
Single Root IO Virtualization (SR-IOV)

Table of contents

System Requirements

Setting Up SR-IOV

Configuring SR-IOV (Ethernet)

Additional SR-IOV Configurations

Assigning a Virtual Function to a Virtual Machine

Assigning the SR-IOV Virtual Function to the Red Hat KVM VM Server

Ethernet Virtual Function Configuration when Running SR-IOV

Virtual Guest Tagging (VGT+)

SR-IOV Advanced Security Features

VF Promiscuous Rx Modes

Uninstalling the SR-IOV Driver

Single Root IO Virtualization (SR-IOV) 1

Table of contents

System Requirements

Setting Up SR-IOV

Configuring SR-IOV (Ethernet)

Additional SR-IOV Configurations

Assigning a Virtual Function to a Virtual Machine

Assigning the SR-IOV Virtual Function to the Red Hat KVM VM Server

Ethernet Virtual Function Configuration when Running SR-IOV

Virtual Guest Tagging (VGT+)

SR-IOV Advanced Security Features

VF Promiscuous Rx Modes

Uninstalling the SR-IOV Driver

Single Root IO Virtualization (SR-IOV) 2

List of Figures
Figure 0. Worddavb2ee67a7eb9aae5c536610e39a37dcc5 Version 1
Modificationdate 1717697195704 Api V2

Figure 1. Worddav6931c32564b3b0c166f4a26788219144 Version 1
Modificationdate 1717697192307 Api V2

Figure 2. Image2019 3 8 12 50 6 Version 1 Modificationdate
1717697190387 Api V2

Figure 3. Procedure Heading Icon Version 1 Modificationdate
1717697191472 Api V2

Figure 4. Procedure Heading Icon Version 1 Modificationdate
1717697191472 Api V2

Figure 5. Procedure Heading Icon Version 1 Modificationdate
1717697191472 Api V2

Figure 6. Procedure Heading Icon Version 1 Modificationdate
1717697191472 Api V2

Figure 7. Procedure Heading Icon Version 1 Modificationdate
1717697191472 Api V2

Figure 8. Procedure Heading Icon Version 1 Modificationdate
1717697191472 Api V2

Figure 9. Procedure Heading Icon Version 1 Modificationdate
1717697191472 Api V2

Figure 10. Procedure Heading Icon Version 1 Modificationdate
1717697191472 Api V2

Single Root IO Virtualization (SR-IOV) 3

Figure 11. Procedure Heading Icon Version 1 Modificationdate
1717697191472 Api V2

Single Root IO Virtualization (SR-IOV) 4

Single Root IO Virtualization (SR-IOV) is a technology that allows a physical PCIe device to
present itself multiple times through the PCIe bus. This technology enables multiple
virtual instances of the device with separate resources. NVIDIA adapters are capable of
exposing up to 127 virtual instances (Virtual Functions (VFs) for each port in the NVIDIA
ConnectX® family cards. These virtual functions can then be provisioned separately. Each
VF can be seen as an additional device connected to the Physical Function. It shares the
same resources with the Physical Function, and its number of ports equals those of the
Physical Function.
SR-IOV is commonly used in conjunction with an SR-IOV enabled hypervisor to provide
virtual machines direct hardware access to network resources hence increasing its
performance.
In this chapter we will demonstrate setup and configuration of SR-IOV in a Red Hat Linux
environment using ConnectX® VPI adapter cards.

System Requirements

To set up an SR-IOV environment, the following is required:

MLNX_EN Driver

A server/blade with an SR-IOV-capable motherboard BIOS

Hypervisor that supports SR-IOV such as: Red Hat Enterprise Linux Server Version 6

NVIDIA ConnectX® VPI Adapter Card family with SR-IOV capability

Setting Up SR-IOV

Depending on your system, perform the steps below to set up your BIOS. The figures
used in this section are for illustration purposes only. For further information, please
refer to the appropriate BIOS User Manual:

1. Enable "SR-IOV" in the system BIOS.

Single Root IO Virtualization (SR-IOV) 5

2. Enable "Intel Virtualization Technology".

3. Install a hypervisor that supports SR-IOV.

4. Depending on your system, update the /boot/grub/grub.conf file to include a similar
command line load parameter for the Linux kernel.
For example, to Intel systems, add:

default=0

timeout=5

splashimage=(hd0,0)/grub/splash.xpm.gz

Single Root IO Virtualization (SR-IOV) 6

Note: Please make sure the parameter "intel_iommu=on" exists when updating the
/boot/grub/grub.conf file, otherwise SR-IOV cannot be loaded.

