
NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0

Table of contents

Introduction 6

Release Notes 13

Changes and New Features 13

Known Issues 13

Change Log History 19

SNAP Deployment 21

SNAP Environment Variables 41

SNAP RPC Commands 43

Advanced Features 88

Appendixes 103

Appendix – DPU Firmware Configuration 103

Appendix – Building SNAP Container with Custom SPDK 108

Appendix – Deploying Container on Setups Without Internet Connectivity 111

Appendix – Install Legacy SPDK 113

Appendix – PCIe BDF to VUID Translation 114

Appendix – SNAP Memory Consumption 115

Appendix – Host OS Configuration 117

Document Revision History 119

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 1

Table of contents

Introduction

Release Notes

Changes and New Features

Known Issues

Change Log History

SNAP Deployment

SNAP Environment Variables

SNAP RPC Commands

Advanced Features

Appendixes

Appendix – DPU Firmware Configuration

Appendix – Building SNAP Container with Custom SPDK

Appendix – Deploying Container on Setups Without Internet Connectivity

Appendix – Install Legacy SPDK

Appendix – PCIe BDF to VUID Translation

Appendix – SNAP Memory Consumption

Appendix – Host OS Configuration

Document Revision History

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 2

List of Figures
Figure 0. Snap Service Managers Version 1 Modificationdate
1716995599421 Api V2

Figure 1. Rdma Zero Copy Read Write Io Flow Version 1
Modificationdate 1716995598626 Api V2

Figure 2. Rdma Non Zero Copy Read Io Flow Version 1 Modificationdate
1716995599098 Api V2

Figure 3. Snap Container Setup Example Version 1 Modificationdate
1716995603751 Api V2

Figure 4. Live Upgrade Flow Diagram Version 1 Modificationdate
1716995611013 Api V2

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 3

About This Document

This document describes the configuration parameters of NVIDIA® BlueField®-3 SNAP
and virtio-blk SNAP in detail.

Audience

This manual is intended for SNAP users looking to install and configure it.

Technical Support

Customers who purchased NVIDIA products directly from NVIDIA are invited to contact us
through the following methods:

E-mail: enterprisesupport@nvidia.com
Enterprise Support page: https://www.nvidia.com/en-us/support/enterprise

Customers who purchased NVIDIA M-1 Global Support Services, please see your contract
for details regarding technical support.

Customers who purchased NVIDIA products through an NVIDIA-approved reseller should
first seek assistance through their reseller.

Glossary

Term Description

CLI Command line interface

Bdev Block device

BFB BlueField bootstream

DMA Direct memory access

DPA Data path accelerator

https://docs.nvidia.com/mailto:Enterprisesupport@nvidia.com
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nvidia.com%2Fen-us%2Fsupport%2Fenterprise&data=05%7C01%7Camirn%40nvidia.com%7C1123aef1cfaf4fd44e7f08da4472ff5a%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C637897557943988355%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=B55X06j66qptTA1ycMKbW3PMUw5pdNTZUd40nW8jKPA%3D&reserved=0

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 4

Term Description

ETH Ethernet

FW Firmware

I/O Input/output

IB InfiniBand

LBA Logical block addressing

NSID Namespace ID

NVMe Non-volatile memory express

OS Operating system

PF Physical function

RPC Remote procedure call

SF Scalable function

SNAP Storage-defined network accelerated processing

Vbdev Virtual bdev

VF Virtual function

Related Documents

Title Description

NVIDIA DOCA
NVIDIA DOCA™ SDK enables developers to rapidly create applications
and services on top of NVIDIA® BlueField® networking platform,
leveraging industry-standard APIs

NVIDIA
BlueField BSP

BlueField Board Support Package includes the bootloaders and other
essentials for loading and setting software components

BlueField
DPU
Hardware
User Manual

This document provides details as to the interfaces of the BlueField DPU,
specifications, required software and firmware for operating the device,
and a step-by-step plan for bringing the DPU up

NVIDIA
BlueField
DPU Platform

This document provides product release notes as well as information on
the BlueField software distribution and how to develop and/or

https://docs.nvidia.com/doca/sdk/index.html
https://docs.nvidia.com/networking/display/bluefielddpuos
https://docs.nvidia.com/networking/display/bluefielddpuos
https://docs.mellanox.com/category/bluefieldsnic
https://docs.mellanox.com/category/bluefieldsnic
https://docs.mellanox.com/category/bluefieldsnic
https://docs.mellanox.com/category/bluefieldsnic
https://docs.mellanox.com/category/dpuos
https://docs.mellanox.com/category/dpuos
https://docs.mellanox.com/category/dpuos

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 5

Title Description

Operating
System

customize applications, system software, and file system images for the
BlueField platform

NVIDIA
Accelerated
IO (XLIO)
Documentati
on

This document covers product release notes as well as features of XLIO.
XLIO is a user-space software library that exposes standard socket APIs
with kernel-bypass architecture, enabling a hardware-based direct copy
between an application's user-space memory and the network interface.

