
NVIDIA SM

Table of contents

OpenSM Application

Environment Variables

Signaling

Running OpenSM as Daemon

osmtest

Partitions

File Format

Effect of Topology Changes

Routing Algorithms

Min Hop Algorithm

UPDN Algorithm

Fat-tree Routing Algorithm

DOR Routing Algorithm

Torus-2QoS Routing Algorithm

Routing Chains

Unicast Routing Cache

Quality of Service Management in OpenSM

Advanced QoS Policy File

Simple QoS Policy Definition

Policy File Syntax Guidelines

Examples of Advanced Policy Files

NVIDIA SM 1

Table of contents

OpenSM Application

Environment Variables

Signaling

Running OpenSM as Daemon

osmtest

Partitions

File Format

Effect of Topology Changes

Routing Algorithms

Min Hop Algorithm

UPDN Algorithm

Fat-tree Routing Algorithm

DOR Routing Algorithm

Torus-2QoS Routing Algorithm

Routing Chains

Unicast Routing Cache

Quality of Service Management in OpenSM

Advanced QoS Policy File

Simple QoS Policy Definition

Policy File Syntax Guidelines

Examples of Advanced Policy Files

Simple QoS Policy - Details and Examples

IPoIB

SRP

MPI

SL2VL Mapping and VL Arbitration

Deployment Example

Enhanced QoS

Adaptive Routing Manager and Self-Healing Networking

IB Router Support in OpenSM

OpenSM Activity Report

Offsweep Balancing

NVIDIA SM 2

Simple QoS Policy - Details and Examples

IPoIB

SRP

MPI

SL2VL Mapping and VL Arbitration

Deployment Example

Enhanced QoS

Adaptive Routing Manager and Self-Healing Networking

IB Router Support in OpenSM

OpenSM Activity Report

Offsweep Balancing

NVIDIA SM 3

List of Figures
Figure 0. Image2022 7 26 10 29 13 Version 1 Modificationdate
1717696749010 Api V2

Figure 1. Image2022 7 28 14 58 53 Version 1 Modificationdate
1717696747583 Api V2

Figure 2. Image2022 7 28 15 0 34 Version 1 Modificationdate
1717696744987 Api V2

Figure 3. Image2022 7 28 14 59 57 Version 1 Modificationdate
1717696745870 Api V2

Figure 4. Image2022 7 28 15 1 11 Version 1 Modificationdate
1717696744527 Api V2

Figure 5. Image2022 7 28 15 1 42 Version 1 Modificationdate
1717696743363 Api V2

Figure 6. Image2022 7 28 15 2 14 Version 1 Modificationdate
1717696742737 Api V2

Figure 7. Image2022 7 28 15 4 11 Version 1 Modificationdate
1717696741613 Api V2

Figure 8. Image2022 7 28 15 6 40 Version 1 Modificationdate
1717696740657 Api V2

NVIDIA SM 4

NVIDIA SM is an InfiniBand compliant Subnet Manager (SM). It is provided as a fixed flow
executable called "opensm", accompanied by a testing application called osmtest. NVIDIA
SM implements an InfiniBand compliant SM according to the InfiniBand Architecture
Specification chapters: Management Model, Subnet Management, and Subnet
Administration.

OpenSM Application

OpenSM is an InfiniBand compliant Subnet Manager and Subnet Administrator that runs
on top of the NVIDIA OFED stack. OpenSM performs the InfiniBand specification's
required tasks for initializing InfiniBand hardware. One SM must be running for each
InfiniBand subnet.
OpenSM defaults were designed to meet the common case usage on clusters with up to a
few hundred nodes. Thus, in this default mode, OpenSM will scan the IB fabric, initialize
it, and sweep occasionally for changes.
OpenSM attaches to a specific IB port on the local machine and configures only the fabric
connected to it. (If the local machine has other IB ports, OpenSM will ignore the fabrics
connected to those other ports). If no port is specified, opensm will select the first "best"
available port. opensm can also present the available ports and prompt for a port
number to attach to.
By default, the OpenSM run is logged to/var/log/opensm.log. All errors reported in this
log file should be treated as indicators of IB fabric health issues. (Note that when a fatal
and non-recoverable error occurs, OpenSM will exit). opensm.log should include the
message "SUBNET UP" if OpenSM was able to set up the subnet correctly.

Syntax

For the complete list of OpenSM options, please run:

Environment Variables

opensm [OPTIONS]

opensm --help / -h / -?

NVIDIA SM 5

The following environment variables control OpenSM behavior:

OSM_TMP_DIR - controls the directory in which the temporary files generated by
OpenSM are created. These files are: opensm-subnet.lst, opensm.fdbs, and
opensm.mcfdbs. By default, this directory is /var/log.

OSM_CACHE_DIR - opensm stores certain data to the disk such that subsequent
runs are consistent. The default directory used is /var/cache/opensm. The following
file is included in it:
guid2lid – stores the LID range assigned to each GUID

Signaling

When OpenSM receives a HUP signal, it starts a new heavy sweep as if a trap has been
received or a topology change has been found.
Also, SIGUSR1 can be used to trigger a reopen of /var/log/opensm.log for logrotate
purposes.

Running OpenSM as Daemon

OpenSM can also run as daemon. To run OpenSM in this mode, enter:

osmtest

osmtest is a test program for validating the InfiniBand Subnet Manager and Subnet
Administrator. osmtest provides a test suite for opensm. It can create an inventory file of
all available nodes, ports, and PathRecords, including all their fields. It can also verify the
existing inventory with all the object fields and matches it to a pre-saved one.
osmtest has the following test flows:

Multicast Compliancy test

host1# service opensmd start

NVIDIA SM 6

Event Forwarding test

Service Record registration test

RMPP stress test

Small SA Queries stress test

For further information, please refer to the tool's man page.

Partitions

OpenSM enables the configuration of partitions (PKeys) in an InfiniBand fabric. By
default, OpenSM searches for the partitions configuration file under the name
/etc/opensm/partitions.conf. To change this filename, you can use opensm with the '--
Pconfig' or '-P' flags.
The default partition is created by OpenSM unconditionally, even when a partition
configuration file does not exist or cannot be accessed.
The default partition has a P_Key value of 0x7fff. The port out of which runs OpenSM is
assigned full membership in the default partition. All other end-ports are assigned partial
membership.

File Format

General File Format

<Partition Definition>:

Note

Line content followed after '#' character is comment and ignored by
parser.

<Partition Definition>:\[<newline>\]<Partition Properties>

NVIDIA SM 7

where:

PartitionName String, will be used with logging. When omitted empty string will be used.

PKey
P_Key value for this partition. Only low 15 bits will be used. When omitted will
be auto-generated.

indx0 Indicates that this pkey should be inserted in block 0 index 0.

ipoib_bc_flags Used to indicate/specify IPoIB capability of this partition.

defmember=full|lim
ited|both

Specifies default membership for port GUID list. Default is limited.

ipoib_bc_flags are:

ipoib
Indicates that this partition may be used for IPoIB, as a result the IPoIB broadcast group
will be created with the flags given, if any.

rate=
<val>

Specifies rate for this IPoIB MC group (default is 3 (10GBps))

mtu=
<val>

Specifies MTU for this IPoIB MC group (default is 4 (2048))

sl=<val> Specifies SL for this IPoIB MC group (default is 0)

scope=
<val>

Specifies scope for this IPoIB MC group (default is 2 (link local))

<Partition Properties>:

<Port List>:

[PartitionName][=PKey][,indx0][,ipoib_bc_flags][,defmember=full|limited]

\[<Port list>|<MCast Group>\]* | <Port list>

<Port Specifier>[,<Port Specifier>]

NVIDIA SM 8

<Port Specifier>:

where

PortG
UID

GUID of partition member EndPort. Hexadecimal numbers should start from 0x,
decimal numbers are accepted too.

full,
limite
d

Indicates full and/or limited membership for this both port. When omitted (or
unrecognized) limited membership is assumed. Both indicate full and limited
membership for this port.

<MCast Group>:

where:

mgid=gid

gid specified is verified to be a Multicast address IP groups are verified to match the rate
and mtu of the broadcast group. The P_Key bits of the mgid for IP groups are verified to
either match the P_Key specified in by "Partition Definition" or if they are 0x0000 the
P_Key will be copied into those bits.

mgroup_fl
ag

rate=
<val>

Specifies rate for this MC group (default is 3 (10GBps))

mtu=
<val>

Specifies MTU for this MC group (default is 4 (2048))

sl=<val> Specifies SL for this MC group (default is 0)

scope=
<val>

Specifies scope for this MC group (default is 2 (link local)). Multiple scope
settings are permitted for a partition.
NOTE: This overwrites the scope nibble of the specified mgid. Furthermore
specifying multiple scope settings will result in multiple MC groups being
created.

qkey=
<val>

Specifies the Q_Key for this MC group (default: 0x0b1b for IP groups, 0 for
other groups)

tclass=
<val>

Specifies tclass for this MC group (default is 0)

FlowLabel
=<val>

Specifies FlowLabel for this MC group (default is 0)

<PortGUID>[=[full|limited|both]]

mgid=gid[,mgroup_flag]*<newline>

NVIDIA SM 9

Note that values for rate, MTU, and scope should be specified as defined in the IBTA
specification (for example, mtu=4 for 2048). To use 4K MTU, edit that entry to "mtu=5" (5
indicates 4K MTU to that specific partition).

PortGUIDs list:

There are some useful keywords for PortGUID definition:

'ALL_CAS' means all Channel Adapter end ports in this subnet

'ALL_VCAS' means all virtual end ports in the subnet

'ALL_SWITCHES' means all Switch end ports in this subnet

'ALL_ROUTERS' means all Router end ports in this subnet

'SELF' means subnet manager's port. An empty list means that there are no ports in
this partition

Notes:

White space is permitted between delimiters ('=', ',',':',';').

PartitionName does not need to be unique, PKey does need to be unique. If PKey is
repeated then those partition configurations will be merged and the first
PartitionName will be used (see the next note).

It is possible to split partition configuration in more than one definition, but then
PKey should be explicitly specified (otherwise different PKey values will be
generated for those definitions).

