
Optimized Memory Access

Table of contents

Memory Region Re-registration

Memory Window

Query Capabilities

Memory Window Allocation

Binding Memory Windows

Invalidating Memory Window

Deallocating Memory Window

User-Mode Memory Registration (UMR)

On-Demand-Paging (ODP)

Query Capabilities

Registering ODP Explicit and Implicit MR

De-registering ODP MR

Advice MR Verb

ODP Statistics

Inline-Receive

Optimized Memory Access 1

Table of contents

Memory Region Re-registration

Memory Window

Query Capabilities

Memory Window Allocation

Binding Memory Windows

Invalidating Memory Window

Deallocating Memory Window

User-Mode Memory Registration (UMR)

On-Demand-Paging (ODP)

Query Capabilities

Registering ODP Explicit and Implicit MR

De-registering ODP MR

Advice MR Verb

ODP Statistics

Inline-Receive

Optimized Memory Access 2

Memory Region Re-registration

Memory Region Re-registration allows the user to change attributes of the memory
region. The user may change the PD, access flags or the address and length of the
memory region. Memory
region supports contagious pages allocation. Consequently, it de-registers memory
region followed by register memory region. Where possible, resources are reused instead
of de-allocated and reallocated.

Example:

@mr: The memory region to modify.

@flags:

A bit-mask used to indicate which of the following properties of the
memory region are being modified. Flags should be one of:
IBV_REREG_MR_CHANGE_TRANSLATION /* Change translation
(location and length) */ IBV_REREG_MR_CHANGE_PD/* Change
protection domain*/
IBV_REREG_MR_CHANGE_ACCESS/* Change access flags*/

@pd:
If IBV_REREG_MR_CHANGE_PD is set in flags, this field specifies the
new protection domain to associated with the memory region,
otherwise, this parameter is ignored.

@addr:
If IBV_REREG_MR_CHANGE_TRANSLATION is set in flags, this field
specifies the start of the virtual address to use in the new translation,
otherwise, this parameter is ignored.

Note

Please note that the verb is implemented as an experimental verb.

int ibv_rereg_mr(struct ibv_mr *mr, int flags, struct ibv_pd *pd, void *addr, size_t
length, uint64_t access, struct ibv_rereg_mr_attr *attr);

Optimized Memory Access 3

@length:
If IBV_REREG_MR_CHANGE_TRANSLATION is set in flags, this field
specifies the length of the virtual address to use in the new
translation, otherwise, this parameter is ignored.

@access:

If IBV_REREG_MR_CHANGE_ACCESS is set in flags, this field specifies
the new memory access rights, otherwise, this parameter is ignored.
Could be one of the following:
IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE
IBV_ACCESS_REMOTE_READ
IBV_ACCESS_ALLOCATE_MR /* Let the library allocate the memory for
* the user, tries to get contiguous pages */

@attr: Future extensions

ibv_rereg_mr returns 0 on success, or the value of an errno on failure (which indicates the
error reason). In case of an error, the MR is in undefined state. The user needs to call
ibv_dereg_mr in order to release it.

Please note that if the MR (Memory Region) is created as a Shared MR and a translation is
requested, after the call, the MR is no longer a shared MR. Moreover, Re-registration of
MRs that uses NVIDIA PeerDirect™ technology are not supported.

Memory Window

Memory Window allows the application to have a more flexible control over remote
access to its memory. It is available only on physical functions/native machines The two
types of Memory Windows supported are: type 1 and type 2B.
Memory Windows are intended for situations where the application wants to:

Grant and revoke remote access rights to a registered region in a dynamic fashion
with less of a performance penalty

Grant different remote access rights to different remote agents and/or grant those
rights over different ranges within registered region

For further information, please refer to the InfiniBand specification document.

Note

Optimized Memory Access 4

Query Capabilities

Memory Windows are available if and only the hardware supports it. To verify whether
Memory Windows are available, run ibv_query_device.
For example:

Memory Window Allocation

Allocating memory window is done by calling the ibv_alloc_mw verb.

Binding Memory Windows

After being allocated, memory window should be bound to a registered memory region.
Memory Region should have been registered using the IBV_ACCESS_MW_BIND access
flag.

For further information on how to bind memory windows, please see rdma-core man
page.