https://docs.mellanox.com/category/dpuos
https://docs.mellanox.com/category/dpuos
https://docs.mellanox.com/category/dpuos
https://docs.mellanox.com/category/dpuos
https://docs.nvidia.com/networking/category/xlio
https://docs.nvidia.com/networking/category/xlio
https://docs.nvidia.com/networking/category/xlio
https://docs.nvidia.com/networking/category/xlio
https://docs.nvidia.com/networking/category/xlio

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 6

Introduction
NVIDIA® BlueField® SNAP and virtio-blk SNAP (storage-defined network accelerated
processing) technology enables hardware-accelerated virtualization of local storage.
NVMe/virtio-blk SNAP presents networked storage as a local block-storage device (e.g.,
SSD) emulating a local drive on the PCIe bus. The host OS or hypervisor uses its standard
storage driver, unaware that communication is done, not with a physical drive, but with
NVMe/virtio-blk SNAP framework. Any logic may be applied to the I/O requests or to the
data via the NVMe/virtio-blk SNAP framework prior to redirecting the request and/or data
over a fabric-based network to remote or local storage targets.

NVMe/virtio-blk SNAP is based on the NVIDIA® BlueField® DPU family technology and
combines unique software-defined hardware-accelerated storage virtualization with the
advanced networking and programmability capabilities of the DPU. NVMe/virtio-blk SNAP
together with the BlueField DPU enable a world of applications addressing storage and
networking efficiency and performance.

The traffic arriving from the host towards the emulated PCIe device is redirected to its
matching storage controller opened on the mlnx_snap service.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 7

The controller implements the device specification and may expose backend device
accordingly (in this use case SPDK is used as the storage stack that exposes backend
devices). When a command is received, the controller executes it.

Admin commands are mostly answered immediately, while I/O commands are redirected
to the backend device for processing.

The request-handling pipeline is completely asynchronous, and the workload is
distributed across all Arm cores (allocated to SPDK application) to achieve the best
performance.

The following are key concepts for SNAP:

Full flexibility in fabric/transport/protocol (e.g. NVMe-oF/iSCSI/other, RDMA/TCP,
ETH/IB)

NVMe and virtio-blk emulation support

Programmability

Easy data manipulation

Allowing zero-copy DMA from the remote storage to the host

Using Arm cores for data path

SNAP as Container

Note

BlueField SNAP for NVIDIA® BlueField®-2 DPU is licensed software.
Users must purchase a license per BlueField-2 DPU to use them.

NVIDIA® BlueField®-3 DPU does not have license requirements to
run BlueField SNAP.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 8

In this approach, the container could be downloaded from NVIDIA NGC and could be
easily deployed on the DPU.

The yaml file includes SNAP binaries aligned with the latest spdk.nvda version. In this case,
the SNAP sources are not available, and it is not possible to modify SNAP to support
different SPDK versions (SNAP as an SDK package should be used for that).

For instructions on how to install the SNAP container, please see "SNAP Container
Deployment".

SNAP as a Package

The SNAP development package (custom) is intended for those wishing to customize the
SNAP service to their environment, usually to work with a proprietary bdev and not with
the spdk.nvda version. This allows users to gain full access to the service code and the lib
headers which enables them to compile their changes.

SNAP Emulation Lib

This includes the protocols libraries and the interaction with the firmware/hardware
(PRM) as well as:

Plain shared objects (*.so)

Static archives (*.a)

pkgconfig definitions (*.pc)

Include files (*.h)

Note

SNAP 4.x is not pre- installed on the BFB but can be downloaded
manually on demand .

https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-SNAPContainerDeployment
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-SNAPContainerDeployment

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 9

SNAP Service Sources

This includes the following managers:

Emulation device managers:

Emulation manager – manages the device emulations, function discovery, and
function events

Hotplug manager – manages the device emulations hotplug and hot-unplug

Config manager – handles common configurations and RCPs (which are not
protocol-specific)

Service infrastructure managers:

Memory manager – handles the SNAP mempool which is used to copy into the
Arm memory when zero-copy between the host and the remote target is not
used

Thread manager – handles the SPDK threads

Protocol specific control path managers:

NVMe manager – handles the NVMe subsystem, NVMe controller and
Namespace functionalities

VBLK manager – handles the virtio-blk controller functionalities

IO manager:

Implements the IO path for regular and optimized flows (RDMA ZC and TCP
XLIO ZC)

Handles the bdev creation and functionalities

SNAP Service Dependencies

SNAP service depends on the following libraries:

SPDK – depends on the bdev and the SPDK resources, such as SPDK threads, SPDK
memory, and SPDK RPC service

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 10

XLIO (for NVMeTCP acceleration)

SNAP Service Flows

IO Flows

Example of RDMA zero-copy read/write IO flow:

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 11

Example of RDMA non-zero-copy read IO flow:

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 12

Data Path Providers

SNAP facilitates user-configurable providers to assist in offloading data-path applications
from the host. These include: Device emulation, IO-intensive operations, and DMA
operations.