Examples:

PortGUID GUID of partition member EndPort. Hexadecimal numbers should start
from 0x, decimal numbers are accepted too.
full or limited indicates full or limited membership for this port. When omitted (or
unrecognized) limited membership is assumed.

Default=0x7fff : ALL, SELF=full ;
Default=0x7fff : ALL, ALL_SWITCHES=full, SELF=full ;

NVIDIA SM 10

The following rule is equivalent to how OpenSM used to run prior to the partition
manager:

Effect of Topology Changes

If a link is added or removed, OpenSM may not recalculate the routes that do not have to
change. A route has to change if the port is no longer UP or no longer the MinHop. When

NewPartition , ipoib : 0x123456=full, 0x3456789034=limi, 0x2134af2306 ;

YetAnotherOne = 0x300 : SELF=full ;
YetAnotherOne = 0x300 : ALL=limited ;

ShareIO = 0x80 , defmember=full : 0x123451, 0x123452;
0x123453, 0x123454 will be limited
ShareIO = 0x80 : 0x123453, 0x123454, 0x123455=full;
0x123456, 0x123457 will be limited
ShareIO = 0x80 : defmember=limited : 0x123456, 0x123457, 0x123458=full;
ShareIO = 0x80 , defmember=full : 0x123459, 0x12345a;
ShareIO = 0x80 , defmember=full : 0x12345b, 0x12345c=limited, 0x12345d;

multicast groups added to default

Default=0x7fff,ipoib:
mgid=ff12:401b::0707,sl=1 # random IPv4 group
mgid=ff12:601b::16 # MLDv2-capable routers
mgid=ff12:401b::16 # IGMP
mgid=ff12:601b::2 # All routers
mgid=ff12::1,sl=1,Q_Key=0xDEADBEEF,rate=3,mtu=2 # random group
ALL=full;

Default=0x7fff,ipoib:ALL=full;

NVIDIA SM 11

routing changes are performed, the same algorithm for balancing the routes is invoked.
In the case of using the file-based routing, any topology changes are currently ignored.
The 'file' routing engine just loads the LFTs from the file specified, with no reaction to real
topology. Obviously, this will not be able to recheck LIDs (by GUID) for disconnected
nodes, and LFTs for non-existent switches will be skipped. Multicast is not affected by
'file' routing engine (this uses min hop tables).

Routing Algorithms

OpenSM offers the following routing engines:

1. Min Hop Algorithm

Based on the minimum hops to each node where the path length is optimized.

2. UPDN Algorithm
Based on the minimum hops to each node, but it is constrained to ranking rules.
This algorithm should be chosen if the subnet is not a pure Fat Tree, and a deadlock
may occur due to a loop in the subnet.

3. Fat-tree Routing Algorithm

This algorithm optimizes routing for a congestion-free "shift" communication
pattern. It should be chosen if a subnet is a symmetrical Fat Tree of various types,
not just a K-ary-N-Tree: non-constant K, not fully staffed, and for any CBB ratio.
Similar to UPDN, Fat Tree routing is constrained to ranking rules.

4. DOR Routing Algorithm

Based on the Min Hop algorithm, but avoids port equalization except for redundant
links between the same two switches. This provides deadlock free routes for
hypercubes when the fabric is cabled as a hypercube and for meshes when cabled
as a mesh.

5. Torus-2QoS Routing Algorithm

Based on the DOR Unicast routing algorithm specialized for 2D/3D torus topologies.
Torus- 2QoS provides deadlock-free routing while supporting two quality of service
(QoS) levels. Additionally, it can route around multiple failed fabric links or a single
failed fabric switch without introducing deadlocks, and without changing path SL
values granted before the failure.

NVIDIA SM 12

6. Routing Chains
Allows routing configuration of different parts of a single InfiniBand subnet by
different routing engines. In the current release, minhop/updn/ftree/dor/torus-
2QoS/pqft can be combined.

MINHOP/UPDN/DOR routing algorithms are comprised of two stages:

1. MinHop matrix calculation. How many hops are required to get from each port to
each LID. The algorithm to fill these tables is different if you run standard (min hop)
or Up/Down. For standard routing, a "relaxation" algorithm is used to propagate
min hop from every destination LID through neighbor switches. For Up/Down
routing, a BFS from every target is used. The BFS tracks link direction (up or down)
and avoid steps that will perform up after a down step was used.

2. Once MinHop matrices exist, each switch is visited and for each target LID a decision
is made as to what port should be used to get to that LID. This step is common to
standard and Up/Down routing. Each port has a counter counting the number of
target LIDs going through it. When there are multiple alternative ports with same
MinHop to a LID, the one with less previously assigned ports is selected.
If LMC > 0, more checks are added. Within each group of LIDs assigned to same
target port:

1. Use only ports which have same MinHop

2. First prefer the ones that go to different systemImageGuid (then the previous
LID of the same LMC group)

3. If none, prefer those which go through another NodeGuid

4. Fall back to the number of paths method (if all go to same node).

Note

Please note that LASH Routing Algorithm is not supported.

NVIDIA SM 13

Min Hop Algorithm

The Min Hop algorithm is invoked by default if no routing algorithm is specified. It can
also be invoked by specifying '-R minhop'.
The Min Hop algorithm is divided into two stages: computation of min-hop tables on
every switch and LFT output port assignment. Link subscription is also equalized with the
ability to override based on port GUID. The latter is supplied by:

This option provides the means to define a set of ports (by GUIDs) that will be ignored by
the link load equalization algorithm.
LMC awareness routes based on a (remote) system or on a switch basis.

UPDN Algorithm

The UPDN algorithm is designed to prevent deadlocks from occurring in loops of the
subnet. A loop-deadlock is a situation in which it is no longer possible to send data
between any two hosts connected through the loop. As such, the UPDN routing algorithm
should be sent if the subnet is not a pure Fat Tree, and one of its loops may experience a
deadlock (due, for example, to high pressure).
The UPDN algorithm is based on the following main stages:

1. Auto-detect root nodes - based on the CA hop length from any switch in the subnet,
a statistical histogram is built for each switch (hop num vs the number of
occurrences). If the histogram reflects a specific column (higher than others) for a
certain node, then it is marked as a root node. Since the algorithm is statistical, it
may not find any root nodes. The list of the root nodes found by this auto-detect
stage is used by the ranking process stage.

-i <equalize-ignore-guids-file>
-ignore-guids <equalize-ignore-guids-file>

Note

The user can override the node list manually.

NVIDIA SM 14

2. Ranking process - All root switch nodes (found in stage 1) are assigned a rank of 0.
Using the BFS algorithm, the rest of the switch nodes in the subnet are ranked
incrementally. This ranking aids in the process of enforcing rules that ensure loop-
free paths.

3. Min Hop Table setting - after ranking is done, a BFS algorithm is run from each (CA
or switch) node in the subnet. During the BFS process, the FDB table of each switch
node traversed by BFS is updated, in reference to the starting node, based on the
ranking rules and GUID values.

At the end of the process, the updated FDB tables ensure loop-free paths through the
subnet.

UPDN Algorithm Usage

Activation through OpenSM:

Use '-R updn' option (instead of old '-u') to activate the UPDN algorithm.

Use '-a <root_guid_file>' for adding an UPDN GUID file that contains the root nodes
for ranking. If the `-a' option is not used, OpenSM uses its auto-detect root nodes
algorithm.

Notes on the GUID list file:

A valid GUID file specifies one GUID in each line. Lines with an invalid format will be
discarded

The user should specify the root switch GUIDs

Note

If this stage cannot find any root nodes, and the user did not
specify a GUID list file, OpenSM defaults back to the Min Hop
routing algorithm.

NVIDIA SM 15

Fat-tree Routing Algorithm

The fat-tree algorithm optimizes routing for "shift" communication pattern. It should be
chosen if a subnet is a symmetrical or almost symmetrical fat-tree of various types. It
supports not just K- ary-N-Trees, by handling for non-constant K, cases where not all leafs
(CAs) are present, any Constant Bisectional Ratio (CBB)ratio. As in UPDN, fat-tree also
prevents credit-loop-dead- locks.
If the root GUID file is not provided ('a' or '-root_guid_file' options), the topology has to be
pure fat-tree that complies with the following rules:

Tree rank should be between two and eight (inclusively)

Switches of the same rank should have the same number of UP-going port groups,
unless they are root switches, in which case the shouldn't have UP-going ports at all.
Note: Ports that are connected to the same remote switch are referenced as ‘port
group’.

Switches of the same rank should have the same number of DOWN-going port
groups, unless they are leaf switches.

Switches of the same rank should have the same number of ports in each UP-going
port group.

Switches of the same rank should have the same number of ports in each DOWN-
going port group.

All the CAs have to be at the same tree level (rank).

If the root GUID file is provided, the topology does not have to be pure fat-tree, and it
should only comply with the following rules:

Tree rank should be between two and eight (inclusively)

All the Compute Nodes have to be at the same tree level (rank). Note that non-
compute node CAs are allowed here to be at different tree ranks.
Note: List of compute nodes (CNs) can be specified using ‘-u’ or ‘--cn_guid_file’
OpenSM options.

Topologies that do not comply cause a fallback to min-hop routing. Note that this can
also occur on link failures which cause the topology to no longer be a "pure" fat-tree.
Note that although fat-tree algorithm supports trees with non-integer CBB ratio, the

NVIDIA SM 16

routing will not be as balanced as in case of integer CBB ratio. In addition to this,
although the algorithm allows leaf switches to have any number of CAs, the closer the
tree is to be fully populated, the more effective the "shift" communication pattern will be.
In general, even if the root list is provided, the closer the topology to a pure and
symmetrical fat-tree, the more optimal the routing will be.
The algorithm also dumps the compute node ordering file (opensm-ftree-ca-order.dump)
in the same directory where the OpenSM log resides. This ordering file provides the CN
order that may be used to create efficient communication pattern, that will match the
routing tables.

Routing between non-CN Nodes
The use of the io_guid_file option allows non-CN nodes to be located on different levels in
the fat tree. In such case, it is not guaranteed that the Fat Tree algorithm will route
between two non-CN nodes. In the scheme below, N1, N2 , and N3 are non-CN nodes.
Although all the CN have routes to and from them, there will not necessarily be a route
between N1,N2 and N3. Such routes would require to use at least one of the switches the
wrong way around.

