<3

NVIDIA.

Time-Stamping

Table of contents

Enabling Time-Stamping

Getting Time-Stamping

Time Stamping Capabilities via ethtool
Steering PTP Traffic to Single RX Ring
Tx Port Time-Stamping

PTP Cyc2time Hardware Translation Offload

Query Capabilities
Creating a Time-Stamping Completion Queue

Querying the Hardware Time

Time-Stamping

List of Figures

Figure 0. Procedure Heading Icon Version 1 Modificationdate
1717697154675 Api V2

Time-Stamping

Time-Stamping Service

Time-stamping is the process of keeping track of the creation of a packet. A time-
stamping service supports assertions of proof that a datum existed before a particular
time. Incoming packets are time-stamped before they are distributed on the PCI
depending on the congestion in the PCl buffers. Outgoing packets are time-stamped very
close to placing them on the wire.

Enabling Time-Stamping
Time-stamping is off by default and should be enabled before use.

To enable

time-stamping for a socket:

Call setsockopt() with SO_TIMESTAMPING and with the following flags:

SOF_TIMESTAMPING_TX_HAR

DWARE: try to obtain send time-stamp in hardware

SOF TIMESTAMPING_TX_SOF | if SOF_TIMESTAMPING_TX_HARDWARE is off or fails,
TWARE: then do it in software

SOF_TIMESTAMPING_RX_HAR | return the original, unmodified time-stamp as
DWARE: generated by the hardware

SOF TIMESTAMPING_RX_SOF | if SOF_TIMESTAMPING_RX HARDWARE is off or fails,
TWARE: then do it in software

SOF_TIMESTAMPING_RAW_H

ARDWARE: return original raw hardware time-stamp

SOF_TIMESTAMPING_SYS_HA | return hardware time-stamp transformed into the
RDWARE: system time base

SOF_TIMESTAMPING_SOFTWA

RE: return system time-stamp generated in software
SOF _TIMESTAMPING_TX/RX determine how time-stamps are generated

SOF_TIMESTAMPING_RAW/SY

S determine how they are reported

Time-Stamping 3

ping for a net device:

Admin privileged user can enable/disable time stamping through calling ioctl (sock,
SIOCSH-WTSTAMP, &ifreq) with the following values:

e Send side time sampling, enabled by ifreq.hwtstamp_config.tx_type when:

/* possible values for hwtstamp_config->tx_type */
enum hwtstamp_tx_types {

/*

* No outgoing packet will need hardware time stamping;
* should a packet arrive which asks for it, no hardware

* time stamping will be done.

*/

HWTSTAMP_TX_OFF,

/*

* Enables hardware time stamping for outgoing packets;

* the sender of the packet decides which are to be

* time stamped by setting %SOF_TIMESTAMPING_TX_SOFTWARE
* before sending the packet.

*/

HWTSTAMP_TX_ON,

/*

* Enables time stamping for outgoing packets just as

* HWTSTAMP_TX_ON does, but also enables time stamp insertion
* directly into Sync packets. In this case, transmitted Sync

* packets will not received a time stamp via the socket error

* queue.

*/

HWTSTAMP_TX_ONESTEP_SYNC,

5

Note: for send side time stamping currently only HWTSTAMP_TX_OFF and
HWTSTAMP_TX_ON are supported.

e Receive side time sampling, enabled by ifreq.hwtstamp_config.rx_filter when:

/* possible values for hwtstamp_config->rx_filter */

Time-Stamping

enum hwtstamp_rx_filters {
/* time stamp no incoming packet at all */

HWTSTAMP_FILTER_NONE,

/* time stamp any incoming packet */
HWTSTAMP_FILTER_ALL,
/* return value: time stamp all packets requested plus some others */

HWTSTAMP_FILTER_SOME,

/* PTP v1, UDP, any kind of event packet */
HWTSTAMP_FILTER_PTP_V1_L4_EVENT,

/* PTP v1, UDP, Sync packet */
HWTSTAMP_FILTER_PTP_V1_L4_SYNC,

/* PTP v1, UDP, Delay_req packet */
HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ,
/* PTP v2, UDP, any kind of event packet */
HWTSTAMP_FILTER_PTP_V2_L4_EVENT,

/* PTP v2, UDP, Sync packet */
HWTSTAMP_FILTER_PTP_V2_L4_SYNC,

/* PTP v2, UDP, Delay_req packet */
HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ,
/* 802.AS1, Ethernet, any kind of event packet */
HWTSTAMP_FILTER_PTP_V2_L2_EVENT,

/* 802.AS1, Ethernet, Sync packet */
HWTSTAMP_FILTER_PTP_V2_L2_SYNC,

/* 802.AS1, Ethernet, Delay_req packet */
HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ,

/* PTP v2/802.AS1, any layer, any kind of event packet */
HWTSTAMP_FILTER_PTP_V2_EVENT,
/* PTP v2/802.AS1, any layer, Sync packet */

HWTSTAMP_FILTER_PTP_V2_SYNC,
/* PTP v2/802.AS1, any layer, Delay_req packet */
HWTSTAMP_FILTER_PTP_V2_DELAY_REQ,

}

Note: for receive side time stamping currently only HWTSTAMP_FILTER_NONE
and

HWTSTAMP_FILTER_ALL are supported.