DPA provider – DPA (data path accelerator) is a cluster of multi-core and multi-
execution-unit RISC-V processors embedded within the BlueField

DPU provider – Handling the data-path applications from the host using the
BlueField CPU. This mode improves IO latency.

Note

DPA is the default provider in SNAP for NVMe and virtio-blk.

Note

BlueField is supported only with virtio-blk. To configure the BlueField
mode, use the environment variable VIRTIO_EMU_PROVIDER=dpu to
modify the the variable on the YAML. Refer to the "SNAP Environment
Variables" page for more information.

file:///networking/display/bluefield3snap440/SNAP+Environment+Variables
file:///networking/display/bluefield3snap440/SNAP+Environment+Variables

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 13

Release Notes
The release note pages provide information for NVIDIA® BlueField®-3 SNAP software
such as changes and new features, software known issues, and bug fixes.

Changes and New Features

Known Issues

Change Log History

Changes and New Features

Key Features in Version 4.4.0

VQ-level state dump for virtio-blk/net

Virtio-blk recovery support enabled by default

Known Issues
SNAP Issues

The following are known limitations of this NVMe/virtio-blk SNAP software version.

R
ef
#

Issue

- Description: The SPDK bdev_uring is not supported. It will be supported next release.

Workaround: N/A

Keywords: NVMe

https://docs.nvidia.com//networking/display/bluefield3snap440/Changes+and+New+Features
https://docs.nvidia.com//networking/display/bluefield3snap440/Known+Issues
https://docs.nvidia.com//networking/display/bluefield3snap440/Change+Log+History

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 14

R
ef
#

Issue

Discovered in version: 4.4.0

38
17
04
0

Description: When running nvme_controller_suspend RPC with the --timeout parameter, if
timeout expires, the device is no longer operational and cannot be resumed.

Workaround: Destroy and re-create the controller.

Keywords: NVMe

Discovered in version: 4.4.0

38
09
64
6

Description: When working with a new DPA provider, when sending DMA followed
by an interrupt to DPA, it wakes up before DMA is written to the buffer causing DPA
to miss events.

Workaround: Add a software-based periodic wake-up mechanism.

Keywords: NVMe

Discovered in version: 4.4.0

37
73
34
6

Description: In virtio-blk controller configuration, when running with SPDK NVMe-oF
initiator as a backend, an unaligned size_max value may cause memory corruption.

Workaround: size_max and seg_max values must be a power of 2.

Keywords: Virtio-blk; NVMe-oF; spdk

Discovered in version: 4.3.1

37
45
84
2

Description: When running with NVMe/TCP SPDK block device as a backend, SNAP
cannot work over more than 8 cores.

Workaround: Work with Arm core mask which uses only 8 cores.

Keywords: NVMe; TCP; SPDK

Discovered in version: 4.3.1

– Description: The container image may becomes corrupted, resulting in the
container status showing as exited with the error message /usr/bin/supervisord: exec

format error.

Workaround: Remove the YAML from kubelet, use crictl images to list the images and
crictl rmi <image-id> to remove the image. Run systemctl restart containerd and systemctl

restart kubelet, then copy the YAML file again to kubelet.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 15

R
ef
#

Issue

Keywords: NGC; container image

Discovered in version: 4.3.1

37
57
17
1

Description: When running virtio-blk emulation with large IOs (>128K) and SPDK's
nvmf initiator as a backend, IOs may fail in SPDK layer due to bad alignment.

Workaround: size_max value of virtio_blk_controller_create RPC must be set and be a
power of 2.

Keywords: SPDK, virtio-blk, size_max

Discovered in version: 4.3.1

36
89
91
8
37
53
63
7

Description: SNAP container bring-up takes a long time when configured with a
large number of emulations, possibly taking longer than the default NVMe driver
timeout.

Workaround: Increase NVMe driver IO timeout to 300 seconds (instead of 30).

Keywords: NVMe; recovery; kernel driver

Discovered in version: 4.3.0

–

Description: NVMeTCP XLIO is currently not supported when running 64K page size
kernels on the DPU Arm cores (as is the case for CentOS 8.x, Rocky 8.x, or openEuler
20.x).

Workaround: N/A

Keywords: 64K page size; NVMeTCP XLIO

Discovered in version: 4.1.0

32
64
15
4

Description: NVMeTCP XLIO is not supported when running 64K page size kernels
on the DPU Arm cores (such is the case with CentOS 8.x, Rocky 8.x, or openEuler
20.x).

Workaround: N/A

Keywords: Page size; NVMeTCP XLIO

Discovered in version: 4.1.0

– Description: NVMe over RDMA full offload is not supported.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 16

R
ef
#

Issue

Workaround: N/A

Keywords: NVMe over RDMA; support

Discovered in version: 4.0.0

OS/vendor Issues

Re
f #

Issue

-

Description: Some old Windows OS NVMe drivers have buggy usage of SGL
support.

Workaround: Disable SGL support when using Windows OS by setting the --quirks bit
4 to 1 in snap_rpc.py nvme_controller_create RPC.

