
Quality of Service (QoS)

Table of contents

Mapping Traffic to Traffic Classes

Plain Ethernet Quality of Service Mapping

RoCE Quality of Service Mapping

Map Priorities with set_egress_map

Quality of Service Properties

Strict Priority

Enhanced Transmission Selection (ETS)

Rate Limit

Trust State

Receive Buffer

DCBX Control Mode

Quality of Service Tools

mlnx_qos

Additional Tools

Packet Pacing

System Requirements

Packet Pacing Configuration

Quality of Service (QoS) 1

Table of contents

Mapping Traffic to Traffic Classes

Plain Ethernet Quality of Service Mapping

RoCE Quality of Service Mapping

Map Priorities with set_egress_map

Quality of Service Properties

Strict Priority

Enhanced Transmission Selection (ETS)

Rate Limit

Trust State

Receive Buffer

DCBX Control Mode

Quality of Service Tools

mlnx_qos

Additional Tools

Packet Pacing

System Requirements

Packet Pacing Configuration

Quality of Service (QoS) 2

Quality of Service (QoS) is a mechanism of assigning a priority to a network flow (socket,
rdma_cm connection) and manage its guarantees, limitations and its priority over other
flows. This is accomplished by mapping the user's priority to a hardware TC (traffic class)
through a 2/3 stage process. The TC is assigned with the QoS attributes and the different
flows behave accordingly.

Mapping Traffic to Traffic Classes

Mapping traffic to TCs consists of several actions which are user controllable, some
controlled by the application itself and others by the system/network administrators.

The following is the general mapping traffic to Traffic Classes flow:

1. The application sets the required Type of Service (ToS).

2. The ToS is translated into a Socket Priority (sk_prio).

3. The sk_prio is mapped to a User Priority (UP) by the system administrator (some
applications set sk_prio directly).

4. The UP is mapped to TC by the network/system administrator.

5. TCs hold the actual QoS parameters

QoS can be applied on the following types of traffic. However, the general QoS flow may
vary among them:

Plain Ethernet - Applications use regular inet sockets and the traffic passes via the
kernel Ethernet driver

RoCE - Applications use the RDMA API to transmit using Queue Pairs (QPs)

Raw Ethernet QP - Application use VERBs API to transmit using a Raw Ethernet QP

Plain Ethernet Quality of Service Mapping

Applications use regular inet sockets and the traffic passes via the kernel Ethernet driver.
The following is the Plain Ethernet QoS mapping flow:

1. The application sets the ToS of the socket using setsockopt (IP_TOS, value).

2. ToS is translated into the sk_prio using a fixed translation:

Quality of Service (QoS) 3

3. The Socket Priority is mapped to the UP in the following conditions:

1. If the underlying device is a VLAN device, egress_map is used controlled by the
vconfig command. This is per VLAN mapping.

2. If the underlying device is not a VLAN device, the mapping is done in the driver.

4. The UP is mapped to the TC as configured by the mlnx_qos tool or by the lldpad
daemon if DCBX is used.

RoCE Quality of Service Mapping

Applications use RDMA-CM API to create and use QPs. The following is the RoCE QoS
mapping flow:

TOS 0 <=> sk_prio 0
TOS 8 <=> sk_prio 2
TOS 24 <=> sk_prio 4
TOS 16 <=> sk_prio 6

Note

Socket applications can use setsockopt (SK_PRIO, value) to directly
set the sk_prio of the socket. In this case, the ToS to sk_prio fixed
mapping is not needed. This allows the application and the
administrator to utilize more than the 4 values possible via ToS.

Note

In the case of a VLAN interface, the UP obtained according to the
above mapping is also used in the VLAN tag of the traffic.