Some OSs use /boot/grub2/grub.cfg file. If your server uses such file, please edit this
file instead (add “intel_iommu=on” for the relevant menu entry at the end of the line
that starts with "linux16").

Configuring SR-IOV (Ethernet)

To set SR-IOV in Ethernet mode, refer to HowTo Configure SR-IOV for ConnectX-
4/ConnectX- 5/ConnectX-6 with KVM (Ethernet) Community Post.

Additional SR-IOV Configurations

Assigning a Virtual Function to a Virtual Machine

This section describes a mechanism for adding a SR-IOV VF to a Virtual Machine.

Assigning the SR-IOV Virtual Function to the Red Hat
KVM VM Server

1. Run the virt-manager.

2. Double click on the virtual machine and open its Properties.

3. Go to Details → Add hardware → PCI host device.

hiddenmenu
title Red Hat Enterprise Linux Server (4.x.x)
root (hd0,0)
kernel /vmlinuz-4.x.x ro root=/dev/VolGroup00/LogVol00 rhgb quiet
intel_iommu=on initrd /initrd-4.x.x.img

https://enterprise-support.nvidia.com/s/article/HowTo-Configure-SR-IOV-for-ConnectX-4-ConnectX-5-ConnectX-6-with-KVM-Ethernet
https://enterprise-support.nvidia.com/s/article/HowTo-Configure-SR-IOV-for-ConnectX-4-ConnectX-5-ConnectX-6-with-KVM-Ethernet

Single Root IO Virtualization (SR-IOV) 7

4. Choose a NVIDIA virtual function according to its PCI device (e.g., 00:03.1)

5. If the Virtual Machine is up reboot it, otherwise start it.

6. Log into the virtual machine and verify that it recognizes the NVIDIA card. Run:

Example:

7. Add the device to the /etc/sysconfig/network-scripts/ifcfg-ethX configuration file. The MAC
address for every virtual function is configured randomly, therefore it is not
necessary to add it.

lspci | grep Mellanox

lspci | grep Mellanox
01:00.0 Infiniband controller: Mellanox Technologies MT28800 Family
[ConnectX-5 Ex]

Single Root IO Virtualization (SR-IOV) 8

Ethernet Virtual Function Configuration when Running
SR-IOV

SR-IOV Virtual function configuration can be done through Hypervisor iprout2/netlink
tool, if present. Otherwise, it can be done via sysfs.

VLAN Guest Tagging (VGT) and VLAN Switch Tagging (VST)

ip link set { dev DEVICE | group DEVGROUP } [{ up | down }]
...
[vf NUM [mac LLADDR] [vlan VLANID [qos VLAN-QOS]]
...
[spoofchk { on | off}]]
...

sysfs configuration (ConnectX-4):

/sys/class/net/enp8s0f0/device/sriov/[VF]

+-- [VF]
| +-- config
| +-- link_state
| +-- mac
| +-- mac_list
| +-- max_tx_rate
| +-- min_tx_rate
| +-- spoofcheck
| +-- stats
| +-- trunk
| +-- trust
| +-- vlan

Single Root IO Virtualization (SR-IOV) 9

When running ETH ports on VGT, the ports may be configured to simply pass through
packets as is from VFs (VLAN Guest Tagging), or the administrator may configure the
Hypervisor to silently force packets to be associated with a VLAN/Qos (VLAN Switch
Tagging).
In the latter case, untagged or priority-tagged outgoing packets from the guest will have
the VLAN tag inserted, and incoming packets will have the VLAN tag removed.
The default behavior is VGT.

To configure VF VST mode, run:

where:

NUM = 0..max-vf-num

vlan_id = 0..4095

qos = 0..7

For example:

ip link set dev eth2 vf 2 vlan 10 qos 3 - sets VST mode for VF #2 belonging to PF eth2,
with vlan_id = 10 and qos = 3

ip link set dev eth2 vf 2 vlan 0 - sets mode for VF 2 back to VGT

Additional Ethernet VF Configuration Options

Guest MAC configuration - by default, guest MAC addresses are configured to be
all zeroes. If the administrator wishes the guest to always start up with the same
MAC, he/she should configure guest MACs before the guest driver comes up. The
guest MAC may be configured by using:

ip link set dev <PF device> vf <NUM> vlan <vlan_id> [qos <qos>]

ip link set dev <PF device> vf <NUM> mac <LLADDR>

Single Root IO Virtualization (SR-IOV) 10

For legacy and ConnectX-4 guests, which do not generate random MACs, the
administrator should always configure their MAC addresses via IP link, as above.