Keywords: Windows; NVMe

Reported in version: 4.4.0

28
79
26
2

Description: When the virtio-blk kernel driver cannot find enough MSI-X vectors to
satisfy all its opened virtqueues, it failovers to assign a single MSI-X vector to all
virtqueues which negatively impacts performance. In addition, when a large
number (e.g., 64) of virtqueues are associated with a single MSI-X, the kernel may
enter a soft-lockup (kernel bug) and the IO will hang.

Workaround: Always keep num_queues < num_msix. Best practice is to not set --
num_queues at all when creating virtio-blk controllers, and the best-suited value is
automatically chosen based on available MSI-X.

Keywords: Virtio-blk; kernel driver; MSI-X

Info

The following are not BlueField SNAP limitations.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 17

Re
f #

Issue

Reported in version: 4.3.0

-

Description: If PCIe devices are inserted prior to the hot-plug driver being loaded
on host, the hot-plug driver in kernel version less than 4.19 does not enable the slot
even if the slot is occupied (i.e., presence detected in slot status register). That is,
only the presence state of the slot is changed by firmware but the PCIe slot is not
enabled by the kernel after host bootup (i.e.,
So that we can't get the PCIe device by lspci on host side, and the bdf is 0 on
controller.

Workaround: Add pciehp.pciehp_force=1 to the boot command line on host.

Keywords: Virtio-blk; kernel driver; hot-plug

Reported in version: 4.2.1

-

Description: RedHat/Centos 7.x does not handle "online" (post driver probe)
namespace additions/removals correctly.

Workaround: Use --quirks=0x2 option in snap_rpc.py nvme_controller_create.

Keywords: NVMe; CentOS; RedHat; kernel

Reported in version: 4.1.0

-

Description: Some Windows drivers have experimental support for "online" (post
driver probe) namespace additions/removal, although such support is not
communicated with the device.

Workaround: Use --quirks=0x1 option in snap_rpc.py nvme_controller_create.

Keywords: NVMe; Windows

Reported in version: 4.1.0

-

Description: VMWare ESXi supports "online" (post driver probe) namespace
additions/removal, only if “Namespace Management” is supported by controller.

Workaround: Use --quirks=0x8 option in snap_rpc.py nvme_controller_create.

Keywords: NVMe, ESXi

Reported in version: 4.1.0

- Description: Ubuntu 22.04 does not support 500 VFs.

Workaround: N/A

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 18

Re
f #

Issue

Keywords: Virtio-blk; kernel driver; Ubuntu 22.04

Reported in version: 4.1.0

–

Description: Virtio-blk Linux kernel driver does not handle PCIe FLR events.

Workaround: N/A

Keywords: Virtio-blk; kernel driver

Reported in version: 4.0.0

36
79
37
3

Description: Virtio-blk spdk driver (vfio-pci based) does not handle PCIe FLR events.

Workaround: N/A

Keywords: Virtio-blk; SPDK driver

Reported in version: 4.3.0

–

Description: A n ew virtio-blk Linux kernel driver (starting kernel 4.18) does not
support hot-unplug during traffic. Since the kernel may self-generate spontaneous
IOs, on rare occasions, an issue may happen even when no traffic is explicitly being
run.

Workaround: N/A

Keywords: Virtio-blk; kernel driver

Reported in version: 4.0.0

Description: SPDK NVMf/RDMA initiator fails to connect to kernel NVMf/RDMA
remote target.

Workaround: Use setting spdk_rpc.py bdev_nvme_set_options --io-queue-requests=128 on
SPDK configuration

Keywords: SPDK, NVMf, RDMA, kernel

Reported in version: 4.3.1

- Description: Windows OS virtio-blk driver expects at least 64K data to be available
for a single IO request

Workaround: Use seg_max and size_max parameters configuration to match
requirements (`seg_max * size_max > 64K`).

Keywords: Windows, virtio-blk

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 19

Re
f #

Issue

Reported in version: 4.3.1

-

Description: Some old Windows OS versions have malfunctioning inbox virtio-blk
driver, expects a 3-party virtio-blk driver to be pre-installed to operate properly.

Workaround: Use verified 3-party driver published by fedora (link).

Keywords: Windows, virtio-blk

Reported in version: 4.3.1

Change Log History
Key Features in Version 4.3.1

Adjusted logging system in lower-level libs to match SNAP GA standards

Implemented support for indirect descriptors in Virtio-blk controller

Added encryption metadata support for NVMe controller

The spdk_bdev_create RPC is optional for SPDK bdevs

Introduced supervisor for improved SNAP service management

Key Features in Version 4.3.0

Virtio-blk recovery support

RPC log (debug)

DPA mask

Key Features in Version 4.2.1

Live update tool

https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/virtio-win-0.1.229-1/

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 20

Key Features in Version 4.1.0

SNAP 4.1.0 introduces the following capabilities:

NVMe recovery support

NVMeTCP XLIO support

Dynamic MSIX support

Live upgrade support

Key Features in Version 4.0.1

SNAP 4.0.1 introduces the following capabilities:

Beta-level support for TCP XLIO

Virtio-blk Live migration support

NVMe optional commands (write-zeros, compare, compare and write)

SNAP source package support

NVIDIA® BlueField®-3 support

Virtio-blk emulation

NVMe emulation

Hot-plug support

SR-IOV support

Container support

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 21

SNAP Deployment
This section describes how to deploy SNAP as a container.

