled = 1 gpgcheck = 0 [ubi-8-baseos-
source] name = Red Hat Universal Base Image 8 (Source RPMs) - BaseOS baseurl =
http://<local pkg repository>/ubi-8-baseos-source enabled = 0 gpgcheck = 0 [ubi-8-
appstream] name = Red Hat Universal Base Image 8 (RPMs) - AppStream baseurl =
http://<local pkg repository>/ubi-8-appstream enabled = 1 gpgcheck = 0 [ubi-8-
appstream-source] name = Red Hat Universal Base Image 8 (Source RPMs) -
AppStream baseurl = http://<local pkg repository>/ubi-8-appstream-source enabled =
0 gpgcheck = 0

kubectl create configmap repo-config -n <Network Operator Namespace> --from-
file=<path-to-repo-list-file>

kubectl create configmap repo-config -n <Network Operator Namespace> --from-
file=cuda.repo --from-file=redhat.repo --from-file=ubi.repo

ofedDriver: deploy: true repoConfg: name: repo-config

NVIDIA Network Operator v24.4.0 97

If self-signed certificates are used for an HTTPS based internal repository, a ConfigMap
must be created for those certifications and provided during the Network Operator
installation. Based on the OS distribution, the Network Operator will automatically mount
this ConfigMap into the appropriate directory.

Precompiled Container Build Instructions for DOCA
Drivers

Prerequisites

Before you begin, ensure that you have the following prerequisites:

Common

Docker (Ubuntu) / Podman (RH) installed on your build system.

Web access to NVIDIA NIC drivers sources. Latest NIC drivers published at NIC
drivers download center, for example:
https://www.mellanox.com/downloads/ofed/MLNX_OFED-24.04-
0.6.6.0/MLNX_OFED_SRC-debian-24.04-0.6.6.0-0.tgz

RHEL

Active subscription and login credentials for registry.redhat.io. To build RHEL based
container from official repository, you need to log in to registry.redhat.io, run the
following command:

Replace RH_USERNAME and RH_PASSWORD with your Red Hat account username and
password.

kubectl create configmap cert-config -n <Network Operator Namespace> --from-
file=<path-to-pem-file1> --from-file=<path-to-pem-file2>

ofedDriver: deploy: true certConfg: name: cert-config

podman login registry.redhat.io --username=${RH_USERNAME} --
password=${RH_PASSWORD}

https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
https://www.mellanox.com/downloads/ofed/MLNX_OFED-24.04-0.6.6.0/MLNX_OFED_SRC-debian-24.04-0.6.6.0-0.tgz
https://www.mellanox.com/downloads/ofed/MLNX_OFED-24.04-0.6.6.0/MLNX_OFED_SRC-debian-24.04-0.6.6.0-0.tgz
https://registry.redhat.io/
https://registry.redhat.io/

NVIDIA Network Operator v24.4.0 98

Dockerfile Overview

To build the precompiled container, the Dockerfile is constructed in a multistage fashion.
This approach is used to optimize the resulting container image size and reduce the
number of dependencies included in the final image.

The Dockerfile consists of the following stages:

1. Base Image Update: The base image is updated and common requirements are
installed. This stage sets up the basic environment for the subsequent stages.

2. Download Driver Sources: This stage downloads the Mellanox OFED driver sources
to the specified path. It prepares the necessary files for the driver build process.

3. Build Driver: The driver is built using the downloaded sources and installed on the
container. This stage ensures that the driver is compiled and configured correctly
for the target system.

4. Install precompiled driver: Finally, the precompiled driver is installed on clean
container. This stage sets up the environment to run the NVIDIA NIC drivers on the
target system.