Spoof checking - Spoof checking is currently available only on upstream kernels
newer than 3.1.

Guest Link State

Virtual Function Statistics

Virtual function statistics can be queried via sysfs:

Mapping VFs to Ports

To view the VFs mapping to ports:

Use the ip link tool v2.6.34~3 and above.

ip link set dev <PF device> vf <NUM> spoofchk [on | off]

ip link set dev <PF device> vf <UM> state [enable| disable| auto]

cat /sys/class/infiniband/mlx5_2/device/sriov/2/stats tx_packets : 5011

tx_bytes : 4450870

tx_dropped : 0
rx_packets : 5003

rx_bytes : 4450222

rx_broadcast : 0
rx_multicast : 0
tx_broadcast : 0
tx_multicast : 8
rx_dropped : 0

Single Root IO Virtualization (SR-IOV) 11

Output:

When a MAC is ff:ff:ff:ff:ff:ff, the VF is not assigned to the port of the net device it is listed
under. In the example above, vf38 is not assigned to the same port as p1p1, in contrast
to vf0.

However, even VFs that are not assigned to the net device, could be used to set and
change its settings. For example, the following is a valid command to change the spoof
check:

This command will affect only the vf38. The changes can be seen in ip link on the net
device that this device is assigned to.

RoCE Support

RoCE is supported on Virtual Functions and VLANs may be used with it. For RoCE, the
hypervisor GID table size is of 16 entries while the VFs share the remaining 112 entries.
When the number of VFs is larger than 56 entries, some of them will have GID table with
only a single entry which is inadequate if VF's Ethernet device is assigned with an IP
address.

ip link

61: p1p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000

link/ether 00:02:c9:f1:72:e0 brd ff:ff:ff:ff:ff:ff
vf 0 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-state auto
vf 37 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-state auto
vf 38 MAC ff:ff:ff:ff:ff:ff, vlan 65535, spoof checking off, link-state disable
vf 39 MAC ff:ff:ff:ff:ff:ff, vlan 65535, spoof checking off, link-state disable

ip link set dev p1p1 vf 38 spoofchk on

Single Root IO Virtualization (SR-IOV) 12

Virtual Guest Tagging (VGT+)

VGT+ is an advanced mode of Virtual Guest Tagging (VGT), in which a VF is allowed to tag
its own packets as in VGT, but is still subject to an administrative VLAN trunk policy. The
policy determines which VLAN IDs are allowed to be transmitted or received. The policy
does not determine the user priority, which is left unchanged.
Packets can be sent in one of the following modes: when the VF is allowed to
send/receive untagged and priority tagged traffic and when it is not. No default VLAN is
defined for VGT+ port. The send packets are passed to the eSwitch only if they match the
set, and the received packets are forwarded to the VF only if they match the set.

Configuration

To enable VGT+ mode:

Set the corresponding port/VF (in the example below port eth5, VF0) range of allowed
VLANs.

Examples:

Adding VLAN ID range (4-15) to trunk:

Adding a single VLAN ID to trunk:

Note

When working in SR-IOV, the default operating mode is VGT.

echo "<add> <start_vid> <end_vid>" > /sys/class/net/eth5/device/sriov/0/trunk

echo add 4 15 > /sys/class/net/eth5/device/sriov/0/trunk

echo add 17 17 > /sys/class/net/eth5/device/sriov/0/trunk

Single Root IO Virtualization (SR-IOV) 13

Note: When VLAN ID = 0, it indicates that untagged and priority-tagged traffics are
allowed

To disable VGT+ mode, make sure to remove all VLANs.

To remove selected VLANs.

Remove VLAN ID range (4-15) from trunk:

Remove a single VLAN ID from trunk:

SR-IOV Advanced Security Features

SR-IOV MAC Anti-Spoofing

Normally, MAC addresses are unique identifiers assigned to network interfaces, and they
are fixed addresses that cannot be changed. MAC address spoofing is a technique for
altering the MAC address to serve different purposes. Some of the cases in which a MAC
address is altered can be legal, while others can be illegal and abuse security
mechanisms or disguises a possible attacker.
The SR-IOV MAC address anti-spoofing feature, also known as MAC Spoof Check provides
protection against malicious VM MAC address forging. If the network administrator
assigns a MAC address to a VF (through the hypervisor) and enables spoof check on it,
this will limit the end user to send traffic only from the assigned MAC address of that VF.