Quality of Service (QoS) 4

1. The application sets the ToS of the QP using the rdma_set_option
option(RDMA_OPTION_ID_TOS, value).

2. ToS is translated into the Socket Priority (sk_prio) using a fixed translation:

3. The Socket Priority is mapped to the User Priority (UP) using the tc command.

In the case of a VLAN device where the parent real device is used for the purpose of
this mapping

If the underlying device is a VLAN device, and the parent real device was not used for
the mapping, the VLAN device's egress_map is used

4. UP is mapped to the TC as configured by the mlnx_qos tool or by the lldpad
daemon if DCBX is used.

Map Priorities with set_egress_map

For RoCE old kernels that do not support set_egress_map, use the tc_wrap script to map
between sk_prio and UP. Use tc_wrap with option -u. For example:

TOS 0 <=> sk_prio 0
TOS 8 <=> sk_prio 2
TOS 24 <=> sk_prio 4
TOS 16 <=> sk_prio 6

Note

With RoCE, there can only be 4 predefined ToS values for the purpose
of QoS mapping.

tc_wrap -i <ethX> -u <skprio2up mapping>

Quality of Service (QoS) 5

Quality of Service Properties

The different QoS properties that can be assigned to a TC are:

Strict Priority

Enhanced Transmission Selection (ETS)

Rate Limit

Trust State

Receive Buffer

DCBX Control Mode

Strict Priority

When setting a TC's transmission algorithm to be 'strict', then this TC has absolute (strict)
priority over other TC strict priorities coming before it (as determined by the TC number:
TC 7 is the highest priority, TC 0 is lowest). It also has an absolute priority over nonstrict
TCs (ETS).

This property needs to be used with care, as it may easily cause starvation of other TCs.

A higher strict priority TC is always given the first chance to transmit. Only if the highest
strict priority TC has nothing more to transmit, will the next highest TC be considered.

Nonstrict priority TCs will be considered last to transmit.

This property is extremely useful for low latency low bandwidth traffic that needs to get
immediate service when it exists, but is not of high volume to starve other transmitters in
the system.

Enhanced Transmission Selection (ETS)

Enhanced Transmission Selection standard (ETS) exploits the time periods in which the
offered load of a particular Traffic Class (TC) is less than its minimum allocated bandwidth
by allowing the difference to be available to other traffic classes.

Quality of Service (QoS) 6

After servicing the strict priority TCs, the amount of bandwidth (BW) left on the wire may
be split among other TCs according to a minimal guarantee policy.

If, for instance, TC0 is set to 80% guarantee and TC1 to 20% (the TCs sum must be 100),
then the BW left after servicing all strict priority TCs will be split according to this ratio.

Since this is a minimum guarantee, there is no maximum enforcement. This means, in the
same example, that if TC1 did not use its share of 20%, the reminder will be used by TC0.

ETS is configured using the mlnx_qos tool (mlnx_qos) which allows you to:

Assign a transmission algorithm to each TC (strict or ETS)

Set minimal BW guarantee to ETS TCs

Usage:

Rate Limit

Rate limit defines a maximum bandwidth allowed for a TC. Please note that 10% deviation
from the requested values is considered acceptable.

Trust State

Trust state enables prioritizing sent/received packets based on packet fields.

The default trust state is PCP. Ethernet packets are prioritized based on the value of the
field (PCP/DSCP).

For further information on how to configure Trust mode, please refer to HowTo Configure
Trust State on NVIDIA Adapters community post.

mlnx_qos -i \[options\]

Note

https://enterprise-support.nvidia.com/s/article/howto-configure-trust-state-on-mellanox-adapters
https://enterprise-support.nvidia.com/s/article/howto-configure-trust-state-on-mellanox-adapters

Quality of Service (QoS) 7

Receive Buffer

By default, the receive buffer configuration is controlled automatically. Users can override
the receive buffer size and receive buffer's xon and xoff thresholds using mlnx_qos tool.

For further information, please refer to HowTo Tune the Receive buffers on NVIDIA
Adapters community post.

DCBX Control Mode

DCBX settings, such as "ETS" and "strict priority" can be controlled by firmware or
software. When DCBX is controlled by firmware, changes of QoS settings cannot be done
by the software. The DCBX control mode is configured using the mlnx_qos -d os/fw
command.

For further information on how to configure the DCBX control mode, please refer to
mlnx_qos community post.

Quality of Service Tools

mlnx_qos

mlnx_qos is a centralized tool used to configure QoS features of the local host. It
communicates directly with the driver thus does not require setting up a DCBX daemon
on the system.