Installing Full DOCA Image on DPU

To install NVIDIA® BlueField®-3 BFB:

For more information, please refer to section "Installing Full DOCA Image on DPU" in the
NVIDIA DOCA Installation Guide for Linux.

Firmware Installation

For more information, please refer to section "Upgrading Firmware" in the NVIDIA DOCA
Installation Guide for Linux.

Firmware Configuration

Note

SNAP does not come pre-installed with the BFB.

[host] sudo bfb-install --rshim <rshimN> --bfb <image_path.bfb>

[dpu] sudo /opt/mellanox/mlnx-fw-updater/mlnx_fw_updater.pl --force-fw-update

Note

https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 22

1. Clear the firmware config before implementing the required configuration:

2. Review the firmware configuration:

Output example:

Where the output provides 5 columns:

Non-default configuration marker (*)

Firmware configuration name

FW configuration may expose new emulated PCI functions, which can
be later used by the host's OS. As such, user must make sure all
exposed PCI functions (static/hotplug PFs, VFs) are backed by a
supporting SNAP SW configuration, otherwise these functions will
remain malfunctioning and host behavior will be undefined.

[dpu] mst start
[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 reset

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 query

mlxconfig -d /dev/mst/mt41692_pciconf0 -e query | grep NVME
Configurations: Default Current Next Boot
* NVME_EMULATION_ENABLE False(0) True(1) True(1)
* NVME_EMULATION_NUM_VF 0 125 125
* NVME_EMULATION_NUM_PF 1 2 2
NVME_EMULATION_VENDOR_ID 5555 5555 5555
NVME_EMULATION_DEVICE_ID 24577 24577 24577
NVME_EMULATION_CLASS_CODE 67586 67586 67586
NVME_EMULATION_REVISION_ID 0 0 0
NVME_EMULATION_SUBSYSTEM_VENDOR_ID 0 0 0

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 23

Default firmware value

Current firmware value

Firmware value after reboot – shows a configuration update which is pending
system reboot

3. To enable storage emulation options, the first DPU must be set to work in internal
CPU model:

4. To enable the firmware config with virtio-blk emulation PF:

5. To enable the firmware config with NVMe emulation PF:

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s INTERNAL_CPU_MODEL=1

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s
VIRTIO_BLK_EMULATION_ENABLE=1 VIRTIO_BLK_EMULATION_NUM_PF=1

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s
NVME_EMULATION_ENABLE=1 NVME_EMULATION_NUM_PF=1

Note

For a complete list of the SNAP firmware configuration options, refer
to "Appendix – DPU Firmware Configuration".

Note

Power cycle is required to apply firmware configuration changes.

file:///networking/display/bluefield3snap440/Appendix+%E2%80%93+DPU+Firmware+Configuration

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 24

RDMA/RoCE Firmware Configuration

RoCE communication is blocked for BlueField OS's default interfaces (named ECPFs,
typically mlx5_0 and mlx5_1). If RoCE traffic is required, additional network functions must
be added, scalable functions (or SFs), which do support RoCE transport.

To enable RDMA/RoCE:

SR-IOV Firmware Configuration

SNAP supports up to 512 total VFs on NVMe and up to 1000 total VFs on virtio-blk. The
VFs may be spread between up to 4 virtio-blk PFs or 2 NVMe PFs.

Common example:

Virtio-blk 250 VFs example (1 queue per VF):

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s PER_PF_NUM_SF=1
[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s PF_SF_BAR_SIZE=8 PF_TOTAL_SF=2
[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0.1 s PF_SF_BAR_SIZE=8
PF_TOTAL_SF=2

Note

This is not required when working over TCP or RDMA over InfiniBand.

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s SRIOV_EN=1
PER_PF_NUM_SF=1 LINK_TYPE_P1=2 LINK_TYPE_P2=2 PF_TOTAL_SF=8
PF_SF_BAR_SIZE=8 TX_SCHEDULER_BURST=15

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 25

Virtio-blk 1000 VFs example (1 queue per VF):

NVMe 250 VFs example (1 IO-queue per VF):

Hot-plug Firmware Configuration

Once enabling PCIe switch emulation, BlueField can support up to 14 hotplug
NVMe/Virtio-blk functions. "PCI_SWITCH_EMULATION_NUM_PORT-1" hot-plugged PCIe functions.
These slots are shared among all DPU users and applications and may hold hot-plugged
devices of type NVMe, virtio-blk, virtio-fs, or others (e.g., virtio-net).

To enable PCIe switch emulation and determine the number of hot-plugged ports to be
used:

PCI_SWITCH_EMULATION_NUM_PORT equals 2 + the number of hot-plugged PCIe functions.