To solve this problem, a list of non-CN nodes can be specified by \'-G\' or \'--io_guid_file\'
option. These nodes will be allowed to use switches the wrong way around a specific
number of times (specified by \'-H\' or \'--max_reverse_hops\'. With the proper
max_reverse_hops and io_guid_file values, you can ensure full connectivity in the Fat
Tree. In the scheme above, with a max_reverse_hop of 1, routes will be instantiated
between N1<->N2 and N2<->N3. With a max_reverse_hops value of 2, N1,N2 and N3 will
all have routes between them.

Note

Using max_reverse_hops creates routes that use the switch in a
counter-stream way. This option should never be used to connect

NVIDIA SM 17

Activation through OpenSM

Use '-R ftree' option to activate the fat-tree algorithm.

DOR Routing Algorithm

The Dimension Order Routing algorithm is based on the Min Hop algorithm and so uses
shortest paths. Instead of spreading traffic out across different paths with the same
shortest distance, it chooses among the available shortest paths based on an ordering of
dimensions. Each port must be consistently cabled to represent a hypercube dimension
or a mesh dimension. Paths are grown from a destination back to a source using the
lowest dimension (port) of available paths at each step. This provides the ordering
necessary to avoid deadlock. When there are multiple links between any two switches,
they still represent only one dimension and traffic is balanced across them unless port
equalization is turned off. In the case of hypercubes, the same port must be used
throughout the fabric to represent the hypercube dimension and match on both ends of
the cable. In the case of meshes, the dimension should consistently use the same pair of
ports, one port on one end of the cable, and the other port on the other end, continuing
along the mesh dimension.
Use '-R dor' option to activate the DOR algorithm.

Torus-2QoS Routing Algorithm

nodes with high bandwidth traffic between them! It should only be
used to allow connectivity for HA purposes or similar. Also having
routes the other way around can cause credit loops.

Note

LMC > 0 is not supported by fat-tree routing. If this is specified, the
default routing algorithm is invoked instead.

NVIDIA SM 18

Torus-2QoS is a routing algorithm designed for large-scale 2D/3D torus fabrics. The torus-
2QoS routing engine can provide the following functionality on a 2D/3D torus:

Free of credit loops routing

Two levels of QoS, assuming switches support 8 data VLs

Ability to route around a single failed switch, and/or multiple failed links, without:

introducing credit loops

changing path SL values

Very short run times, with good scaling properties as fabric size increases

Unicast Routing

Torus-2 QoS is a DOR-based algorithm that avoids deadlocks that would otherwise occur
in a torus using the concept of a dateline for each torus dimension. It encodes into a path
SL which datelines the path crosses as follows:

For a 3D torus, that leaves one SL bit free, which torus-2 QoS uses to implement two QoS
levels. Torus-2 QoS also makes use of the output port dependence of switch SL2VL maps
to encode into one VL bit the information encoded in three SL bits. It computes in which
torus coordinate direc- tion each inter-switch link "points", and writes SL2VL maps for
such ports as follows:

sl = 0;
for (d = 0; d < torus_dimensions; d++)
/* path_crosses_dateline(d) returns 0 or 1 */
sl |= path_crosses_dateline(d) << d;

for (sl = 0; sl < 16; sl ++)
/* cdir(port) reports which torus coordinate direction a switch port
* "points" in, and returns 0, 1, or 2 */

sl2vl(iport,oport,sl) = 0x1 & (sl >> cdir(oport));

NVIDIA SM 19

Thus, on a pristine 3D torus, i.e., in the absence of failed fabric switches, torus-2 QoS
consumes 8 SL values (SL bits 0-2) and 2 VL values (VL bit 0) per QoS level to provide
deadlock-free routing on a 3D torus. Torus-2 QoS routes around link failure by "taking the
long way around" any 1D ring interrupted by a link failure. For example, consider the 2D
6x5 torus below, where switches are denoted by [+a-zA-Z]:

For a pristine fabric the path from S to D would be S-n-T-r-D. In the event that either link
S-n or n-T has failed, torus-2QoS would use the path S-m-p-o-T-r-D.
Note that it can do this without changing the path SL value; once the 1D ring m-S-n-T-o-p-
m has been broken by failure, path segments using it cannot contribute to deadlock, and
the x-direction dateline (between, say, x=5 and x=0) can be ignored for path segments on
that ring. One result of this is that torus-2QoS can route around many simultaneous link
failures, as long as no 1D ring is broken into disjoint segments. For example, if links n-T
and T-o have both failed, that ring has been broken into two disjoint segments, T and o-p-
m-S-n. Torus-2QoS checks for such issues, reports if they are found, and refuses to route
such fabrics.
Note that in the case where there are multiple parallel links between a pair of switches,
torus-2QoS will allocate routes across such links in a round-robin fashion, based on ports
at the path destination switch that are active and not used for inter-switch links. Should a
link that is one of several such parallel links fail, routes are redistributed across the
remaining links. When the last of such a set of parallel links fails, traffic is rerouted as
described above.
Handling a failed switch under DOR requires introducing into a path at least one turn that
would be otherwise "illegal", i.e. not allowed by DOR rules. Torus-2QoS will introduce
such a turn as close as possible to the failed switch in order to route around it. n the
above example, suppose switch T has failed, and consider the path from S to D. Torus-
2QoS will produce the path S-n-I-r-D, rather than the S-n-T-r-D path for a pristine torus,
by introducing an early turn at n. Normal DOR rules will cause traffic arriving at switch I to

NVIDIA SM 20

be forwarded to switch r; for traffic arriving from I due to the "early" turn at n, this will
generate an "illegal" turn at I.
Torus-2QoS will also use the input port dependence of SL2VL maps to set VL bit 1 (which
would be otherwise unused) for y-x, z-x, and z-y turns, i.e., those turns that are illegal
under DOR. This causes the first hop after any such turn to use a separate set of VL
values, and prevents deadlock in the presence of a single failed switch. For any given
path, only the hops after a turn that is illegal under DOR can contribute to a credit loop
that leads to deadlock. So in the example above with failed switch T, the location of the
illegal turn at I in the path from S to D requires that any credit loop caused by that turn
must encircle the failed switch at T. Thus the second and later hops after the illegal turn
at I (i.e., hop r-D) cannot contribute to a credit loop because they cannot be used to
construct a loop encircling T. The hop I-r uses a separate VL, so it cannot contribute to a
credit loop encircling T. Extending this argument shows that in addition to being capable
of routing around a single switch failure without introducing deadlock, torus-2QoS can
also route around multiple failed switches on the condition they are adjacent in the last
dimension routed by DOR. For example, consider the following case on a 6x6 2D torus:

Suppose switches T and R have failed, and consider the path from S to D. Torus-2QoS will
generate the path S-n-q-I-u-D, with an illegal turn at switch I, and with hop I-u using a VL
with bit 1 set. As a further example, consider a case that torus-2QoS cannot route without
deadlock: two failed switches adjacent in a dimension that is not the last dimension
routed by DOR; here the failed switches are O and T:

NVIDIA SM 21

In a pristine fabric, torus-2QoS would generate the path from S to D as S-n-O-T-r-D. With
failed switches O and T, torus-2QoS will generate the path S-n-I-q-r-D, with an illegal turn
at switch I, and with hop I-q using a VL with bit 1 set. In contrast to the earlier examples,
the second hop after the illegal turn, q-r, can be used to construct a credit loop encircling
the failed switches.

Multicast Routing

Since torus-2QoS uses all four available SL bits, and the three data VL bits that are
typically available in current switches, there is no way to use SL/VL values to separate
multicast traffic from unicast traffic. Thus, torus-2QoS must generate multicast routing
such that credit loops cannot arise from a combination of multicast and unicast path
segments. It turns out that it is possible to construct spanning trees for multicast routing
that have that property. For the 2D 6x5 torus
example above, here is the full-fabric spanning tree that torus-2QoS will construct, where
"x" is the root switch and each "+" is a non-root switch:

NVIDIA SM 22

For multicast traffic routed from root to tip, every turn in the above spanning tree is a
legal DOR turn. For traffic routed from tip to root, and some traffic routed through the
root, turns are not legal DOR turns. However, to construct a credit loop, the union of
multicast routing on this spanning tree with DOR unicast routing can only provide 3 of
the 4 turns needed for the loop. In addition, if none of the above spanning tree branches
crosses a dateline used for unicast credit loop avoidance on a torus, and if multicast
traffic is confined to SL 0 or SL 8 (recall that torus-2QoS uses SL bit 3 to differentiate QoS
level), then multicast traffic also cannot contribute to the "ring" credit loops that are
otherwise possible in a torus. Torus-2QoS uses these ideas to create a master spanning
tree. Every multicast group spanning tree will be constructed as a subset of the master
tree, with the same root as the master tree. Such multicast group spanning trees will in
general not be optimal for groups which are a subset of the full fabric. However, this
compromise must be made to enable support for two QoS levels on a torus while
preventing credit loops. In the presence of link or switch failures that result in a fabric for
which torus-2QoS can generate credit-loop-free unicast routes, it is also possible to
generate a master spanning tree for multicast that retains the required properties. For
example, consider that same 2D 6x5 torus, with the link from (2,2) to (3,2) failed. Torus-
2QoS will generate the following master spanning tree:

Two things are notable about this master spanning tree. First, assuming the x dateline
was between x=5 and x=0, this spanning tree has a branch that crosses the dateline.

NVIDIA SM 23

However, just as for unicast, crossing a dateline on a 1D ring (here, the ring for y=2) that
is broken by a failure cannot contribute to a torus credit loop. Second, this spanning tree
is no longer optimal even for multicast groups that encompass the entire fabric. That,
unfortunately, is a compromise that must be made to retain the other desirable
properties of torus-2QoS routing. In the event that a single switch fails, torus-2QoS will
generate a master spanning tree that has no "extra" turns by appropriately selecting a
root switch. In the 2D 6x5 torus example, assume now that the switch at (3,2) (i.e., the
root for a pristine fabric), fails. Torus-2QoS will generate the following master spanning
tree for that case:

Assuming the dateline was between y=4 and y=0, this spanning tree has a branch that
crosses a dateline. However, this cannot contribute to credit loops as it occurs on a 1D
ring (the ring for x=3) that is broken by failure, as in the above example.