The mlnx_qos tool enables the administrator of the system to:

Inspect the current QoS mappings and configuration

Setting the Trust State mode shall be done before enabling SR-IOV in
order to propagate the Trust State to the VFs.

https://enterprise-support.nvidia.com/s/article/howto-tune-receive-buffers-on-mellanox-adapter-cards
https://enterprise-support.nvidia.com/s/article/howto-tune-receive-buffers-on-mellanox-adapter-cards
https://enterprise-support.nvidia.com/s/article/mlnx-qos

Quality of Service (QoS) 8

The tool will also display maps configured by TC and vconfig set_egress_map tools,
in order to give a centralized view of all QoS mappings.

Set UP to TC mapping

Assign a transmission algorithm to each TC (strict or ETS)

Set minimal BW guarantee to ETS TCs

Set rate limit to TCs

Set DCBX control mode

Set cable length

Set trust state

Usage

Options

--
version

Show the program's version number and exit

-h, --
help

Show this help message and exit

-f LIST,
--
pfc=LIS
T

Set priority flow control for each priority. LIST is
a comma separated value for each priority starting from
0 to 7. Example: 0,0,0,0,1,1,1,1 enable PFC on TC4-7

Note

For an unlimited ratelimit, set the ratelimit to 0.

mlnx_qos -i <interface> \[options\]

Quality of Service (QoS) 9

-p LIST,
--
prio_tc
=LIST

Maps UPs to TCs. LIST is 8 comma-separated TC numbers. Example:
0,0,0,0,1,1,1,1 maps UPs 0-3 to TC0, and UPs 4-7 to TC1

-s LIST,
--
tsa=LIS
T

Transmission algorithm for each TC. LIST is comma separated algorithm names
for each TC. Possible algorithms: strict, ets and vendor. Example:
vendor,strict,ets,ets,ets,ets,ets,ets sets TC0 to vendor, TC1 to strict, TC2-7 to
ets

-t LIST,
--
tcbw=L
IST

Set the minimally guaranteed %BW for ETS TCs. LIST is comma-separated
percents for each TC. Values set to TCs that are not configured to ETS
algorithm are ignored but must be present. Example: if TC0,TC2 are set to ETS,
then 10,0,90,0,0,0,0,0will set TC0 to 10% and TC2 to 90%. Percents must sum
to 100

-r LIST,
--
ratelimi
t=LIST

Rate limit for TCs (in Gbps). LIST is a comma-separated Gbps limit for each TC.
Example: 1,8,8 will limit TC0 to 1Gbps, and TC1,TC2 to 8 Gbps each

-d
DCBX, -
-
dcbx=D
CBX

Set dcbx mode to firmware controlled(fw) or OS controlled(os). Note, when in
OS mode, mlnx_qos should not be used in parallel with other dcbx tools, such
as lldptool

--
trust=T
RUST

set priority trust state to pcp or dscp

--
dscp2p
rio=DS
CP2PRI
O

Set/del a (dscp,prio) mapping. Example 'set,30,2' maps dscp 30 to priority 2.
'del,30,2' resets the dscp 30 mapping back to the default setting priority 0

--
cable_l
en=CA
BLE_LE
N

Set cable_len for buffer's xoff and xon thresholds

-i INTF,
--
interfa
ce=INT
F

Interface name

Quality of Service (QoS) 10

-a Show all interface's TCs

Get Current Configuration

ofed_scripts/utils/mlnx_qos -i ens1f0
DCBX mode: OS controlled
Priority trust state: dscp
dscp2prio mapping:
 prio:0 dscp:07,06,05,04,03,02,01,00,
 prio:1 dscp:15,14,13,12,11,10,09,08,
 prio:2 dscp:23,22,21,20,19,18,17,16,
 prio:3 dscp:31,30,29,28,27,26,25,24,
 prio:4 dscp:39,38,37,36,35,34,33,32,
 prio:5 dscp:47,46,45,44,43,42,41,40,
 prio:6 dscp:55,54,53,52,51,50,49,48,
 prio:7 dscp:63,62,61,60,59,58,57,56,
Cable len: 7
PFC configuration:
 priority 0 1 2 3 4 5 6 7
 enabled 0 0 0 0 0 0 0 0
tc: 0 ratelimit: unlimited, tsa: vendor
 priority: 1
tc: 1 ratelimit: unlimited, tsa: vendor
 priority: 0
tc: 2 ratelimit: unlimited, tsa: vendor
 priority: 2
tc: 3 ratelimit: unlimited, tsa: vendor
 priority: 3
tc: 4 ratelimit: unlimited, tsa: vendor
 priority: 4
tc: 5 ratelimit: unlimited, tsa: vendor
 priority: 5
tc: 6 ratelimit: unlimited, tsa: vendor
 priority: 6
tc: 7 ratelimit: unlimited, tsa: vendor