Time-Stamping

Getting Time-Stamping

Once time stamping is enabled time stamp is placed in the socket Ancillary data.
recvmsg() can be used to get this control message for regular incoming packets. For send
time stamps the outgoing packet is looped back to the socket's error queue with the send
time-stamp(s) attached. It can

be received with recvmsg (flags=MSG_ERRQUEUE). The call returns the original outgoing
packet data including all headers prepended down to and including the link layer, the
scm_time-stamping control message and a sock_extended_err control message with
ee_errno==ENOMSG and ee_origin==SO_EE_ORIGIN_TIMESTAMPING. A socket with such a
pending bounced packet is ready for reading as far as select() is concerned. If the
outgoing packet has to be fragmented, then only the first fragment is time stamped and
returned to the sending socket.

(D) Note

When time-stamping is enabled, VLAN stripping is disabled. For more
info please refer to Documentation/networking/timestamping.txt in
kernel.org.

() Note

On ConnectX-4 and above adapter cards, when time-stamping is
enabled, RX CQE compression is disabled (features are mutually
exclusive).

Time Stamping Capabilities via ethtool

To display Time Stamping capabilities via ethtool:

Time-Stamping 6

http://kernel.org/

Show Time Stamping capabilities:
ethtool -T eth<x>
Example:

ethtool -T ethO

Time stamping parameters for p2p1:

Capabilities:

hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1

Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_OFF)

on (HWTSTAMP_TX_ON)

Hardware Receive Filter Modes:
none (HWTSTAMP_FILTER_NONE)
all (HWTSTAMP_FILTER_ALL)

For more details on PTP Hardware Clock, please refer to:
https://www.kernel.org/doc/Documentation/ptp/ptp.txt

Steering PTP Traffic to Single RX Ring

As a result of Receive Side Steering (RSS) PTP traffic coming to UDP ports 319 and 320, it
may reach the user space application in an out of order manner. In order to prevent this,
PTP traffic needs to be steered to single RX ring using ethtool.

Time-Stamping

https://www.kernel.org/doc/Documentation/ptp/ptp.txt
https://docs.nvidia.com/http://www.kernel.org/doc/Documentation/ptp/ptp.txt
https://www.kernel.org/doc/Documentation/ptp/ptp.txt
https://docs.nvidia.com/http://www.kernel.org/doc/Documentation/ptp/ptp.txt
https://www.kernel.org/doc/Documentation/ptp/ptp.txt
https://docs.nvidia.com/http://www.kernel.org/doc/Documentation/ptp/ptp.txt

Example:

ethtool -u ens?7

8 RX'rings available

Total o rules

ethtool -U ens7 flow-type udp4 dst-port 319 action o0 loc 1
ethtool -U ens7 flow-type udp4 dst-port 320 action 0 loc 0
ethtool -u ens7

8 RX'rings available

Total 2 rules

Filter: o

Rule Type: UDP over IPv4

Src IP addr: 0.0.0.0 mask: 255.255.255.255
Dest IP addr: 0.0.0.0 mask: 255.255.255.255
TOS: 0x0 mask: oxff

Src port: 0 mask: 0xffff

Dest port: 320 mask: 0x0

Action: Direct to queue 0

Filter: 1

Rule Type: UDP over IPv4

Src IP addr: 0.0.0.0 mask: 255.255.255.255
Dest IP addr: 0.0.0.0 mask: 255.255.255.255
TOS: 0x0 mask: 0xff

Src port: 0 mask: 0xffff

Dest port: 319 mask: 0x0

Action: Direct to queue 0

Tx Port Time-Stamping

Transmitted packet time-stamping accuracy can be improved when using a timestamp
generated at the port level instead of a timestamp generated upon CQE creation. Tx port
time-stamping better reflects the actual time of a packet's transmission.

Normal Send queues (SQs) are open with CQE time-stamp support. When this feature is
enabled, the driver is expected to open extra Tx port time-stamped SQ per traffic class

Time-Stamping

(TC).

The stream must meet the following conditions in order to be transmitted through a Tx
port time-stamped SQ.