Torus Topology Discovery

The algorithm used by torus-2QoS to construct the torus topology from the undirected
graph representing the fabric requires that the radix of each dimension be configured via
torus-2QoS.conf. It also requires that the torus topology be "seeded"; for a 3D torus this
requires configuring four switches that define the three coordinate directions of the
torus. Given this starting information, the algorithm is to examine the cube formed by the
eight switch locations bounded by the corners (x,y,z) and (x+1,y+1,z+1). Based on
switches already placed into the torus topology at some of these locations, the algorithm
examines 4-loops of inter-switch links to find the one that is consistent with a face of the
cube of switch locations and adds its switches to the discovered topology in the correct
locations.
Because the algorithm is based on examining the topology of 4-loops of links, a torus
with one or more radix-4 dimensions requires extra initial seed configuration. See torus-
2QoS.conf(5) for details. Torus-2QoS will detect and report when it has an insufficient
configuration for a torus with radix-4 dimensions.

NVIDIA SM 24

In the event the torus is significantly degraded, i.e., there are many missing switches or
links, it may happen that torus-2QoS is unable to place into the torus some switches
and/or links that were discovered in the fabric, and will generate a warning in that case. A
similar condition occurs if torus-2QoS is misconfigured, i.e., the radix of a torus
dimension as configured does not match the radix of that torus dimension as wired, and
many switches/links in the fabric will not be placed into the torus.

Quality Of Service Configuration

OpenSM will not program switches and channel adapters with SL2VL maps or VL
arbitration configuration unless it is invoked with -Q. Since torus-2QoS depends on such
functionality for correct operation, always invoke OpenSM with -Q when torus-2QoS is in
the list of routing engines. Any quality of service configuration method supported by
OpenSM will work with torus-2QoS, subject to the following limitations and
considerations. For all routing engines supported by OpenSM except torus-2QoS, there is
a one-to-one correspondence between QoS level and SL. Torus-2QoS can only support
two quality of service levels, so only the high-order bit of any SL value used for unicast
QoS configuration will be honored by torus-2QoS. For multicast QoS configuration, only
SL values 0 and 8 should be used with torus-2QoS.
Since SL to VL map configuration must be under the complete control of torus-2QoS, any
configuration via qos_sl2vl, qos_swe_sl2vl, etc., must and will be ignored, and a warning
will be generated. Torus-2QoS uses VL values 0-3 to implement one of its supported QoS
levels, and VL values 4-7 to implement the other. Hard-to-diagnose application issues
may arise if traffic is not delivered fairly across each of these two VL ranges. Torus-2QoS
will detect and warn if VL arbitration is configured unfairly across VLs in the range 0-3,
and also in the range 4-7. Note that the default OpenSM VL arbitration configuration does
not meet this constraint, so all torus-2QoS users should configure VL arbitration via
qos_vlarb_high, qos_vlarb_low, etc.

Operational Considerations
Any routing algorithm for a torus IB fabric must employ path SL values to avoid credit
loops. As a result, all applications run over such fabrics must perform a path record query
to obtain the correct path SL for connection setup. Applications that use rdma_cm for
connection setup will automatically meet this requirement.
If a change in fabric topology causes changes in path SL values required to route without
credit loops, in general, all applications would need to repath to avoid message deadlock.
Since torus- 2QoS has the ability to reroute after a single switch failure without changing
path SL values, repathing by running applications is not required when the fabric is

NVIDIA SM 25

routed with torus-2QoS.
Torus-2QoS can provide unchanging path SL values in the presence of subnet manager
failover provided that all OpenSM instances have the same idea of dateline location. See
torus- 2QoS.conf(5) for details. Torus-2QoS will detect configurations of failed switches
and links that prevent routing that is free of credit loops and will log warnings and refuse
to route. If "no_fall- back" was configured in the list of OpenSM routing engines, then no
other routing engine will attempt to route the fabric. In that case, all paths that do not
transit the failed components will continue to work, and the subset of paths that are still
operational will continue to remain free of credit loops. OpenSM will continue to attempt
to route the fabric after every sweep interval and after any change (such as a link up) in
the fabric topology. When the fabric components are repaired, full functionality will be
restored. In the event OpenSM was configured to allow some other engine to route the
fabric if torus-2QoS fails, then credit loops and message deadlock are likely if torus-2QoS
had previously routed the fabric successfully. Even if the other engine is capable of
routing a torus without credit loops, applications that built connections with path SL
values granted under torus-2QoS will likely experience message deadlock under routing
generated by a different engine, unless they repath. To verify that a torus fabric is routed
free of credit loops, use ibdmchk to analyze data collected via ibdiagnet -vlr.

Torus-2QoS Configuration File Syntax

The file torus-2QoS.conf contains configuration information that is specific to the
OpenSM routing engine torus-2QoS. Blank lines and lines where the first non-whitespace
character is "#" are ignored. A token is any contiguous group of non-whitespace
characters. Any tokens on a line following the recognized configuration tokens described
below are ignored.

Either torus or mesh must be the first keyword in the configuration and sets the topology
that torus-2QoS will try to construct. A 2D topology can be configured by specifying one
of x_radix, y_radix, or z_radix as 1. An individual dimension can be configured as mesh
(open) or torus (looped) by suffixing its radix specification with one of m, M, t, or T. Thus,
"mesh 3T 4 5" and "torus 3 4M 5M" both specify the same topology.
Note that although torus-2QoS can route mesh fabrics, its ability to route around failed
components is severely compromised on such fabrics. A failed fabric components very
likely to cause a disjoint ring; see UNICAST ROUTING in torus-2QoS(8).

[torus|mesh] x_radix[m|M|t|T] y_radix[m|M|t|T] z_radix[m|M|t|T]

NVIDIA SM 26

These keywords are used to seed the torus/mesh topology. For example, "xp_link 0x2000
0x2001" specifies that a link from the switch with node GUID 0x2000 to the switch with
node GUID 0x2001 would point in the positive x direction, while "xm_link 0x2000 0x2001"
specifies that a link from the switch with node GUID 0x2000 to the switch with node GUID
0x2001 would point in the negative x direction. All the link keywords for a given seed
must specify the same "from" switch.
In general, it is not necessary to configure both the positive and negative directions for a
given coordinate; either is sufficient. However, the algorithm used for topology discovery
needs extra information for torus dimensions of radix four (see TOPOLOGY DISCOVERY in
torus-2QoS(8)). For such cases, both the positive and negative coordinate directions must
be specified.
Based on the topology specified via the torus/mesh keyword, torus-2QoS will detect and
log when it has insufficient seed configuration.

In order for torus-2QoS to provide the guarantee that path SL values do not change
under any conditions for which it can still route the fabric, its idea of dateline position
must not change relative to physical switch locations. The dateline keywords provide the
means to configure such behavior.

The dateline for a torus dimension is always between the switch with coordinate 0 and
the switch with coordinate radix-1 for that dimension. By default, the common switch in a
torus seed is taken as the origin of the coordinate system used to describe switch
location. The position parameter for a dateline keyword moves the origin (and hence the
dateline) the specified amount relative to the common switch in a torus seed.

xp_link sw0_GUID sw1_GUID
yp_link sw0_GUID sw1_GUID
zp_link sw0_GUID sw1_GUID
xm_link sw0_GUID sw1_GUID
ym_link sw0_GUID sw1_GUID
zm_link sw0_GUID sw1_GUID

GUIDx_dateline position
y_dateline position
z_dateline position

next_seed

NVIDIA SM 27

If any of the switches used to specify a seed were to fail torus-2QoS would be unable to
complete topology discovery successfully. The next_seed keyword specifies that the
following link and dateline keywords apply to a new seed specification.
For maximum resiliency, no seed specification should share a switch with any other seed
specification. Multiple seed specifications should use dateline configuration to ensure
that torus-2QoS can grant path SL values that are constant, regardless of which seed was
used to initiate topology discovery.
portgroup_max_ports max_ports - This keyword specifies the maximum number of
parallel inter-switch links, and also the maximum number of host ports per switch, that
torus-2QoS can accommodate. The default value is 16. Torus-2QoS will log an error
message during topology discovery if this parameter needs to be increased. If this
keyword appears multiple times, the last instance prevails.
port_order p1 p2 p3 ... - This keyword specifies the order in which CA ports on a
destination switch are visited when computing routes. When the fabric contains switches
connected with multiple parallel links, routes are distributed in a round-robin fashion
across such links, and so changing the order that CA ports are visited changes the
distribution of routes across such links. This may be advantageous for some specific
traffic patterns.
The default is to visit CA ports in increasing port order on destination switches. Duplicate
values in the list will be ignored.

Example:

Look for a 2D (since x radix is one) 4x5 torus.
torus 1 4 5
y is radix-4 torus dimension, need both
ym_link and yp_link configuration.
yp_link 0x200000 0x200005 # sw @ y=0,z=0 -> sw @ y=1,z=0

ym_link 0x200000 0x20000f # sw @ y=0,z=0 -> sw @ y=3,z=0

z is not radix-4 torus dimension, only need one of
zm_link or zp_link configuration.
zp_link 0x200000 0x200001 # sw @ y=0,z=0 -> sw @ y=0,z=1

next_seed
yp_link 0x20000b 0x200010 # sw @ y=2,z=1 -> sw @ y=3,z=1

ym_link 0x20000b 0x200006 # sw @ y=2,z=1 -> sw @ y=1,z=1

zp_link 0x20000b 0x20000c # sw @ y=2,z=1 -> sw @ y=2,z=2

y_dateline -2 # Move the dateline for this seed
z_dateline -1 # back to its original position.

NVIDIA SM 28

Routing Chains

The routing chains feature is offering a solution that enables one to configure different
parts of the fabric and define a different routing engine to route each of them. The
routings are done in a sequence (hence the name "chains") and any node in the fabric
that is configured in more than one part is left with the routing updated by the last
routing engine it was a part of.

