
Programming



Table of contents

Raw Ethernet Programming

Packet Pacing

TCP Segmentation Offload (TSO)

ToS Based Steering

Flow ID Based Steering

VXLAN Based Steering

Device Memory Programming

Device Memory Programming Model

RDMA-CM QP Timeout Control

RDMA-CM Application Managed QP

Programming 1

Table of contents

Raw Ethernet Programming

Packet Pacing

TCP Segmentation Offload (TSO)

ToS Based Steering

Flow ID Based Steering

VXLAN Based Steering

Device Memory Programming

Device Memory Programming Model

RDMA-CM QP Timeout Control

RDMA-CM Application Managed QP



Programming 2

Raw Ethernet Programming

Raw Ethernet programming enables writing an application that bypasses the kernel stack.
To achieve this, packet headers and offload options need to be provided by the
application.
For a basic example on how to use Raw Ethernet programming, refer to the Raw Ethernet
Programming: Basic Introduction—Code Example Community post.

Packet Pacing

Packet pacing is a raw Ethernet sender feature that enables controlling the rate of each
QP, per send queue.
For a basic example on how to use packet pacing per flow over libibverbs, refer to Raw
Ethernet Programming: Packet Pacing—Code Example Community post.

TCP Segmentation Offload (TSO)

TCP Segmentation Offload (TSO) enables the adapter cards to accept a large amount of
data with a size greater than the MTU size. The TSO engine splits the data into separate
packets and inserts the user-specified L2/L3/L4 headers automatically per packet. With
the usage of TSO, CPU is offloaded from dealing with a large throughput of data.
To be able to program that on the sender side, refer to the Raw Ethernet Programming:
TSO—Code Example Community post.

ToS Based Steering

Note

This chapter is aimed for application developers and expert users
that wish to develop applications over MLNX_OFED.

https://enterprise-support.nvidia.com/s/article/raw-ethernet-programming--basic-introduction---code-example
https://enterprise-support.nvidia.com/s/article/raw-ethernet-programming--basic-introduction---code-example
https://enterprise-support.nvidia.com/s/article/raw-ethernet-programming--basic-introduction---code-example
https://enterprise-support.nvidia.com/s/article/raw-ethernet-programming--basic-introduction---code-example
https://enterprise-support.nvidia.com/s/article/raw-ethernet-programming--tso---code-example
https://enterprise-support.nvidia.com/s/article/raw-ethernet-programming--tso---code-example


Programming 3

ToS/DSCP is an 8-bit field in the IP packet that enables different service levels to be
assigned to network traffic. This is achieved by marking each packet in the network with a
DSCP code and appropriating the corresponding level of service to it.
To be able to steer packets according to the ToS field on the receiver side, refer to the
Raw Ethernet Programming: ToS—Code Example Community post.

Flow ID Based Steering

Flow ID based steering enables developing a code that will steer packets using flow ID
when developing Raw Ethernet over verbs. For more information on flow ID based
steering, refer to the Raw Ethernet Programming: Flow ID Steering—Code Example
Community post.

VXLAN Based Steering

VXLAN based steering enables developing a code that will steer packets using the VXLAN
tunnel ID when developing Raw Ethernet over verbs. For more information on VXLAN
based steering, refer to the Raw Ethernet Programming: VXLAN Steering—Code Example
Community post.

Device Memory Programming

Device Memory is an API that allows using on-chip memory located on the device as a
data buffer for send/receive and RDMA operations. The device memory can be mapped
and accessed directly by user and kernel applications, and can be allocated in various

Note

This feature is supported on ConnectX-5/ConnectX-5 Ex adapter
cards and above only.

https://enterprise-support.nvidia.com/s/article/raw-ethernet-programming--tos---code-example
https://enterprise-support.nvidia.com/s/article/raw-ethernet-programming--flow-id-steering---code-example
https://enterprise-support.nvidia.com/s/article/raw-ethernet-programming--vxlan-steering---code-example


Programming 4

sizes, registered as memory regions with local and remote access keys for performing the
send/receive and RDMA operations.
Using the device memory to store packets for transmission can significantly reduce
transmission latency compared to the host memory.

Device Memory Programming Model

The new API introduces a similar procedure to the host memory for sending packets from
the buffer:

ibv_alloc_dm()/ibv_free_dm() - to allocate/free device memory

ibv_reg_dm_mr - to register the allocated device memory buffer as a memory region
and get a memory key for local/remote access by the device

ibv_memcpy_to_dm - to copy data to a device memory buffer

ibv_memcpy_from_dm - to copy data from a device memory buffer

ibv_post_send/ibv_post_receive - to request the device to perform a send/receive
operation using the memory key

For examples, see Device Memory.

RDMA-CM QP Timeout Control

RDMA-CM QP Timeout Control feature enables users to control the QP timeout for QPs
created with RDMA-CM.

A new option in 'rdma_set_option’ function has been added to enable overriding
calculated QP timeout, in order to provide QP attributes for QP modification. To achieve
that, rdma_set_option() should be called with the new flag RDMA_OPTION_ID_ACK_TIMEOUT.
Example:

rdma_set_option(cma_id, RDMA_OPTION_ID, RDMA_OPTION_ID_ACK_TIMEOUT,
&timeout, sizeof(timeout));



Programming 5

RDMA-CM Application Managed QP

Applications which do not create a QP through rdma_create_qp() may want to postpone
the ESTABLISHED event on the passive side, to let the active side complete an application-
specific connection establishment phase. For example, modifying the init state of the QP
created by the application to RTR state, or make some preparations for receiving
messages from the passive side. The feature returns a new event on the active side:
CONNECT_RESPONSE, instead of ESTABLISHED, if id->qp==NULL. This gives the
application a chance to perform the extra connection setup. Afterwards, the new
rdma_establish() API should be called to complete the connection and generate an
ESTABLISHED event on the passive side.

In addition, this feature exposes the 'rdma_init_qp_attr' function in librdmacm API, which
enables applications to get the parameters for creating Address Handler (AH) or control
QP attributes after its creation.

© Copyright 2024, NVIDIA. PDF Generated on 06/06/2024


	Raw Ethernet Programming
	Packet Pacing
	TCP Segmentation Offload (TSO)
	ToS Based Steering
	Flow ID Based Steering
	VXLAN Based Steering

	Device Memory Programming
	Device Memory Programming Model

	RDMA-CM QP Timeout Control
	RDMA-CM Application Managed QP