MAC Anti-Spoofing Configuration

echo rem 0 4095 > /sys/class/net/eth5/device/sriov/0/trunk

echo rem 4 15 > /sys/class/net/eth5/device/sriov/0/trunk

echo rem 17 17 > /sys/class/net/eth5/device/sriov/0/trunk

Single Root IO Virtualization (SR-IOV) 14

In the configuration example below, the VM is located on VF-0 and has the following MAC
address: 11:22:33:44:55:66.
There are two ways to enable or disable MAC anti-spoofing:

1. Use the standard IP link commands - available from Kernel 3.10 and above.

1. To enable MAC anti-spoofing, run:

2. To disable MAC anti-spoofing, run:

2. Specify echo "ON" or "OFF" to the file located under /sys/class/net/<ifname /
device/sriov/<VF index>/spoofcheck.

1. To enable MAC anti-spoofing, run:

2. To disable MAC anti-spoofing, run:

Note

MAC anti-spoofing is disabled by default.

ip link set ens785f1 vf 0 spoofchk on

ip link set ens785f1 vf 0 spoofchk off

echo "ON" > /sys/class/net/ens785f1/vf/0/spoofchk

echo "OFF" > /sys/class/net/ens785f1/vf/0/spoofchk

Note

Single Root IO Virtualization (SR-IOV) 15

Limit and Bandwidth Share Per VF

This feature enables rate limiting traffic per VF in SR-IOV mode. For details on how to
configure rate limit per VF for ConnectX-4 and above adapter cards, please refer to
HowTo Configure Rate Limit per VF for ConnectX-4/ConnectX-5/ConnectX-6 Community
post.

Limit Bandwidth per Group of VFs

VFs Rate Limit for vSwitch (OVS) feature allows users to join available VFs into groups and
set a rate limitation on each group. Rate limitation on a VF group ensures that the total Tx
bandwidth that the VFs in this group get (altogether combined) will not exceed the given
value.
With this feature, a VF can still be configured with an individual rate limit as in the past
(under /sys/class/net/<ifname>/device/sriov/<vf_num>/max_tx_rate). However, the actual
bandwidth limit on the VF will eventually be determined considering the VF group
limitation and how many VFs are in the same group.
For example: 2 VFs (0 and 1) are attached to group 3.

Case 1: The rate limitation on the group is set to 20G. Rate limit of each VF is 15G

Result: Each VF will have a rate limit of 10G

Case 2: Group’s max rate limitation is still set to 20G. VF 0 is configured to 30G limit, while
VF 1 is configured to 5G rate limit

Result: VF 0 will have 15G de-facto. VF 1 will have 5G

This configuration is non-persistent and does not survive driver
restart.

https://enterprise-support.nvidia.com/s/article/HowTo-Configure-Rate-Limit-per-VF-for-ConnectX-4-ConnectX-5-ConnectX-6

Single Root IO Virtualization (SR-IOV) 16

The rule of thumb is that the group’s bandwidth is distributed evenly between the
number of VFs in the group. If there are leftovers, they will be assigned to VFs whose
individual rate limit has not been met yet.

VFs Rate Limit Feature Configuration

1. When VF rate group is supported by FW, the driver will create a new hierarchy in the
SRI-OV sysfs named “groups” (/sys/class/net/<ifname>/device/sriov/groups/). It will
contain all the info and the configurations allowed for VF groups.

2. All VFs are placed in group 0 by default since it is the only existing group following
the initial driver start. It would be the only group available under
/sys/class/net/<ifname>/device/sriov/groups/

3. The VF can be moved to a different group by writing to the group file -> echo
$GROUP_ID > /sys/class/net/<ifname>/device/sriov/<vf_id>/group

4. The group IDs allowed are 0-255

5. Only when there is at least 1 VF in a group, there will be a group configuration
available under /sys/class/net/<ifname>/device/sriov/groups/ (Except for group 0,
which is always available even when it’s empty).