Configuring Routing Chains

To configure routing chains:

1. Define the port groups.

2. Define topologies based on previously defined port groups.

3. Define configuration files for each routing engine.

4. Define routing engine chains over previously defined topologies and configuration
files.

Defining Port Groups

The basic idea behind the port groups is the ability to divide the fabric into sub-groups
and give each group an identifier that can be used to relate to all nodes in this group. The

If OpenSM failover is configured, for maximum resiliency
one instance should run on a host attached to a switch

from the first seed, and another instance should run
on a host attached to a switch from the second seed.
Both instances should use this torus-2QoS.conf to ensure
path SL values do not change in the event of SM failover.
port_order defines the order on which the ports would be
chosen for routing.
port_order 7 10 8 11 9 12 25 28 26 29 27 30

NVIDIA SM 29

port groups is a separate feature from the routing chains but is a mandatory prerequisite
for it. In addition, it is used to define the participants in each of the routing algorithms.

Defining a Port Group Policy File

In order to define a port group policy file, set the parameter 'pgrp_policy_file' in the
OpenSM configuration file.
pgrp_policy_file /etc/opensm/conf/port_groups_policy_file

Configuring a Port Group Policy

The port groups policy file details the port groups in the fabric. The policy file should be
composed of one or more paragraphs that define a group. Each paragraph should begin
with the line 'port-group' and end with the line 'end-port-group'.
For example:

Port Group Qualifiers

Rule Qualifier

port-group
…port group qualifiers…
end-port-group

Note

Unlike the port group's beginning and end which do not require a
colon, all qualifiers must end with a colon (':'). Also - a colon is a
predefined mark that must not be used inside qualifier values. The
inclusion of a colon in the name or the use of a port group will result
in the policy's failure.

NVIDIA SM 30

Param
eter

Description Example

name
Each group must have a name. Without a name qualifier, the
policy fails.

name: grp1

use
'use' is an optional qualifier that one can define in order to
describe the usage of this port group (if undefined, an empty
string is used as a default).

use: first port
group

There are several qualifiers used to describe a rule that determines which ports will be
added to the group. Each port group may include one or more rules out of the rules
described in the below table (at least one rule must be defined for each port group).

Param
eter

Description Example

guid list

Comma separated list of GUIDs to include in the group.
If no specific physical ports were configured, all physical ports
of the guid are chosen. However, for each guid, one can detail
specific physical ports to be included in the group. This can be
done using the following syntax:

Specify a specific port in a guid to be chosen port-guid:
0x283@3
Specify a specific list of ports in a guid to be chosen
port-guid: 0x286@1/5/7

Specify a specific range of ports in a guid to be chosen
port-guid: 0x289@2-5

Specify a list of specific ports and ports ranges in a guid to
be chosen
port-guid: 0x289@2-5/7/9-13/18

Complex rule
port-guid: 0x283@5-8/12/14, 0x286, 0x289/6/ 8/12

port-guid: 0x283,
0x286, 0x289

NVIDIA SM 31

Param
eter

Description Example

port
guid
range

It is possible to configure a range of guids to be chosen to the
group. However, while using the range qualifier, it is impossible
to detail specific physical ports.
Note: A list of ranges cannot be specified. The below example is
invalid and will cause the policy to fail:
port-guid-range: 0x283-0x289, 0x290- 0x295

port-guid-range:
0x283-0x289

port
name

One can configure a list of hostnames as a rule. Hosts with a
node description that is built out of these hostnames will be
chosen. Since the node description contains the network card
index as well, one might also specify a network card index and
a physical port to be chosen. For example, the given
configuration will cause only physical port 2 of a host with the
node description ‘kuku HCA-1’ to be chosen. port and hca_idx
parameters are optional. If the port is unspecified, all physical
ports are chosen. If hca_idx is unspecified, all card numbers are
chosen. Specifying a hostname is mandatory.
One can configure a list of hostname/ port/hca_idx sets in the
same qualifier as follows:
port-name: hostname=kuku; port=2; hca_idx=1 ,
hostname=host1; port=3, hostname=host2
Note: port-name qualifier is not relevant for switches, but for
HCA’s only.

port-name: host-
name=kuku;
port=2;
hca_idx=1

port
regexp

One can define a regular expression so that only nodes with a
matching node description will be chosen to the group.
Note: This example shows how to choose nodes which their
node description starts with 'SW'.

port-regexp: SW

It is possible to specify one physical port to be chosen for
matching nodes (there is no option to define a list or a range of
ports). The given example will cause only nodes that match
physical port 3 to be added to the group.

port-regexp:
SW:3

union
rule

It is possible to define a rule that unites two different port
groups. This means that all ports from both groups will be
included in the united group.

union-rule: grp1,
grp2

subtract
rule

One can define a rule that subtracts one port group from
another. The given rule, for example, will cause all the ports

subtract-rule:
grp1, grp2

NVIDIA SM 32

Param
eter

Description Example

which are a part of grp1, but not included in grp2, to be
chosen.
In subtraction (unlike union), the order does matter, since the
purpose is to subtract the second group from the first one.
There is no option to define more than two groups for
union/subtraction. However, one can unite/subtract groups
which are a union or a subtraction themselves, as shown in the
port groups policy file example.

Predefined Port Groups

There are 3 predefined, automatically created port groups that are available for use, yet
cannot be defined in the policy file (if a group in the policy is configured with the name of
one of these predefined groups, the policy fails) -

ALL - a group that includes all nodes in the fabric

ALL_SWITCHES - a group that includes all switches in the fabric

ALL_CAS - a group that includes all HCAs in the fabric

ALL_ROUTERS - a group that includes all routers in the fabric (supported in OpenSM
starting from v4.9.0)

Port Groups Policy Examples

port-group
name: grp3
use: Subtract of groups grp1 and grp2
subtract-rule: grp1, grp2
end-port-group

NVIDIA SM 33

Defining a Topologies Policy File

In order to define a topology policy file, set the parameter 'topo_policy_file' in the
OpenSM configuration file.

Configuring a Topology Policy

The topologies policy file details a list of topologies. The policy file should be composed of
one or more paragraphs which define a topology. Each paragraph should begin with the

port-group
name: grp1
port-guid: 0x281, 0x282, 0x283

end-port-group

port-group
name: grp2
port-guid-range: 0x282-0x286

port-name: hostname=server1 port=1

end-port-group

port-group
name: grp4
port-name: hostname=kika port=1 hca_idx=1

end-port-group

port-group
name: grp3
union-rule: grp3, grp4
end-port-group

topo_policy_file /etc/opensm/conf/topo_policy_file.cfg

NVIDIA SM 34

line 'topol- ogy' and end with the line 'end-topology'.
For example:

Topology Qualifiers

All topology qualifiers are mandatory. Absence of any of the below qualifiers will cause
the policy parsing to fail.

Topology Qualifiers

Parameter Description Example

id
Topology ID.
Legal Values – any positive value. Must be unique.

id: 1

sw-grp
Name of the port group that includes all switches and
switch ports to be used in this topology.

sw-grp:
ys_switches

hca-grp
Name of the port group that includes all HCA's to be
used in this topology.

hca-grp: ys_hosts

Configuration File per Routing Engine

topology
…topology qualifiers…
end-topology

Note

Unlike topology and end-topology which do not require a colon, all
qualifiers must end with a colon (':'). Also - a colon is a predefined
mark that must not be used inside qualifier values. An inclusion of a
column in the qualifier values will result in the policy's failure.

NVIDIA SM 35

Each engine in the routing chain can be provided by its own configuration file. Routing
engine configuration file is the fraction of parameters defined in the main OpenSM
configuration file.
Some rules should be applied when defining a particular configuration file for a routing
engine:

Parameters that are not specified in specific routing engine configuration file are
inherited from the main OpenSM configuration file.

The following configuration parameters are taking effect only in the main OpenSM
configuration file:

qos and qos_* settings like (vl_arb, sl2vl, etc.)

lmc

routing_engine

Defining a Routing Chain Policy File

In order to define a port group policy file, set the parameter 'rch_policy_file' in the
OpenSM configuration file.

First Routing Engine in the Chain

The first unicast engine in a routing chain must include all switches and HCAs in the fabric
(topology id must be 0). The path-bit parameter value is path-bit 0 and it cannot be
changed.

Configuring a Routing Chains Policy

The routing chains policy file details the routing engines (and their fallback engines) used
for the fabric's routing. The policy file should be composed of one or more paragraphs
which defines an

rch_policy_file /etc/opensm/conf/chains_policy_file

NVIDIA SM 36

engine (or a fallback engine). Each paragraph should begin with the line 'unicast-step' and
end with the line 'end-unicast-step'.
For example:

Routing Engine Qualifiers

Paramete
r

Description Example

id

'id' is mandatory. Without an ID qualifier for each engine, the
policy fails.

Legal values – size_t value (0 is illegal).
The engines in the policy chain are set according to an
ascending id order, so it is highly crucial to verify that the
id that is given to the engines match the order in which
you would like the engines to be set.

is: 1

engine

This is a mandatory qualifier that describes the routing
algorithm used within this unicast step.
Currently, on the first phase of routing chains, legal values are
minhop/ftree/updn.

engine:
minhop

unicast-step
…routing engine qualifiers…
end-unicast-step

Note

Unlike unicast-step and end-unicast-step which do not require a
colon, all qualifiers must end with a colon (':'). Also - a colon is a
predefined mark that must not be used inside qualifier values. An
inclusion of a colon in the qualifier values will result in the policy's
failure.

NVIDIA SM 37

Paramete
r

Description Example

use
This is an optional qualifier that enables one to describe the
usage of this unicast step. If undefined, an empty string is used
as a default.

use: ftree
routing for
for yellow
stone nodes

config

This is an optional qualifier that enables one to define a
separate OpenSM config file for a specific unicast step. If
undefined, all parameters are taken from main OpenSM
configuration file.

config:
/etc/config/
opensm2.cfg

topology

Define the topology that this engine uses.

Legal value – id of an existing topology that is defined in
topologies policy (or zero that represents the entire fabric
and not a specific topology).
Default value – If unspecified, a routing engine will relate
to the entire fabric (as if topology zero was defined).
Notice: The first routing engine (the engine with the
lowest id) MUST be configured with topology: 0 (entire
fabric) or else, the routing chain parser will fail.

topology: 1

fallback-to

This is an optional qualifier that enables one to define the
current unicast step as a fallback to another unicast step. This
can be done by defining the id of the unicast step that this step
is a fallback to.