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s
VIRTIO_BLK_EMULATION_ENABLE=1 VIRTIO_BLK_EMULATION_NUM_VF=125
VIRTIO_BLK_EMULATION_NUM_PF=2 VIRTIO_BLK_EMULATION_NUM_MSIX=2

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s
VIRTIO_BLK_EMULATION_ENABLE=1 VIRTIO_BLK_EMULATION_NUM_VF=250
VIRTIO_BLK_EMULATION_NUM_PF=4 VIRTIO_BLK_EMULATION_NUM_MSIX=2
VIRTIO_NET_EMULATION_ENABLE=0 NUM_OF_VFS=0
PCI_SWITCH_EMULATION_ENABLE=0

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s
NVME_EMULATION_ENABLE=1 NVME_EMULATION_NUM_VF=125
NVME_EMULATION_NUM_PF=2 NVME_EMULATION_NUM_MSIX=2

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s
PCI_SWITCH_EMULATION_ENABLE=1 PCI_SWITCH_EMULATION_NUM_PORT=16

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 26

For additional information regarding hot plugging a device, refer to section "Hotplugged
PCIe Functions Management".

UEFI Firmware Configuration

To use the storage emulation as a boot device, it is recommended to use the DPU's
embedded UEFI expansion ROM drivers to be used by the UEFI instead of the original
vendor's BIOS ones.

To enable UEFI drivers:

DPA Core Mask

Note

Hotplug is not guaranteed to work on AMD machines and enabling
PCI_SWITCH_EMULATION_ENABLE could potentially impact SR-IOV
capabilities on AMD machines.

Note

Currently, hotplug PFs do not support SR-IOV.

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s
EXP_ROM_VIRTIO_BLK_UEFI_x86_ENABLE=1 EXP_ROM_NVME_UEFI_x86_ENABLE=1

https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-HotpluggedPCIeFunctionsManagement
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-HotpluggedPCIeFunctionsManagement

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 27

The d ata path accelerator (DPA) is a cluster of 16 cores with 16 execution units (EUs) per
core.

SNAP supports reservation of DPA EUs for NVMe or virtio-blk controllers. By default, all
available EUs, 0-170, are shared between NVMe, virtio-blk, and other DPA applications on
the system (e.g., virtio-net).

To assign specific set of EUs, set the following environment variable:

For NVMe:

For virtio-blk:

The core mask must contain valid hexadecimal digits (it is parsed right to left). For
example, dpa_virtq_split_core_mask=0xff00 sets 8 EUs (i.e., EUs 8-16).

SNAP Container Deployment

SNAP container is available on the DOCA SNAP NVIDIA NGC catalog page.

Note

Only EUs 0-170 are available for SNAP.

dpa_nvme_core_mask=0x<EU_mask>

dpa_virtq_split_core_mask=0x<EU_mask>

Note

There is a hardware limit of 128 queues (threads) per DPA EU.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_snap

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 28

SNAP container deployment on top of the BlueField DPU requires the following sequence:

1. Setup preparation and SNAP resource download for container deployment. See
section "Preparation Steps" for details.

2. Adjust the doca_snap.yaml for advanced configuration if needed according to section
"Adjusting YAML Configuration".

3. Deploy the container. The image is automatically pulled from NGC. See section
"Spawning SNAP Container" for details.

The following is an example of the SNAP container setup.

Preparation Steps

Step 1: Allocate Hugepages

Allocate 2GiB hugepages for the SNAP container according to the DPU OS's Hugepagesize

value:

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 29

1. Query the Hugepagesize value:

In Ubuntu, the value should be 2048KB. In CentOS 8.x, the value should be
524288KB.

2. Append the following line to the end of the /etc/sysctl.conf file:

For Ubuntu or CentOS 7.x setups (i.e., Hugepagesize = 2048 kB):

For CentOS 8.x setups (i.e., Hugepagesize = 524288 kB):

3. Run the following:

[dpu] grep Hugepagesize /proc/meminfo

vm.nr_hugepages = 1024

vm.nr_hugepages = 4

[dpu] sysctl --system

Note

If live upgrade is utilized in this deployment, it is necessary to allocate
twice the amount of resources listed above for the upgraded
container.

Warning

If other applications are running concurrently within the setup and
are consuming hugepages, make sure to allocate additional

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 30

Step 2: Create nvda_snap Folder

The folder /etc/nvda_snap is used by the container for automatic configuration after
deployment.

Downloading YAML Configuration

The .yaml file configuration for the SNAP container is doca_snap.yaml. The download
command of the .yaml file can be found on the DOCA SNAP NGC page.

Adjusting YAML Configuration

The .yaml file can easily be edited for advanced configuration.

The SNAP .yaml file is configured by default to support Ubuntu setups (i.e.,
Hugepagesize = 2048 kB) by using hugepages-2Mi.

hugepages beyond the amount described in this section for those
applications.

Note

Internet connectivity is necessary for downloading SNAP resources.
To deploy the container on DPUs without Internet connectivity, refer
to appendix "Appendix – Deploying Container on Setups Without
Internet Connectivity".