6. Once the group is created (by moving at least 1 VF to that group), users can
configure the group’s rate limit. For example:

1. echo 10000 > /sys/class/net/<ifname>/device/sriov/5/max_tx_rate – setting
individual rate limitation of VF 5 to 10G (Optional)

2. echo 7 > /sys/class/net/<ifname>/device/sriov/5/group – moving VF 5 to group
7

3. echo 5000 > /sys/class/net/<ifname>/device/sriov/groups/7/max_tx_rate –
setting group 7 with rate limitation of 5G

4. When running traffic via VF 5 now, it will be limited to 5G because of the group
rate limit even though the VF itself is limited to 10G

5. echo 3 > /sys/class/net/<ifname>/device/sriov/5/group – moving VF 5 to group
3

Single Root IO Virtualization (SR-IOV) 17

6. Group 7 will now disappear from /sys/class/net/<ifname>/device/sriov/groups
since there are 0 VFs in it. Group 3 will now appear. Since there’s no rate limit
on group 3, VF 5 can transmit at 10G (thanks to its individual configuration)

Notes:

You can see to which group the VF belongs to in the ‘stats’ sysfs (cat
/sys/class/net/<ifname>/device/sriov/<vf_num>/stats)

You can see the current rate limit and number of attached VFs to a group in the
group’s ‘config’ sysfs (cat
/sys/class/net/<ifname>/device/sriov/groups/<group_id>/config)

Bandwidth Guarantee per Group of VFs

Bandwidth guarantee (minimum BW) can be set on a group of VFs to ensure this group is
able to transmit at least the amount of bandwidth specified on the wire.

Note the following:

The minimum BW settings on VF groups determine how the groups share the total
BW between themselves. It does not impact an individual VF’s rate settings.

The total minimum BW that is set on the VF groups should not exceed the total line
rate. Otherwise, results are unexpected.

It is still possible to set minimum BW on the individual VFs inside the group. This will
determine how the VFs share the group’s minimum BW between themselves. The
total minimum BW of the VF member should not exceed the minimum BW of the
group.

For instruction on how to create groups of VFs, see Limit Bandwidth per Group of VFs
above.

Example

With a 40Gb link speed, assuming 4 groups and default group 0 have been created:

https://docs.nvidia.com//pages/createpage.action?spaceKey=mlnxenv23102131201lts&title=.Single+Root+IO+Virtualization+%28SR-IOV%29+v5.1-2.3.7.1&linkCreation=true&fromPageId=2884624634

Single Root IO Virtualization (SR-IOV) 18

Assuming there are VFs attempting to transmit in full line rate in all groups, the results
would look like: In which case, the minimum BW allocation would be:

Privileged VFs

In case a malicious driver is running over one of the VFs, and in case that VF's
permissions are not restricted, this may open security holes. However, VFs can be
marked as trusted and can thus receive an exclusive subset of physical function privileges
or permissions. For example, in case of allowing all VFs, rather than specific VFs, to enter
a promiscuous mode as a privilege, this will enable malicious users to sniff and monitor
the entire physical port for incoming traffic, including traffic targeting other VFs, which is
considered a severe security hole.

Privileged VFs Configuration

echo 20000 > /sys/class/net/<ifname>/device/sriov/group/1/min_tx_rate
echo 5000 > /sys/class/net/<ifname>/device/sriov/group/2/min_tx_rate
echo 15000 > /sys/class/net/<ifname>/device/sriov/group/3/min_tx_rate

Group 0(default) : 0 - No BW guarantee is configured.
Group 1 : 20000 - This is the maximum min rate among groups
Group 2 : 5000 which is 25% of the maximum min rate
Group 3 : 15000 which is 75% of the maximum min rate
Group 4 : 0 - No BW guarantee is configured.

Group0 – Will have no BW to use since no BW guarantee was set on it while other
groups do have such settings.
Group1 – Will transmit at 20Gb/s
Group2 – Will transmit at 5Gb/s
Group3 – Will transmit at 15Gb/s
Group4 - Will have no BW to use since no BW guarantee was set on it while other
groups do have such settings.