If undefined, the current unicast step is not a fallback.
If the value of this qualifier is a non-existent engine id,
this step will be ignored.
A fallback step is meaningless if the step it is a fallback to
did not fail.
It is impossible to define a fallback to a fall- back step
(such definition will be ignored)

-

path-bit

This is an optional qualifier that enables one to define a
specific lid offset to be used by the current unicast step. Setting
lmc > 0 in main OpenSM configuration file is a prerequisite for
assigning specific path-bit for the routing engine.
Default value is 0 (if path-bit is not specified)

Path-bit: 1

NVIDIA SM 38

Dump Files per Routing Engine

Each routing engine on the chain will dump its own data files if the appropriate log_flags
is set (for instance 0x43).

The files that are dumped by each engine are:

opensm-lid-matrix.dump

opensm-lfts.dump

opensm.fdbs

opensm-subnet.lst

These files should contain the relevant data for each engine topology.

Each engine concatenates its ID and routing algorithm name in its dump files
names, as follows:

opensm-lid-matrix.2.minhop.dump

opensm.fdbs.3.ftree

opensm-subnet.4.updn.lst

In case that a fallback routing engine is used, both the routing engine that failed and
the fallback engine that replaces it, dump their data.
If, for example, engine 2 runs ftree and it has a fallback engine with 3 as its id that
runs minhop, one should expect to find 2 sets of dump files, one for each engine:

opensm-lid-matrix.2.ftree.dump

Note

sl2vl and mcfdbs files are dumped only once for the entire fabric and
NOT by every routing engine.

NVIDIA SM 39

opensm-lid-matrix.3.minhop.dump

opensm.fdbs.2.ftree

opensm.fdbs.3.munhop

Unicast Routing Cache

Unicast routing cache prevents routing recalculation (which is a heavy task in a large
cluster) when no topology change was detected during the heavy sweep, or when the
topology change does not require new routing calculation (for example, when one or
more CAs/RTRs/leaf switches going down, or one or more of these nodes coming back
after being down).

Quality of Service Management in OpenSM

When Quality of Service (QoS) in OpenSM is enabled (using the ‘-Q’ or ‘--qos’ flags),
OpenSM looks for a QoS Policy file. During fabric initialization and at every heavy sweep,
OpenSM parses the QoS policy file, applies its settings to the discovered fabric elements,
and enforces the provided policy on client requests. The overall flow for such requests is
as follows:

The request is matched against the defined matching rules such that the QoS Level
definition is found

Given the QoS Level, a path(s) search is performed with the given restrictions
imposed by that level

NVIDIA SM 40

There are two ways to define QoS policy:

Advanced – the advanced policy file syntax provides the administrator various ways
to match a PathRecord/MultiPathRecord (PR/MPR) request, and to enforce various
QoS constraints on the requested PR/MPR

Simple – the simple policy file syntax enables the administrator to match PR/MPR
requests by various ULPs and applications running on top of these ULPs

Advanced QoS Policy File

The QoS policy file has the following sections:

1. Port Groups (denoted by port-groups) - this section defines zero or more port
groups that can be referred later by matching rules (see below). Port group lists
ports by:
- Port GUID
- Port name, which is a combination of NodeDescription and IB port number
- PKey, which means that all the ports in the subnet that belong to partition with a
given PKey belong to this port group
- Partition name, which means that all the ports in the subnet that belong to
partition with a given name belong to this port group
- Node type, where possible node types are: CA, SWITCH, ROUTER, ALL, and SELF
(SM's port).

NVIDIA SM 41

2. QoS Setup (denoted by qos-setup) - this section describes how to set up SL2VL and
VL Arbitration tables on various nodes in the fabric. However, this is not supported
in OFED. SL2VL and VLArb tables should be configured in the OpenSM options file
(default location - /var/cache/opensm/opensm.opts).

3. QoS Levels (denoted by qos-levels) - each QoS Level defines Service Level (SL) and a
few optional fields:
- MTU limit
- Rate limit
- PKey
- Packet lifetime

When path(s) search is performed, it is done with regards to restriction that these
QoS Level parameters impose. One QoS level that is mandatory to define is a
DEFAULT QoS level. It is applied to a PR/MPR query that does not match any existing
match rule. Similar to any other QoS Level, it can also be explicitly referred by any
match rule.

QoS Matching Rules (denoted by qos-match-rules) - each
PathRecord/MultiPathRecord query that OpenSM receives is matched against the
set of matching rules. Rules are scanned in order of appearance in the QoS policy
file such as the first match takes precedence.
Each rule has a name of QoS level that will be applied to the matching query. A
default QoS level is applied to a query that did not match any rule.
Queries can be matched by:
- Source port group (whether a source port is a member of a specified group)
- Destination port group (same as above, only for destination port)
- PKey
- QoS class
- Service ID
To match a certain matching rule, PR/MPR query has to match ALL the rule's criteria.
However, not all the fields of the PR/MPR query have to appear in the matching rule.
For instance, if the rule has a single criterion - Service ID, it will match any query that
has this Service ID, disregarding rest of the query fields. However, if a certain query
has only Service ID (which means that this is the only bit in the PR/MPR component
mask that is on), it will not match any rule that has other matching criteria besides
Service ID.

NVIDIA SM 42

Simple QoS Policy Definition

Simple QoS policy definition comprises of a single section denoted by qos-ulps. Similar to
the advanced QoS policy, it has a list of match rules and their QoS Level, but in this case a
match rule has only one criterion - its goal is to match a certain ULP (or a certain
application on top of this ULP) PR/MPR request, and QoS Level has only one constraint -
Service Level (SL).
The simple policy section may appear in the policy file in combine with the advanced
policy, or as a stand-alone policy definition. See more details and list of match rule
criteria below.

Policy File Syntax Guidelines

Leading and trailing blanks, as well as empty lines, are ignored, so the indentation in
the example is just for better readability.

Comments are started with the pound sign (#) and terminated by EOL.

Any keyword should be the first non-blank in the line, unless it's a comment.

Keywords that denote section/subsection start have matching closing keywords.

Having a QoS Level named "DEFAULT" is a must - it is applied to PR/MPR requests
that did not match any of the matching rules.

Any section/subsection of the policy file is optional.

Examples of Advanced Policy Files

As mentioned earlier, any section of the policy file is optional, and the only mandatory
part of the policy file is a default QoS Level.
Here is an example of the shortest policy file:

qos-levels
qos-level

NVIDIA SM 43

Port groups section is missing because there are no match rules, which means that port
groups are not referred anywhere, and there is no need defining them. And since this
policy file doesn't have any matching rules, PR/MPR query will not match any rule, and
OpenSM will enforce default QoS level. Essentially, the above example is equivalent to
not having a QoS policy file at all.
The following example shows all the possible options and keywords in the policy file and
their syntax:

name: DEFAULT
sl: 0
end-qos-level
end-qos-levels

#
See the comments in the following example.
They explain different keywords and their meaning.
#
port-groups

port-group # using port GUIDs
name: Storage
"use" is just a description that is used for logging
Other than that, it is just a comment
use: SRP Targets
port-guid: 0x10000000000001, 0x10000000000005-0x1000000000FFFA

port-guid: 0x1000000000FFFF

end-port-group

port-group
name: Virtual Servers
The syntax of the port name is as follows:
"node_description/Pnum".
node_description is compared to the NodeDescription of the node,
and "Pnum" is a port number on that node.
port-name: “vs1 HCA-1/P1, vs2 HCA-1/P1”
end-port-group

NVIDIA SM 44

using partitions defined in the partition policy
port-group
name: Partitions
partition: Part1
pkey: 0x1234

end-port-group

using node types: CA, ROUTER, SWITCH, SELF (for node that runs SM)
or ALL (for all the nodes in the subnet)
port-group
name: CAs and SM
node-type: CA, SELF
end-port-group

end-port-groups

qos-setup
This section of the policy file describes how to set up SL2VL and VL
Arbitration tables on various nodes in the fabric.
However, this is not supported in OFED - the section is parsed
and ignored. SL2VL and VLArb tables should be configured in the
OpenSM options file (by default - /var/cache/opensm/opensm.opts).
end-qos-setup

qos-levels

Having a QoS Level named "DEFAULT" is a must - it is applied to
PR/MPR requests that didn't match any of the matching rules.
qos-level
name: DEFAULT
use: default QoS Level
sl: 0
end-qos-level

the whole set: SL, MTU-Limit, Rate-Limit, PKey, Packet Lifetime

NVIDIA SM 45

qos-level
name: WholeSet
sl: 1
mtu-limit: 4
rate-limit: 5
pkey: 0x1234

packet-life: 8
end-qos-level

end-qos-levels

Match rules are scanned in order of their appearance in the policy file.
First matched rule takes precedence.
qos-match-rules

matching by single criteria: QoS class

qos-match-rule
use: by QoS class

qos-class: 7-9,11

Name of qos-level to apply to the matching PR/MPR
qos-level-name: WholeSet
end-qos-match-rule

show matching by destination group and service id
qos-match-rule
use: Storage targets
destination: Storage
service-id: 0x10000000000001, 0x10000000000008-0x10000000000FFF

qos-level-name: WholeSet
end-qos-match-rule

qos-match-rule
source: Storage
use: match by source group only
qos-level-name: DEFAULT
end-qos-match-rule

NVIDIA SM 46

Simple QoS Policy - Details and Examples

Simple QoS policy match rules are tailored for matching ULPs (or some application on top
of a ULP) PR/MPR requests. This section has a list of per-ULP (or per-application) match
rules and the SL that should be enforced on the matched PR/MPR query.
Match rules include:

Default match rule that is applied to PR/MPR query that didn't match any of the
other match rules

IPoIB with a default PKey

IPoIB with a specific PKey

Any ULP/application with a specific Service ID in the PR/MPR query

Any ULP/application with a specific PKey in the PR/MPR query

Any ULP/application with a specific target IB port GUID in the PR/MPR query

Since any section of the policy file is optional, as long as basic rules of the file are kept
(such as no referring to nonexistent port group, having default QoS Level, etc), the simple
policy section (qos-ulps) can serve as a complete QoS policy file.
The shortest policy file in this case would be as follows:

qos-match-rule
use: match by all parameters
qos-class: 7-9,11

source: Virtual Servers
destination: Storage
service-id: 0x0000000000010000-0x000000000001FFFF

pkey: 0x0F00-0x0FFF

qos-level-name: WholeSet
end-qos-match-rule
end-qos-match-rules

qos-ulps

NVIDIA SM 47

It is equivalent to the previous example of the shortest policy file, and it is also equivalent
to not having policy file at all. Below is an example of simple QoS policy with all the
possible keywords:

Similar to the advanced policy definition, matching of PR/MPR queries is done in order of
appearance in the QoS policy file such as the first match takes precedence, except for the
"default" rule, which is applied only if the query didn't match any other rule. All other
sections of the QoS policy file take precedence over the qos-ulps section. That is, if a

default : 0 #default SL
end-qos-ulps

qos-ulps
default :0 # default SL
sdp, port-num 30000 :0 # SL for application running on
top of SDP when a destination
TCP/IPport is 30000

sdp, port-num 10000-20000 : 0
sdp :1 # default SL for any other
application running on top of SDP
rds :2 # SL for RDS traffic
ipoib, pkey 0x0001 :0 # SL for IPoIB on partition with
pkey 0x0001

ipoib :4 # default IPoIB partition,
pkey=0x7FFF

any, service-id 0x6234:6 # match any PR/MPR query with a
specific Service ID
any, pkey 0x0ABC :6 # match any PR/MPR query with a
specific PKey
srp, target-port-guid 0x1234 : 5 # SRP when SRP Target is located
on a specified IB port GUID
any, target-port-guid 0x0ABC-0xFFFFF : 6 # match any PR/MPR query
with a specific target port GUID
end-qos-ulps

NVIDIA SM 48

policy file has both qos-match-rules and qos-ulps sections, then any query is matched
first against the rules in the qos-match-rules section, and only if there was no match, the
query is matched against the rules in qos-ulps section.
Note that some of these match rules may overlap, so in order to use the simple QoS
definition effectively, it is important to understand how each of the ULPs is matched.

IPoIB

IPoIB query is matched by PKey or by destination GID, in which case this is the GID of the
multicast group that OpenSM creates for each IPoIB partition.
Default PKey for IPoIB partition is 0x7fff, so the following three match rules are
equivalent:

SRP

Service ID for SRP varies from storage vendor to vendor, thus SRP query is matched by
the target IB port GUID. The following two match rules are equivalent:

Note that any of the above ULPs might contain target port GUID in the PR query, so in
order for these queries not to be recognized by the QoS manager as SRP, the SRP match
rule (or any match rule that refers to the target port GUID only) should be placed at the
end of the qos-ulps match rules.

MPI

SL for MPI is manually configured by an MPI admin. OpenSM is not forcing any SL on the
MPI traffic, which explains why it is the only ULP that did not appear in the qos-ulps

ipoib:<SL>ipoib, pkey 0x7fff : <SL>
any, pkey 0x7fff : <SL>

srp, target-port-guid 0x1234 : <SL>
any, target-port-guid 0x1234 : <SL>

NVIDIA SM 49

section.

SL2VL Mapping and VL Arbitration

OpenSM cached options file has a set of QoS related configuration parameters, that are
used to configure SL2VL mapping and VL arbitration on IB ports. These parameters are:

Max VLs: the maximum number of VLs that will be on the subnet

High limit: the limit of High Priority component of VL Arbitration table (IBA 7.6.9)

VLArb low table: Low priority VL Arbitration table (IBA 7.6.9) template

VLArb high table: High priority VL Arbitration table (IBA 7.6.9) template

SL2VL: SL2VL Mapping table (IBA 7.6.6) template. It is a list of VLs corresponding to
SLs 0-15 (Note that VL15 used here means drop this SL).

There are separate QoS configuration parameters sets for various target types: CAs,
routers, switch external ports, and switch's enhanced port 0. The names of such
parameters are prefixed by "qos_<type>_" string. Here is a full list of the currently
supported sets:

qos_ca_ —QoS configuration parameters set for CAs.

qos_rtr_ —parameters set for routers.

qos_sw0_ —parameters set for switches' port 0.

qos_swe_ —parameters set for switches' external ports.

Here's the example of typical default values for CAs and switches' external ports (hard-
coded in OpenSM initialization):

qos_ca_max_vls 15

qos_ca_high_limit 0
qos_ca_vlarb_high 0:4,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0
qos_ca_vlarb_low 0:0,1:4,2:4,3:4,4:4,5:4,6:4,7:4,8:4,9:4,10:4,11:4,12:4,13:4,14:4

NVIDIA SM 50

VL arbitration tables (both high and low) are lists of VL/Weight pairs. Each list entry
contains a VL number (values from 0-14), and a weighting value (values 0-255), indicating
the number of 64 byte units (credits) which may be transmitted from that VL when its
turn in the arbitration occurs. A weight of 0 indicates that this entry should be skipped. If
a list entry is programmed for VL15 or for a VL that is not supported or is not currently
configured by the port, the port may either skip that entry or send from any supported VL
for that entry.
Note, that the same VLs may be listed multiple times in the High or Low priority
arbitration tables, and, further, it can be listed in both tables. The limit of high-priority
VLArb table (qos_<type>_high_limit) indicates the number of high-priority packets that
can be transmitted without an opportunity to send a low-priority packet. Specifically, the
number of bytes that can be sent is high_limit times 4K bytes.
A high_limit value of 255 indicates that the byte limit is unbounded.

A value of 0 indicates that only a single packet from the high-priority table may be sent
before an opportunity is given to the low-priority table.
Keep in mind that ports usually transmit packets of size equal to MTU. For instance, for
4KB MTU a single packet will require 64 credits, so in order to achieve effective VL
arbitration for packets of 4KB MTU, the weighting values for each VL should be multiples
of 64.
Below is an example of SL2VL and VL Arbitration configuration on subnet:

qos_ca_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7
qos_swe_max_vls 15

qos_swe_high_limit 0
qos_swe_vlarb_high 0:4,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0
qos_swe_vlarb_low 0:0,1:4,2:4,3:4,4:4,5:4,6:4,7:4,8:4,9:4,10:4,11:4,12:4,13:4,14:4
qos_swe_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

Note

If the 255 value is used, the low priority VLs may be starved.

qos_ca_max_vls 15

qos_ca_high_limit 6

NVIDIA SM 51

In this example, there are 8 VLs configured on subnet: VL0 to VL7. VL0 is defined as a high
priority VL, and it is limited to 6 x 4KB = 24KB in a single transmission burst. Such
configuration would suilt VL that needs low latency and uses small MTU when
transmitting packets. Rest of VLs are defined as low priority VLs with different weights,
while VL4 is effectively turned off.

Deployment Example

The figure below shows an example of an InfiniBand subnet that has been configured by
a QoS manager to provide different service levels for various ULPs.

QoS Deployment on InfiniBand Subnet Example

qos_ca_vlarb_high 0:4
qos_ca_vlarb_low 0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64

qos_ca_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7
qos_swe_max_vls 15

qos_swe_high_limit 6
qos_swe_vlarb_high 0:4
qos_swe_vlarb_low 0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64

qos_swe_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

NVIDIA SM 52

QoS Configuration Examples

The following are examples of QoS configuration for different cluster deployments. Each
example provides the QoS level assignment and their administration via OpenSM
configuration files.

Typical HPC Example: MPI and Lustre

Assignment of QoS Levels

MPI

Separate from I/O load

Min BW of 70%

Storage Control (Lustre MDS)

Low latency

Storage Data (Lustre OST)

NVIDIA SM 53

Min BW 30%

Administration

MPI is assigned an SL via the command line
host1# mpirun –sl 0

OpenSM QoS policy file

Note: In this policy file example, replace OST* and MDS* with the real port GUIDs.

OpenSM options file

EDC SOA (2-tier): IPoIB and SRP

The following is an example of QoS configuration for a typical enterprise data center
(EDC) with service oriented architecture (SOA), with IPoIB carrying all application traffic
and SRP used for storage.

QoS Levels

qos-ulps
default :0 # default SL (for MPI)
any, target-port-guid OST1,OST2,OST3,OST4 :1 # SL for Lustre OST
any, target-port-guid MDS1,MDS2 :2 # SL for Lustre MDS
end-qos-ulps

qos_max_vls 8
qos_high_limit 0
qos_vlarb_high 2:1
qos_vlarb_low 0:96,1:224

qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

NVIDIA SM 54

Application traffic

IPoIB (UD and CM) and SDP

Isolated from storage

Min BW of 50%

SRP

Min BW 50%

Bottleneck at storage nodes

Administration

OpenSM QoS policy file

Note: In this policy file example, replace SRPT* with the real SRP Target port GUIDs.

OpenSM options file

qos-ulps
default :0
ipoib :1
sdp :1
srp, target-port-guid SRPT1,SRPT2,SRPT3 :2
end-qos-ulps

qos_max_vls 8
qos_high_limit 0
qos_vlarb_high 1:32,2:32

qos_vlarb_low 0:1,
qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

NVIDIA SM 55

EDC (3-tier): IPoIB, RDS, SRP

The following is an example of QoS configuration for an enterprise data center (EDC),
with IPoIB carrying all application traffic, RDS for database traffic, and SRP used for
storage.

QoS Levels

Management traffic (ssh)

IPoIB management VLAN (partition A)

Min BW 10%

Application traffic

IPoIB application VLAN (partition B)

Isolated from storage and database

Min BW of 30%

Database Cluster traffic

RDS

Min BW of 30%

SRP

Min BW 30%

Bottleneck at storage nodes

Administration

OpenSM QoS policy file

qos-ulps

NVIDIA SM 56

Note: In the following policy file example, replace SRPT* with the real SRP Initiator
port GUIDs.