Quality of Service (QoS) 11

Set ratelimit. 3Gbps for tc0 4Gbps for tc1 and 2Gbps for tc2

 priority: 7

mlnx_qos -i <interface> -p 0,1,2 -r 3,4,2
tc: 0 ratelimit: 3 Gbps, tsa: strict
 up: 0
 skprio: 0
 skprio: 1
 skprio: 2 (tos: 8)
 skprio: 3
 skprio: 4 (tos: 24)
 skprio: 5
 skprio: 6 (tos: 16)
 skprio: 7
 skprio: 8
 skprio: 9
 skprio: 10
 skprio: 11
 skprio: 12
 skprio: 13
 skprio: 14
 skprio: 15
 up: 3
 up: 4
 up: 5
 up: 6
 up: 7
tc: 1 ratelimit: 4 Gbps, tsa: strict
 up: 1
tc: 2 ratelimit: 2 Gbps, tsa: strict
 up: 2

Quality of Service (QoS) 12

ConfigureQoS. Map UP0,7 to tc0,1,2,3 to tc1 and 4,5,6 to tc2. Set tc0,tc1 as ets and tc2
as strict. Divide ets 30% for tc0 and 70% for tc1

tc and tc_wrap.py

The tc tool is used to create 8 Traffic Classes (TCs).

mlnx_qos -i <interface> -s ets,ets,strict -p 0,1,1,1,2,2,2 -t 30,70
tc: 0 ratelimit: 3 Gbps, tsa: ets, bw: 30%
 up: 0
 skprio: 0
 skprio: 1
 skprio: 2 (tos: 8)
 skprio: 3
 skprio: 4 (tos: 24)
 skprio: 5
 skprio: 6 (tos: 16)
 skprio: 7
 skprio: 8
 skprio: 9
 skprio: 10
 skprio: 11
 skprio: 12
 skprio: 13
 skprio: 14
 skprio: 15
 up: 7
tc: 1 ratelimit: 4 Gbps, tsa: ets, bw: 70%
 up: 1
 up: 2
 up: 3
tc: 2 ratelimit: 2 Gbps, tsa: strict
 up: 4
 up: 5
 up: 6

Quality of Service (QoS) 13

The tool will either use the sysfs (/sys/class/net//qos/tc_num) or the tc tool to create the
TCs.

Usage

Options

--version show program's version number and exit

-h, --help show this help message and exit

-u SKPRIO_UP, --
skprio_up=SKPRIO_UP

maps sk_prio to priority for RoCE. LIST is <=16 comma
separated priority. index of element is sk_prio

-i INTF, --interface=INTF Interface name

Example

Run:

Output:

tc_wrap.py -i <interface> \[options\]

tc_wrap.py -i enp139s0

Tarrfic classes are set to 8

UP 0

skprio: 0 (vlan 5)
UP 1

skprio: 1 (vlan 5)
UP 2

skprio: 2 (vlan 5 tos: 8)
UP 3

skprio: 3 (vlan 5)

Quality of Service (QoS) 14

Additional Tools

tc tool compiled with the sch_mqprio module is required to support kernel v2.6.32 or
higher. This is a part of iproute2 package v2.6.32-19 or higher. Otherwise, an alternative
custom sysfs interface is available.

mlnx_qos tool (package: ofed-scripts) requires python version 2.5 < = X

tc_wrap.py (package: ofed-scripts) requires python version 2.5 < = X

Packet Pacing

ConnectX-4 and above devices allow packet pacing (traffic shaping) per flow. This
capability is achieved by mapping a flow to a dedicated send queue and setting a rate limit
on that Send queue.