Memory Windows API cannot co-work with peer memory clients
(PeerDirect).

truct ibv_device_attr device_attr = {.comp_mask = IBV_DEVICE_ATTR_RESERVED - 1};
ibv_query_device(context, & device_attr);
if (device_attr.exp_device_cap_flags & IBV_DEVICE_MEM_WINDOW ||
device_attr.exp_device_cap_flags & IBV_DEVICE_MW_TYPE_2B) {
/* Memory window is supported */

type_mw = IBV_MW_TYPE_2/ IBV_MW_TYPE_1
mw = ibv_alloc_mw(pd, type_mw);

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_bind_mw.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_bind_mw.3

Optimized Memory Access 5

Invalidating Memory Window

Before rebinding Memory Window type 2, it must be invalidated using ibv_post_send - see
here.

Deallocating Memory Window

Deallocating memory window is done using the ibv_dealloc_mw verb.

User-Mode Memory Registration (UMR)

User-mode Memory Registration (UMR) is a fast registration mode which uses send
queue. The UMR support enables the usage of RDMA operations and scatters the data at
the remote side through the definition of appropriate memory keys on the remote side.
UMR enables the user to:

Create indirect memory keys from previously registered memory regions, including
creation of KLM's from previous KLM's. There are not data alignment or length
restrictions associated with the memory regions used to define the new KLM's.

Create memory regions, which support the definition of regular non-contiguous
memory regions.

On-Demand-Paging (ODP)

On-Demand-Paging (ODP) is a technique to alleviate much of the shortcomings of
memory registration. Applications no longer need to pin down the underlying physical
pages of the address space, and track the validity of the mappings. Rather, the HCA
requests the latest translations from the OS when pages are not present, and the OS
invalidates translations which are no longer valid due to either non-present pages or
mapping changes. ODP does not support contiguous pages.
ODP can be further divided into 2 subclasses: Explicit and Implicit ODP.

ibv_dealloc_mw(mw);

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_wr_post.3.md

Optimized Memory Access 6

Explicit ODP
In Explicit ODP, applications still register memory buffers for communication, but
this operation is used to define access control for IO rather than pin-down the
pages. ODP Memory Region (MR) does not need to have valid mappings at
registration time.

Implicit ODP
In Implicit ODP, applications are provided with a special memory key that
represents their complete address space. This all IO accesses referencing this key
(subject to the access rights associated with the key) does not need to register any
virtual address range.

Query Capabilities

On-Demand Paging is available if both the hardware and the kernel support it. To verify
whether ODP is supported, run ibv_query_device.

For further information, please refer to the ibv_query_device manual page.

Registering ODP Explicit and Implicit MR

ODP Explicit MR is registered after allocating the necessary resources (e.g. PD, buffer),
while ODP implicit MR registration provides an implicit lkey that represents the complete
address space.

For further information, please refer to the ibv_reg_mr manual page.

De-registering ODP MR

ODP MR is deregistered the same way a regular MR is deregistered:

Advice MR Verb

ibv_dereg_mr(mr);

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_device_ex.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_reg_mr.3

Optimized Memory Access 7

The driver can pre-fetch a given range of pages and map them for access from the HCA.
The advice MR verb is applicable for ODP MRs only.
For further information, please refer to the ibv_advise_mr manual page.

ODP Statistics

To aid in debugging and performance measurements and tuning, ODP support includes
an extensive set of statistics.

For further information, please refer to rdma-statistics manual page.

Inline-Receive

The HCA may write received data to the Receive CQE. Inline-Receive saves PCIe Read
transaction since the HCA does not need to read the scatter list. Therefore, it improves
performance in case of short receive-messages.

On poll CQ, the driver copies the received data from CQE to the user's buffers.

Inline-Receive is enabled by default and is transparent to the user application. To disable
it globally, set MLX5_SCATTER_TO_CQE environment variable to the value of 0. Otherwise,
disable it on a specific QP using mlx5dv_create_qp() with
MLX5DV_QP_CREATE_DISABLE_SCATTER_TO_CQE.

For further information, please refer to the manual page of mlx5dv_create_qp().

© Copyright 2024, NVIDIA. PDF Generated on 06/06/2024

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_advise_mr.3.md
https://man7.org/linux/man-pages/man8/rdma-statistic.8.html

	Memory Region Re-registration
	Memory Window
	Query Capabilities
	Memory Window Allocation
	Binding Memory Windows
	Invalidating Memory Window
	Deallocating Memory Window

	User-Mode Memory Registration (UMR)
	On-Demand-Paging (ODP)
	Query Capabilities
	Registering ODP Explicit and Implicit MR
	De-registering ODP MR
	Advice MR Verb
	ODP Statistics

	Inline-Receive