OpenSM options file

Partition configuration file

Enhanced QoS

Enhanced QoS provides a higher resolution of QoS at the service level (SL). Users can
configure rate limit values per SL for physical ports, virtual ports, and port groups, using
enhanced_qos_policy_file configuration parameter.
Valid values of this parameter:

Full path to the policy file through which Enhanced QoS Manager is configured

"null" - to disable the Enhanced QoS Manager (default value)

default :0
ipoib, pkey 0x8001 :1
ipoib, pkey 0x8002 :2
rds :3
srp, target-port-guid SRPT1, SRPT2, SRPT3 :4
end-qos-ulps

qos_max_vls 8
qos_high_limit 0
qos_vlarb_high 1:32,2:96,3:96,4:96

qos_vlarb_low 0:1
qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

Default=0x7fff,ipoib : ALL=full;PartA=0x8001, sl=1, ipoib : ALL=full;

NVIDIA SM 57

Enhanced QoS Policy File

The policy file is comprised of three sections:

BW_NAMES: Used to define bandwidth setting and name (currently, rate limit is the
only setting). Bandwidth names can be used in BW_RULES and VPORT_BW_RULES
sections.
Bandwidth names are defined using the syntax:
<name> = <rate limit in 1Mbps units>
Example: My_bandwidth = 50

BW_RULES: Used to define the rules that map the bandwidth setting to a specific SL
of a specific GUID.
Bandwidth rules are defined using the syntax:
<guid>|<port group name> = <sl id>:<bandwidth name>, <sl id>:<bandwidth name>…
Examples:
0x2c90000000025 = 5:My_bandwidth, 7:My_bandwidth
Port_grp1 = 3:My_bandwidth, 9:My_bandwidth

VPORT_BW_RULES: Used to define the rules that map the bandwidth setting to a
specific SL of a specific virtual port GUID.
Bandwidth rules are defined using the syntax:
<guid>= <sl id>:<bandwidth name>, <sl id>:<bandwidth name>…Examples:
0x2c90000000026= 5:My_bandwidth, 7:My_bandwidth

Special Keywords

Keyword “all” allows setting a rate limit of all SLs to some BW for a specific physical
or virtual port. It is possible to combine “all” with specific SL rate limits.

Note

To enable Enhanced QoS Manager, QoS must be enabled in OpenSM.

NVIDIA SM 58

Example:
0x2c90000000025 = all:BW1,SL3:BW2In this case, SL3 will be assigned BW2 rate limit, while
the rest of SLs get BW1 rate limit.

"default" is a well-known name which can be used to define a default rule used for
any GUID with no defined rule.
If no default rule is defined, any GUID without a specific rule will be configured with
unlimited rate limit for all SLs.
Keyword “all” is also applicable to the default rule. Default rule is local to each
section.

Special Subnet Manager Configuration Options

New SM configuration option enhanced_qos_vport0_unlimit_default_rl was added to
opensm.conf.

The possible values for this configuration option are:

TRUE: For specific virtual port0 GUID, SLs not mentioned in bandwidth rule will be
set to unlimited bandwidth (0) regardless of the default rule of the
VPORT_BW_RULES section.
Virtual port0 GUIDs not mentioned in VPORT_BW_SECTION will be set to unlimited
BW on all SLs.

FALSE: The GUID of virtual port0 is treated as any other virtual port in
VPORT_BW_SECTION.
SM should be signaled by HUP once the option is changed.

Default: TRUE

Notes

When rate limit is set to 0, it means that the bandwidth is unlimited.

Any unspecified SL in a rule will be set to 0 (unlimited) rate limit automatically if no
default rule is specified.

NVIDIA SM 59

Failure to complete policy file parsing leads to an undefined behavior. User must
confirm no relevant error messages in SM log in order to ensure Enhanced QoS
Manager is configured properly.

A file with only 'BW_NAMES' and 'BW_RULES' keywords configures the network with
an unlimited rate limit.

HCA physical port GUID can be specified in BW_RULES and VPORT_BW_RULES
sections.

In BW_RULES section, the rate limit assigned to a specific SL will limit the total BW
that can be sent through the PF on a given SL.

In VPORT_BW_RULES section, the rate limit assigned to a specific SL will limit only
the traffic sent from the IB interface corresponding to the physical port GUID (virtual
port0 IB interface). The traffic sent from other virtual IB interfaces will not be limited
if no specific rules are defined.

Policy File Example

All physical ports in the fabric are with a rate limit of 50Mbps on SL1, except for GUID
0x2c90000000025, which is configured with rate limit of 25Mbps on SL1. In this example,
the traffic on SLs (other than SL1) is unlimited.
All virtual ports in the fabric (except virtual port0 of all physical ports) will be rate-limited
to 15Mbps for all SLs because of the default rule of VPORT_BW_RULES section.
Virtual port GUID 0x2c90000000026 is configured with a rate limit of 10Mbps on SL3. The
rest of the SLs on this virtual port will get a rate limit of 15 Mbps because of the default
rule of VPORT_BW_RULES section.

BW_NAMES
bw1 = 50

bw2 = 25

bw3 = 15

bw4 = 10

BW_RULES
default= 1:bw1

NVIDIA SM 60

Adaptive Routing Manager and Self-Healing
Networking

Adaptive Routing Manager supports advanced InfiniBand features; Adaptive Routing (AR)
and Self-Healing Networking.

For information on how to set up AR and Self-Healing Networking, please refer to HowTo
Configure Adaptive Routing and Self-Healing Networking Community post.

DOS MAD Prevention

DOS MAD prevention is achieved by assigning a threshold for each agent's RX. Agent's RX
threshold provides a protection mechanism to the host memory by limiting the agents'
RX with a threshold. Incoming MADs above the threshold are dropped and are not
queued to the agent's RX.

To enable DOS MAD Prevention:

1. Go to /etc/modprobe.d/mlnx.conf.

2. Add to the file the option below.

The threshold value can be controlled from the user-space via libibumad.

To change the value, use the following API:

0x2c90000000025= 1:bw2

VPORT_BW_RULES
default= all:bw3
0x2c90000000026= 3:bw4

--

ib_umad enable_rx_threshold 1

https://enterprise-support.nvidia.com/s/article/How-To-Configure-Adaptive-Routing-and-Self-Healing-Networking-New
https://enterprise-support.nvidia.com/s/article/How-To-Configure-Adaptive-Routing-and-Self-Healing-Networking-New

NVIDIA SM 61

IB Router Support in OpenSM

In order to enable the IB router in OpenSM, the following parameters should be
configured:

IB Router Parameters for OpenSM

Parameter Description Default Value

rtr_pr_flow_lab
el

Defines whether the SM should create alias GUIDs
required for router support for each port.
Defines flow label value to use in response for
path records related to the router.

0 (Disabled)

rtr_pr_tclass
Defines TClass value to use in response for path
records related to the router

0

rtr_pr_sl
Defines sl value to use in response for path
records related to router.

0

rtr_p_mtu
Defines MTU value to use in response for path
records related to the router.

4 (IB_MTU_LEN_2048)

rtr_pr_rate
Defines rate value to use in response for path
records related to the router.

16 (IB_PATH_RE-
CORD_RATE_100_GB
S)

OpenSM Activity Report

OpenSM can produce an activity report in a form of a dump file which details the
different activities done in the SM. Activities are divided into subjects. The OpenSM
Supported Activities table below specifies the different activities currently supported in
the SM activity report.

int umad_update_threshold(int fd, int threshold);

@fd: file descriptor, agent's RX associated to this fd.
@threshold: new threshold value

NVIDIA SM 62

Reporting of each subject can be enabled individually using the configuration parameter
activity_report_subjects:

Valid values:
Comma separated list of subjects to dump. The current supported subjects are:

"mc" - activity IDs 1, 2 and 8

"prtn" - activity IDs 3, 4, and 5

"virt" - activity IDs 6 and 7

"routing" - activity IDs 8-12

Two predefined values can be configured as well:

"all" - dump all subjects

"none" - disable the feature by dumping none of the subjects

Default value: "none"

OpenSM Supported Activities

ACtivity
ID

Activity Name Additional Fields Comments Description

1 mcm_member

MLid
MGid
Port Guid
Join State

Join state:
1 - Join
-1 - Leave

Member joined/ left
MC group

2 mcg_change

MLid
MGid
Change

Change:
0 - Create
1 - Delete

MC group
created/deleted

NVIDIA SM 63

ACtivity
ID

Activity Name Additional Fields Comments Description

3 prtn_guid_add

Port Guid
PKey
Block index
Pkey Index

Guid added to
partition

4 prtn_create

-PKey

Prtn Name
Partition created

5 prtn_delete

PKey
Delete
Reason

Delete
Reason:
0 - empty
prtn
1 - duplicate
prtn
2 - sm
shutdown

Partition deleted

6 port_virt_discover
Port Guid
Top Index

Port virtualization
discovered

7 vport_state_change

Port Guid
VPort Guid
VPort Index
VNode
Guid
VPort State

VPort State:
1 - Down
2 - Init
3 - ARMED
4 - Active

Vport state changed

8 mcg_tree_calc mlid
MCast group tree
calculated

9 routing_succeed
routing engine
name

Routing done
successfully

10 routing_failed
routing engine
name

Routing failed

11
ucast_cache_invali-
dated

ucast cache
invalidated

NVIDIA SM 64

ACtivity
ID

Activity Name Additional Fields Comments Description

12
ucast_cache_rout-
ing_done

ucast cache routing
done

Offsweep Balancing

When working with minhop/dor/updn, subnet manager can re-balance routing during
idle time (between sweeps).

offsweep_balancing_enabled - enables/disables the feature. Examples:

offsweep_balancing_enabled = TRUE

offsweep_balancing_enabled = FALSE (default)

offsweep_balancing_window - defines window of seconds to wait after sweep before
starting the re-balance process. Applicable only if
offsweep_balancing_enabled=TRUE. Example:
offsweep_balancing_window = 180 (default)

© Copyright 2024, NVIDIA. PDF Generated on 06/06/2024

	OpenSM Application
	Environment Variables
	Signaling
	Running OpenSM as Daemon

	osmtest
	Partitions
	File Format

	Effect of Topology Changes
	Routing Algorithms
	Min Hop Algorithm
	UPDN Algorithm
	Fat-tree Routing Algorithm
	DOR Routing Algorithm
	Torus-2QoS Routing Algorithm
	Routing Chains

	Unicast Routing Cache
	Quality of Service Management in OpenSM
	Advanced QoS Policy File
	Simple QoS Policy Definition
	Policy File Syntax Guidelines
	Examples of Advanced Policy Files
	Simple QoS Policy - Details and Examples
	IPoIB
	SRP
	MPI
	SL2VL Mapping and VL Arbitration
	Deployment Example
	Enhanced QoS

	Adaptive Routing Manager and Self-Healing Networking
	IB Router Support in OpenSM
	OpenSM Activity Report
	Offsweep Balancing