1. SKBTX_HW_TSTAMP flag was set at tx_flag (SO_TIMESTAMPING was set via
setsockopt() or similarly)

2. Packet type is:

1. Non-IP, with EtherType of PTP over IEEE 802.3 (0x88f7)
or

2. UDP over IPv4/1Pv6

This feature is disabled by default in order to avoid extra SQ memory allocations. The
feature can be enabled or disabled using the following command.

ethtool --set-priv-flags <ifs-name> tx_port_ts on / off

PTP Cyc2time Hardware Translation Offload

(D) Note

This feature is supported on ConnectX-6 Dx and above adapter cards
only.

Overview

Device timestamp can be in one of two modes: real time or free running internal time.
In free running internal time mode, the device clock is not editable in any way. Driver
and/or user space must adjust it to the real-time nanosecond values.

In real time mode, the hardware clock device can be adjusted and can provide
timestamps which are already translated into real-time nanoseconds.

Time-Stamping

Both modes are global per device. Once a mode is set, all clock-related features (such as
PPS, CQE TS, PCle bar, etc) will work with the chosen clock mode only.

Free running internal time is the default mode configured in the hardware. The driver will
modify the hardware real time clock based on PTP daemon clock adjustments.

Only physical functions are allowed to modify the hardware real-time clock, so PTP
daemon adjustments from VFs will be treated as NOP. In case more than one physical
function tries to modify the hardware real-time clock, the device will select one of the
functions as its designated clock provider. All other input will also be treated as a NOP.
The designated clock provide can be replaced by the device if no new adjustments have
been received from the current provider after some period.

Timestamp Format

CQE hardware timestamp format for ConnectX-6 Dx and ConnectX-6 Lx NICs is 64 bit, as
follows.

{32bit sec, 32 bit nsec}

Configuration

In order to enable the feature, set REAL_TIME_CLOCK_ENABLE in NV_CONFIG via
mlxconfig and restart the driver.

Limitations

e Administrator must restart the driver and perform a FW reset for the configuration
to take effect. Otherwise, mismatch between HW and driver timestamp mode might
occur.

e Once real time mode is activated on a given device (see configuration section),
version 5.3 or newer must run on all device functions. Any older driver running on a
device function at this configuration will fail to open any traffic queues (RDMA or
ETH), hence becoming dysfunctional.

¢ In real time mode, all device functions must be PTP-synchronized by a single clock
domain—do not use multiple GMs for different functions on the same device.

Time-Stamping 10

e Regarding hardware clock ownership, the hardware is configured only from a single
elected function; other function settings are ignored by the device. There is no
indication as to which function is the hardware-clock’s owner. After an internal
timeout without modifying the hardware clock, a function losses the hardware-
clock’'s ownership and is open to be grasped by any of the functions.

e All PFs/VFs within the same device must sync to the same 1588 master clock. If
multiple masters are used, the device will use a single elected function. This might
lead to wrong clock representation by device, wrong 1588 TLVs and hiccups on
replacement of elected function.

e This feature is supported on ConnectX-6 Dx and above adapter cards only.

RoCE Time-Stamping

RoCE Time-Stamping allows you to stamp packets when they are sent to the
wire/received from the wire. The time-stamp is given in raw hardware cycles but could be
easily converted into hardware referenced nanoseconds based time. Additionally, it

enables you to query the hardware for the hardware time, thus stamp other application's
event and compare time.

Query Capabilities

Time-stamping is available if and only the hardware reports it is capable of reporting it.
To verify whether RoCE Time-Stamping is available, run ibv_query_device_ex.

For further information, please see ibv_query_device_ex manual page.

Creating a Time-Stamping Completion Queue

To get time stamps, a suitable extended Completion Queue (CQ) must be created via a
special call to ibv_create_cq_ex verb.

For further information, please see ibv_create_cq_ex manual page.

Time-Stamping 11

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_device_ex.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_create_cq_ex.3

() Note

Time Stamping in not available when CQE zipping is used.

Querying the Hardware Time

Querying the hardware for time is done via the ibv_query_rt_values_ex verb. For example:

For further information, please see ibv_query_rt_values_ex manual page.

One Pulse Per Second (1PPS)

1PPS is a time synchronization feature that allows the adapter to be able to send or
receive 1 pulse per second on a dedicated pin on the adapter card using an SMA
connector (SubMiniature version A). Only one pin is supported and could be configured
as 1PPS in or 1PPS out.

For further information, refer to HowTo Test 1PPS on NVIDIA Adapters Community post.

Time-Stamping 12

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_rt_values_ex.3
https://enterprise-support.nvidia.com/s/article/How-To-Test-1PPS-on-Mellanox-Adapters

	Time-Stamping Service
	Enabling Time-Stamping
	Getting Time-Stamping
	Time Stamping Capabilities via ethtool
	Steering PTP Traffic to Single RX Ring
	Tx Port Time-Stamping
	PTP Cyc2time Hardware Translation Offload

	RoCE Time-Stamping
	Query Capabilities
	Creating a Time-Stamping Completion Queue
	Querying the Hardware Time

	One Pulse Per Second (1PPS)