Single Root IO Virtualization (SR-IOV) 19

In the configuration example below, the VM is located on VF-0 and has the following MAC
address: 11:22:33:44:55:66.
There are two ways to enable or disable trust:

1. Use the standard IP link commands - available from Kernel 4.5 and above.

1. To enable trust for a specific VF, run:

2. To disable trust for a specific VF, run:

2. Specify echo "ON" or "OFF" to the file located under /sys/class/net/<ETH_IF_NAME> /
device/sriov/<VF index>/trust.

1. To enable trust for a specific VF, run:

2. To disable trust for a specific VF, run:

Probed VFs

Probing Virtual Functions (VFs) after SR-IOV is enabled might consume the adapter cards'
resources. Therefore, it is recommended not to enable probing of VFs when no
monitoring of the VM is needed.
VF probing can be disabled in two ways, depending on the kernel version installed on
your server:

1. If the kernel version installed is v4.12 or above, it is recommended to use the PCI
sysfs interface sriov_drivers_autoprobe. For more information, see linux-next branch .

ip link set ens785f1 vf 0 trust on

ip link set ens785f1 vf 0 trust off

echo "ON" > /sys/class/net/ens785f1/device/sriov/0/trust

echo "OFF" > /sys/class/net/ens785f1/device/sriov/0/trust

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/diff/Documentation/ABI/testing/sysfs-bus-pci?id=0e7df22401a3dfd403b26dea62dd00e0598b538b

Single Root IO Virtualization (SR-IOV) 20

2. If the kernel version installed is older than v4.12, it is recommended to use the
mlx5_core module parameter probe_vf with driver version 4.1 or above.

Example:

For more information on how to probe VFs, see HowTo Configure and Probe VFs on mlx5
DriversCommunity post.

VF Promiscuous Rx Modes

VF Promiscuous Mode

VFs can enter a promiscuous mode that enables receiving the unmatched traffic and all
the multicast traffic that reaches the physical port in addition to the traffic originally
targeted to the VF. The unmatched traffic is any traffic's DMAC that does not match any
of the VFs' or PFs' MAC addresses.

Note: Only privileged/trusted VFs can enter the VF promiscuous mode.

To set the promiscuous mode on for a VF, run:

To exit the promiscuous mode, run:

VF All-Multi Mode

echo 0 > /sys/module/mlx5_core/parameters/probe_vf

ifconfig eth2 promisc

ifconfig eth2 –promisc

https://enterprise-support.nvidia.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://enterprise-support.nvidia.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers

Single Root IO Virtualization (SR-IOV) 21

VFs can enter an all-multi mode that enables receiving all the multicast traffic sent
from/to the other functions on the same physical port in addition to the traffic originally
targeted to the VF.

Note: Only privileged/trusted VFs can enter the all-multi RX mode.

To set the all-multi mode on for a VF, run:

To exit the all-multi mode, run:

Uninstalling the SR-IOV Driver

To uninstall SR-IOV driver, perform the following:

1. For Hypervisors, detach all the Virtual Functions (VF) from all the Virtual Machines
(VM) or stop the Virtual Machines that use the Virtual Functions.

Please be aware that stopping the driver when there are VMs that use the VFs, will
cause machine to hang.

2. Run the script below. Please be aware, uninstalling the driver deletes the entire
driver's file, but does not unload the driver.

ifconfig eth2 allmulti

#ifconfig eth2 –allmulti

[root@swl022 ~]# /usr/sbin/ofed_uninstall.sh
This program will uninstall all OFED packages on your machine.
Do you want to continue?[y/N]:y

Single Root IO Virtualization (SR-IOV) 22

3. Restart the server.
© Copyright 2024, NVIDIA. PDF Generated on 06/06/2024

Running /usr/sbin/vendor_pre_uninstall.sh
Removing OFED Software installations
Running /bin/rpm -e --allmatches kernel-ib kernel-ib-devel libibverbs
libibverbs-devel libibverbs-devel-static libibverbs-utils libmlx4 libmlx4-devel
libibcm libibcm-devel libibumad libibumad-devel libibumad-static libibmad
libibmad-devel libibmad-static librdmacm librdmacm-utils librdmacm-devel
ibacm opensm-libs opensm-devel perftest compat-dapl compat-dapl-devel
dapl dapl-devel dapl-devel-static dapl-utils srptools infiniband-diags-guest ofed-
scripts opensm-devel
warning: /etc/infiniband/openib.conf saved as
/etc/infiniband/openib.conf.rpmsave
Running /tmp/2818-ofed_vendor_post_uninstall.sh

	System Requirements
	Setting Up SR-IOV
	Configuring SR-IOV (Ethernet)
	Additional SR-IOV Configurations
	Assigning a Virtual Function to a Virtual Machine
	Assigning the SR-IOV Virtual Function to the Red Hat KVM VM Server
	Ethernet Virtual Function Configuration when Running SR-IOV
	Virtual Guest Tagging (VGT+)
	SR-IOV Advanced Security Features
	VF Promiscuous Rx Modes

	Uninstalling the SR-IOV Driver