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_snap
file:///networking/display/bluefield3snap440/Appendix+%E2%80%93+Deploying+Container+on+Setups+Without+Internet+Connectivity
file:///networking/display/bluefield3snap440/Appendix+%E2%80%93+Deploying+Container+on+Setups+Without+Internet+Connectivity

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 31

To support other setups, edit the hugepages section according to the DPU OS's
relevant Hugepagesize value. For example, to support CentOS 8.x configure
Hugepagesize to 512MB:

The following example edits the .yaml file to request 16 CPU cores for the SNAP
container:

To automatically configure SNAP container upon deployment:

1. Add spdk_rpc_init.conf file under /etc/nvda_snap/. File example:

2. Add snap_rpc_init.conf file under /etc/nvda_snap/.

Virtio-blk file example:

limits:
hugepages-512Mi: "<number-of-hugepages>Gi"

resources:
cpu: "16"
limits:
cpu: "16"
env:
- name: APP_ARGS
value: "-m 0xffff"

Note

If all BlueField-3 cores are requested, the user must verify no
other containers are in conflict over the CPU resources.

bdev_malloc_create 64 512

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 32

NVMe file example:

3. Edit the .yaml file accordingly (uncomment):

Spawning SNAP Container

virtio_blk_controller_create --pf_id 0 --bdev Malloc0

nvme_subsystem_create --nqn nqn.2022-10.io.nvda.nvme:0
nvme_namespace_create -b Malloc0 -n 1 --nqn nqn.2022-
10.io.nvda.nvme:0 --uuid 16dab065-ddc9-8a7a-108e-9a489254a839
nvme_controller_create --nqn nqn.2022-10.io.nvda.nvme:0 --ctrl
NVMeCtrl1 --pf_id 0 --suspended
nvme_controller_attach_ns -c NVMeCtrl1 -n 1
nvme_controller_resume -c NVMeCtrl1

env:
- name: SPDK_RPC_INIT_CONF
value: "/etc/nvda_snap/spdk_rpc_init.conf"
- name: SNAP_RPC_INIT_CONF
value: "/etc/nvda_snap/snap_rpc_init.conf"

Note

It is user responsibility to make sure SNAP configuration
matches firmware configuration. That is, an emulated
controller must be opened on all existing (static/hotplug)
emulated PCIe functions (either through automatic or
manual configuration). A PCIe function without a
supporting controller is considered malfunctioned, and
host behavior with it is anomalous.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 33

Run the Kubernetes tool:

Copy the updated doca_snap.yaml file to the /etc/kubelet.d directory.

Kubelet automatically pulls the container image from NGC described in the YAML file and
spawns a pod executing the container.

The SNAP service starts initialization immediately, which may take a few seconds. To
verify SNAP is running:

Look for the message "SNAP Service running successfully" in the log

Send spdk_rpc.py spdk_get_version to confirm whether SNAP is operational or still
initializing

Debug and Log

View currently active pods, and their IDs (it might take up to 20 seconds for the pod to
start):

Example output:

[dpu] systemctl restart containerd
[dpu] systemctl restart kubelet
[dpu] systemctl enable kubelet
[dpu] systemctl enable containerd

cp doca_snap.yaml /etc/kubelet.d/

crictl pods

POD ID CREATED STATE NAME
0379ac2c4f34c About a minute ago Ready snap

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 34

View currently active containers, and their IDs:

View existing containers and their ID:

Examine the logs of a given container (SNAP logs):

Examine the kubelet logs if something does not work as expected:

The container log file is saved automatically by Kubelet under /var/log/containers.

Refer to section "RPC Log History" for more logging information.

Stop, Start, Restart SNAP Container

To stop the container, remove the .yaml file form /etc/kubelet.d/.

To start the container, copy the .yaml file to the same path:

To restart the container (with sig-term), use the -t (timeout) option:

crictl ps

crictl ps -a

crictl logs <container_id>

journalctl -u kubelet

cp doca_snap.yaml /etc/kubelet.d

crictl stop -t 10 <container-id>

https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-RPCLogHistory

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 35

To restart the SNAP service without restarting the container. Kill the SNAP service
process on the DPU.

SNAP Source Package Deployment

System Preparation

Allocate 2Gi hugepages for the SNAP container according to the DPU OS's Hugepagesize

value:

1. Query the Hugepagesize value:

In Ubuntu, the value should be 2048KB. In CentOS 8.x, the value should be
524288KB.

2. Append the following line to the end of the /etc/sysctl.conf file:

Note

After containers in a pod exit, the kubelet restarts them with an
exponential back-off delay (10s, 20s, 40s, etc.) which is capped
at five minutes. Once a container has run for 10 minutes
without an issue, the kubelet resets the restart back-off timer
for that container.

Note

Restarting the SNAP service without restarting the container
helps avoid the occurrence of back-off delays.

[dpu] grep Hugepagesize /proc/meminfo

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 36

For Ubuntu or CentOS 7.x setups (i.e., Hugepagesize = 2048 kB):

For CentOS 8.x setups (i.e., Hugepagesize = 524288 kB):

3. Run the following:

Installing SNAP Source Package

Install the package:

vm.nr_hugepages = 1024

vm.nr_hugepages = 4

[dpu] sysctl --system

Note

If live upgrade is utilized in this deployment, it is necessary to allocate
twice the amount of resources listed above for the upgraded
container.

