
Flow Steering

Table of contents

Flow Steering Support

Flow Domains and Priorities

Ethtool

Accelerated Receive Flow Steering (aRFS)

Flow Steering Dump Tool

Flow Steering 1

Table of contents

Flow Steering Support

Flow Domains and Priorities

Ethtool

Accelerated Receive Flow Steering (aRFS)

Flow Steering Dump Tool

Flow Steering 2

List of Figures
Figure 0. Procedure Heading Icon Version 1 Modificationdate
1717697157293 Api V2

Figure 1. Procedure Heading Icon Version 1 Modificationdate
1717697157293 Api V2

Flow Steering 3

Flow steering is a new model which steers network flows based on flow specifications to
specific QPs. Those flows can be either unicast or multicast network flows. In order to
maintain flexibility, domains and priorities are used. Flow steering uses a methodology of
flow attribute, which is a combination of L2-L4 flow specifications, a destination QP and a
priority. Flow steering rules may be inserted either by using ethtool or by using InfiniBand
verbs. The verbs abstraction uses different terminology from the flow attribute
(ibv_flow_attr), defined by a combination of specifications (struct ibv_flow_spec_*).

Flow Steering Support

All flow steering features are enabled in the supported adapter cards.

Flow Domains and Priorities

Flow steering defines the concept of domain and priority. Each domain represents a user
agent that can attach a flow. The domains are prioritized. A higher priority domain will
always supersede a lower priority domain when their flow specifications overlap. Setting
a lower priority value will result in a higher priority.
In addition to the domain, there is a priority within each of the domains. Each domain can
have at most 2^12 priorities in accordance with its needs.
The following are the domains at a descending order of priority:

User Verbs allows a user application QP to be attached to a specified flow when
using ibv_create_flow and ibv_destroy_flow verbs

ibv_create_flow

Input parameters:

struct ibv_qp - the attached QP.

struct ibv_flow_attr - attaches the QP to the flow specified. The flow contains
mandatory control parameters and optional L2, L3 and L4 headers. The
optional headers are detected by setting the size and num_of_specs fields:
struct ibv_flow_attr can be followed by the optional flow headers structs:

struct ibv_flow *ibv_create_flow(struct ibv_qp *qp, struct ibv_flow_attr
*flow)

Flow Steering 4

For further information, please refer to the ibv_create_flow man page.

ibv_destroy_flow

Input parameters:

ibv_destroy_flow requires struct ibv_low which is the return value of ibv_create_flow in case
of success.

Output parameters:

Returns 0 on success, or the value of errno on failure.

For further information, please refer to the ibv_destroy_flow man page.

Ethtool

Ethtool domain is used to attach an RX ring, specifically its QP to a specified flow. Please
refer to the most recent ethtool man page for all the ways to specify a flow.

Examples:

ethtool –U eth5 flow-type ether dst 00:11:22:33:44:55 loc 5 action 2
All packets that contain the above destination MAC address are to be steered into
rx-ring 2 (its underlying QP), with priority 5 (within the ethtool domain)

ethtool –U eth5 flow-type tcp4 src-ip 1.2.3.4 dst-port 8888 loc 5 action 2
All packets that contain the above destination IP address and source port are to be
steered into rx- ring 2. When destination MAC is not given, the user's destination
MAC is filled automatically.

struct ibv_flow_spec_eth
struct ibv_flow_spec_ipv4
struct ibv_flow_spec_tcp_udp
struct ibv_flow_spec_ipv6

int ibv_destroy_flow(struct ibv_flow *flow_id)

Flow Steering 5

ethtool -U eth5 flow-type ether dst 00:11:22:33:44:55 vlan 45 m 0xf000 loc 5 action 2
All packets that contain the above destination MAC address and specific VLAN are
steered into ring 2. Please pay attention to the VLAN's mask 0xf000. It is required in
order to add such a rule.

ethtool –u eth5
Shows all of ethtool's steering rule

When configuring two rules with the same priority, the second rule will overwrite the first
one, so this ethtool interface is effectively a table. Inserting Flow Steering rules in the
kernel requires support from both the ethtool in the user space and in kernel (v2.6.28).

Accelerated Receive Flow Steering (aRFS)

Receive Flow Steering (RFS) and Accelerated Receive Flow Steering (aRFS) are kernel
features currently available in most distributions. For RFS, packets are forwarded based
on the location of the application consuming the packet. aRFS boosts the speed of RFS by
adding support for the hardware. By usingaRFS(unlike RFS), the packets are directed to a
CPU that is local to the thread running the application.

aRFSis an in-kernel-logic responsible for load balancing between CPUs by attaching flows
to CPUs that are used by flow's owner applications. This domain allows the aRFS
mechanism to use the flow steering infrastructure to support the aRFS logic by
implementing the ndo_rx_flow_steer, which, in turn, calls the underlying flow steering
mechanism with the aRFS domain.

To configure RFS:

Configure the RFS flow table entries (globally and per core).

Note: The functionality remains disabled until explicitly configured (by default it is 0).

The number of entries in the global flow table is set as follows:

Note

Flow Steering 6

The number of entries in the per-queue flow table are set as follows:

Example:

To Configure aRFS:

The aRFS feature requires explicit configuration in order to enable it. Enabling the aRFS
requires enabling the 'ntuple' flag via the ethtool.
For example, to enable ntuple for eth0, run:

aRFS requires the kernel to be compiled with the CONFIG_RFS_ACCEL option. This option is
available in kernels 2.6.39 and above. Furthermore, aRFS requires Device Managed Flow
Steering support.

/proc/sys/net/core/rps_sock_flow_entries

Note

/sys/class/net/<dev>/queues/rx-<n>/rps_flow_cnt

echo 32768 > /proc/sys/net/core/rps_sock_flow_entries
NUM_CHANNELS=`ethtool -l ens6 | grep "Combined:" | tail -1 | awk '{print $2}'`
for f in `seq 0 $((NUM_CHANNELS-1))`; do echo 32768 >
/sys/class/net/ens6/queues/rx-$f/rps_flow_cnt; done

ethtool -K eth0 ntuple on

Note

Flow Steering 7

Flow Steering Dump Tool

The mlx_fs_dump is a python tool that prints the steering rules in a readable manner.
Python v2.7 or above, as well as pip, anytree and termcolor libraries are required to be
installed on the host.

Running example:

For further information on the mlx_fs_dump tool, please refer to mlx_fs_dump
Community post.

© Copyright 2024, NVIDIA. PDF Generated on 06/06/2024

RFS cannot function if LRO is enabled. LRO can be disabled via
ethtool.

./ofed_scripts/utils/mlx_fs_dump -d /dev/mst/mt4115_pciconf0
FT: 9 (level: 0x18, type: NIC_RX)
+-- FG: 0x15 (MISC)
|-- FTE: 0x0 (FWD) to (TIR:0x7e) out.ethtype:IPv4 out.ip_prot:UDP out.udp_dport:0x140

+-- FTE: 0x1 (FWD) to (TIR:0x7e) out.ethtype:IPv4 out.ip_prot:UDP out.udp_dport:0x13f

...

https://enterprise-support.nvidia.com/s/article/mlx-fs-dump

	Flow Steering Support
	Flow Domains and Priorities
	Ethtool
	Accelerated Receive Flow Steering (aRFS)
	Flow Steering Dump Tool