Note the following:

Up to 512 send queues are supported

16 different rates are supported

The rates can vary from 1 Mbps to line rate in 1 Mbps resolution

Multiple queues can be mapped to the same rate (each queue is paced
independently)

It is possible to configure rate limit per CPU and per flow in parallel

UP 4
skprio: 4 (vlan 5 tos: 24)

UP 5
skprio: 5 (vlan 5)

UP 6
skprio: 6 (vlan 5 tos: 16)

UP 7
skprio: 7 (vlan 5)

Quality of Service (QoS) 15

System Requirements

Driver v3.3 or higher

Linux kernel v4.1 or higher

ConnectX-4 or ConnectX-4 Lx adapter cards with an official firmware version

Packet Pacing Configuration

1. Firmware Activation:

First, make sure MFT service (mst) is started:

Then run:

Note

This configuration is non-persistent and does not survive driver
restart.

mst start

#echo "MLNX_RAW_TLV_FILE" > /tmp/mlxconfig_raw.txt
#echo “0x00000004 0x0000010c 0x00000000 0x00000001" >>
/tmp/mlxconfig_raw.txt
#yes | mlxconfig -d <mst_dev> -f /tmp/mlxconfig_raw.txt
set_raw > /dev/null
#reboot /mlxfwreset

Quality of Service (QoS) 16

2. Driver Activation:

There are two operation modes for Packet Pacing:

1. Rate limit per CPU core:

When XPS is enabled, traffic from a CPU core will be sent using the corresponding
send queue. By limiting the rate on that queue, the transmit rate on that CPU core
will be limited. For example:

In this case, the rate on Core 0 (tx-0) is limited to 300Mbit/sec.

2. Rate limit per flow:

1. The driver allows opening up to 512 additional send queues using the following
command:

In this case, 1200 additional queues are opened

2. Create flow mapping.

Users can map a certain destination IP and/or destination layer 4 Port to a
specific send queue. The match precedence is as follows:

#echo "MLNX_RAW_TLV_FILE" > /tmp/mlxconfig_raw.txt
#echo “0x00000004 0x0000010c 0x00000000 0x00000000" >>
/tmp/mlxconfig_raw.txt
#yes | mlxconfig -d <mst_dev >-f /tmp/mlxconfig_raw.txt
set_raw > /dev/null
#reboot /mlxfwreset

echo 300 > /sys/class/net/ens2f1/queues/tx-0/tx_maxrate

ethtool -L ens2f1 other 1200

Quality of Service (QoS) 17

IP + L4 Port

IP only

L4 Port only

No match (the flow would be mapped to default queues)

To create flow mapping:

Configure the destination IP. Write the IP address in hexadecimal representation to
the relevant sysfs entry. For example, to map IP address 192.168.1.1 (0xc0a80101)
to send queue 310, run the following command:

To map Destination L4 3333 port (either TCP or UDP) to the same queue, run:

From this point on, all traffic destined to the given IP address and L4 port will be
sent using send queue 310. All other traffic will be sent using the original send
queue.

iii. Limit the rate of this flow using the following command:

echo 0xc0a80101 > /sys/class/net/ens2f1/queues/tx-
310/flow_map/dst_ip

echo 3333 > /sys/class/net/ens2f1/queues/tx-
310/flow_map/dst_port

echo 100 > /sys/class/net/ens2f1/queues/tx-310/tx_maxrate

Note

Quality of Service (QoS) 18

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code,
or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements,
and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or
warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any specified use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and
determine the applicability of any information contained in this document, ensure the product is suitable and fit for the
application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS
DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are
trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

© Copyright 2024, NVIDIA. PDF Generated on 01/15/2025

Each queue supports only a single IP+Port combination.

	Mapping Traffic to Traffic Classes
	Plain Ethernet Quality of Service Mapping
	RoCE Quality of Service Mapping
	Map Priorities with set_egress_map
	Quality of Service Properties
	Strict Priority
	Enhanced Transmission Selection (ETS)
	Rate Limit
	Trust State
	Receive Buffer
	DCBX Control Mode

	Quality of Service Tools
	mlnx_qos
	Additional Tools

	Packet Pacing
	System Requirements
	Packet Pacing Configuration

