
Kernel Transport Layer Security (kTLS) Offloads



Table of contents

Overview

Establishing a kTLS Connection

Kernel Support

Configuring kTLS Offloads

OpenSSL with kTLS Offload

Kernel Transport Layer Security (kTLS) Offloads 1

Table of contents

Overview

Establishing a kTLS Connection

Kernel Support

Configuring kTLS Offloads

OpenSSL with kTLS Offload



Kernel Transport Layer Security (kTLS) Offloads 2

List of Figures
Figure 0. Procedure Heading Icon Version 1 Modificationdate
1717697177050 Api V2



Kernel Transport Layer Security (kTLS) Offloads 3

Overview

Transport Layer Security (TLS) is a widely-deployed protocol used for securing TCP
connections on the Internet. TLS is also a required feature for HTTP/2, the latest web
standard. Kernel implementation of TLS (kTLS) provides new opportunities for offloading
the protocol into the hardware.

TLS data-path offload allows the NIC to accelerate encryption, decryption and
authentication of AES-GCM. TLS offload handles data as it goes through the device
without storing any data, but only updating context. If the packet cannot be
encrypted/decrypted by the device, then a software fallback handles the packet.

Establishing a kTLS Connection

To avoid unnecessary complexity in the kernel, the TLS handshake is kept in the user
space. A full TLS connection using the socket is done using the following scheme:

1. Call connect() or accept() on a standard TCP file descriptor.

2. Use a user space TLS library to complete a handshake.

3. Create a new KTLS socket file descriptor.

4. Extract the TLS Initialization Vectors (IVs), session keys, and sequence IDs from the
TLS library. Use the setsockopt function on the kTLS file descriptor (FD) to pass them
to the kernel.

5. Use standard read(), write(), sendfile() and splice() system calls on the KTLS FD.

Drivers can offer Tx and Rx packet encryption/decryption offload from the kernel into the
NIC hardware. Upon receipt of a non-data TLS message (a control message), the kTLS
socket returns an error, and the message is left on the original TCP socket instead. The

Note

This feature is supported on ConnectX-6 Dx crypto cards only.



Kernel Transport Layer Security (kTLS) Offloads 4

kTLS socket is automatically unattached. Transfer of control back to the original
encrypted FD is done by calling getsockopt to receive the current sequence numbers, and
inserting them into the TLS library.

Kernel Support

For support in the kernel, make sure the following flags are set as follows.

CONFIG_TLS=y

CONFIG_TLS_DEVICE=y | m

Configuring kTLS Offloads

To enable kTLS Tx offload, run:

For further information on TLS offloads, please visit the following kernel documentation:

https://www.kernel.org/doc/html/latest/networking/tls-offload.html

https://www.kernel.org/doc/html/latest/networking/tls.html#kernel-tls

Note

For kTLS Tx device offloads with OFED drivers, kernel TLS module
(kernel/net/tls) must be aligned to kernel v5.3 and above.

For kTLS Rx device offloads with OFED drivers, kernel TLS module
(kernel/net/tls) must be aligned to kernel v5.9 and above.

ethtool -K <ifs> tls-hw-tx-offload on

ethtool -K <ifs> tls-hw-rx-offload on

https://www.kernel.org/doc/html/latest/networking/tls-offload.html
https://www.kernel.org/doc/html/latest/networking/tls.html#kernel-tls


Kernel Transport Layer Security (kTLS) Offloads 5

OpenSSL with kTLS Offload

OpenSSL version 3.0.0 or above is required to support kTLS TX/RX offloads.

Supported OpenSSL version is available to download from distro packages, or can be
downloaded and compiled from the OpenSSL github.

© Copyright 2024, NVIDIA. PDF Generated on 06/06/2024


	Overview
	Establishing a kTLS Connection
	Kernel Support
	Configuring kTLS Offloads
	OpenSSL with kTLS Offload