Common mandatory build parameters

Before building the container, you need to provide following parameters as build-arg for
container build:

1. D_OS: The Linux distribution (e.g., ubuntu22.04 / rhel9.2)

2. D_ARCH: Compiled Architecture

3. D_BASE_IMAGE: Base container image

4. D_KERNEL_VER: The target kernel version (e.g., 5.15.0-25-generic / 5.14.0-
284.32.1.el9_2.x86_64)

5. D_OFED_VERSION: NVIDIA NIC drivers version (e.g., 24.01-0.3.3.1)

NOTE: Check desired NVIDIA NIC drivers sources[^1] availability for designated container
OS, only versions available on download page can be utilized

RHEL-specific build parameters

NVIDIA Network Operator v24.4.0 99

1. D_BASE_IMAGE: DriverToolKit container image

NOTE: DTK (DriverToolKit) is tightly coupled with specific kernel versions, verify match
between kernel version to compile drivers for, versus DTK image.

2. D_FINAL_BASE_IMAGE: Final container image, to install compiled driver

For more details regarding DTK please read official documentation.

NOTE: For proper Network Operator functionality container tag name must be in
following pattern: driver_ver-container_ver-kernel_ver-os-arch. For example: 24.01-
0.3.3.1-0-5.15.0-25-generic-ubuntu22.04-amd64

RHEL example

To build RHEL-based image please use provided Dockerfile:

Ubuntu example

To build RHEL-based image please use provided Dockerfile:.

NOTE: Dockerfiles contain default build parameters, which may fail build proccess on
your system if not overridden.

NOTE: Entrypoint script download NOTE: Driver build script download

podman build \ --build-arg D_OS=rhel9.2 \ --build-arg D_ARCH=x86_64 \ --build-arg
D_KERNEL_VER=5.14.0-284.32.1.el9_2.x86_64 \ --build-arg D_OFED_VERSION=24.01-
0.3.3.1 \ --build-arg D_BASE_IMAGE="registry.redhat.io/openshift4/driver-toolkit-
rhel9:v4.13.0-202309112001.p0.gd719bdc.assembly.stream" \ --build-arg
D_FINAL_BASE_IMAGE=registry.access.redhat.com/ubi9/ubi:latest \ --tag 24.04-
0.6.6.0-0-5.14.0-284.32.1.el9_2-rhel9.2-amd64 \ -f RHEL_Dockerfile \ --target
precompiled .

docker build \ --build-arg D_OS=ubuntu22.04 \ --build-arg D_ARCH=x86_64 \ --build-
arg D_BASE_IMAGE=ubuntu:24.04 \ --build-arg D_KERNEL_VER=5.15.0-25-generic \ --
build-arg D_OFED_VERSION=24.01-0.3.3.1 \ --tag 24.01-0.3.3.1-0-5.15.0-25-generic-
ubuntu22.04-amd64 \ -f Ubuntu_Dockerfile \ --target precompiled .

https://docs.openshift.com/container-platform/4.15/hardware_enablement/psap-driver-toolkit.html#pulling-the-driver-toolkit-from-payload
https://docs.nvidia.com/_downloads/a603146394632e94d8dcfba46d30e2c2/RHEL_Dockerfile
https://docs.nvidia.com/_downloads/0deb975d4bc3acb406e6d3c5b1a2f389/Ubuntu_Dockerfile
https://docs.nvidia.com/_downloads/46bd948566ee03504c6421cadd8047fa/entrypoint.sh
https://docs.nvidia.com/_downloads/10d5db7fcd98952a3e7d647e51a0fe33/dtk_nic_driver_build.sh

NVIDIA Network Operator v24.4.0 100

© Copyright 2024, NVIDIA.. PDF Generated on 06/04/2024

Warning

Modification of D_OFED_SRC_DOWNLOAD_PATH must be tighdly
coupled with corresponding update to entrypoint.sh script.

	Release Notes
	Platform Support
	Getting Started with Kubernetes
	Getting Started with Red Hat OpenShift
	Customization Options
	Helm Chart Customization Options
	CRDs

	Life Cycle Management
	Advanced Configurations