Warning

If other applications are running concurrently within the setup and
are consuming hugepages, make sure to allocate additional
hugepages beyond the amount described in this section for those
applications.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 37

For Ubuntu, run:

For CentOS, run:

Build, Compile, and Install Sources

1. Move to the sources folder. Run:

2. Build the sources. Run:

3. Compile the sources. Run:

4. Install the sources. Run:

dpkg -i snap-sources_<version>_arm64.*

rpm -i snap-sources_<version>_arm64.*

Note

To build SNAP with a custom SPDK, see section "Replace the BFB
SPDK".

cd /opt/nvidia/nvda_snap/src/

meson /tmp/build

meson compile -C /tmp/build

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 38

Configure SNAP Environment Variables

To config the environment variables of SNAP, run:

Run SNAP Service

Replace the BFB SPDK (Optional)

Start with installing SPDK.

To build SNAP with a custom SPDK, instead of following the basic build steps, perform the
following:

1. Move to the sources folder. Run:

meson install -C /tmp/build

source /opt/nvidia/nvda_snap/src/scripts/set_environment_variables.sh

/opt/nvidia/nvda_snap/bin/snap_service

Note

For legacy SPDK versions (e.g., SPDK 19.04) see the Appendix – Install
Legacy SPDK.

cd /opt/nvidia/nvda_snap/src/

file:///networking/display/bluefield3snap440/Appendix+%E2%80%93+Install+Legacy+SPDK
file:///networking/display/bluefield3snap440/Appendix+%E2%80%93+Install+Legacy+SPDK

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 39

2. Build the sources with spdk-compat enabled and provide the path to the custom
SPDK. Run:

3. Compile the sources. Run:

4. Install the sources. Run:

5. Configure SNAP env variables and run SNAP service as explained in section
"Configure SNAP Environment Variables" and "Run SNAP Service".

Build with Debug Prints Enabled (Optional)

Instead of the basic build steps, perform the following:

1. Move to the sources folder. Run:

2. Build the sources with buildtype=debug. Run:

3. Compile the sources. Run:

meson setup /tmp/build -Denable-spdk-compat=true -Dsnap_spdk_prefix=
</path/to/custom/spdk>

meson compile -C /tmp/build

meson install -C /tmp/build

cd /opt/nvidia/nvda_snap/src/

meson --buildtype=debug /tmp/build

meson compile -C /tmp/build

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 40

4. Install the sources. Run:

5. Configure SNAP env variables and run SNAP service as explained in section
"Configure SNAP Environment Variables" and "Run SNAP Service".

Automate SNAP Configuration (Optional)

The script run_snap.sh automates SNAP deployment. Users must modify the following files
to align with their setup. If different directories are utilized by the user, edits must be
made to run_snap.sh accordingly:

1. Edit SNAP env variables in:

2. Edit SPDK initialization RPCs calls:

3. Edit SNAP initialization RPCs calls:

Run the script:

meson install -C /tmp/build

/opt/nvidia/nvda_snap/bin/set_environment_variables.sh

/opt/nvidia/nvda_snap/bin/spdk_rpc_init.conf

/opt/nvidia/nvda_snap/bin/snap_rpc_init.conf

/opt/nvidia/nvda_snap/bin/run_snap.sh

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 41

SNAP Environment
Variables
Supported Environment Variables

Name Description
Def
ault

SNAP_RD
MA_ZCO
PY_ENAB
LE

Enable/disable RDMA zero-copy transport type.
For more info refer to section "Zero Copy (SNAP-direct)".

1
(en
abl
ed)

NVME_B
DEV_RES
ET_ENAB
LE

It is recommended that namespaces discovered from the same remote
target are not shared by different PCIe emulations. If it is desirable to do
that, users should set the variable NVME_BDEV_RESET_ENABLE to 0.

1
(en
abl
ed)

VBLK_RE
COVERY_
SHM

Enable/disable virtio-blk recovery using shared memory files. This allows
recovering without using --force_in_order.

1
(en
abl
ed)

YAML Configuration

Warning
By doing so, the user must ensure that SPDK bdev
always completes IOs (either with success or failure)
in a reasonable time. Otherwise, the system may
stall until all IOs return.

https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-ZeroCopy

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 42

To change the SNAP environment variables add the following to the doca_snap.yaml and
continue from section "Adjusting YAML Configuration".

For example:

Source Package Configuration

To change the SNAP environment variables:

1. Add/modify the configuration under scripts/set_environment_variables.sh.

2. Rerun:

3. Rerun SNAP.

env:
- name: VARIABLE_NAME
value: "VALUE"

env:
- name: SNAP_RDMA_ZCOPY_ENABLE
value: "1"

source scripts/set_environment_variables.sh

https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-AdjustingYAMLConfiguration

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 43

SNAP RPC Commands
Remote procedure call (RPC) protocol is used to control the SNAP service. NVMe/virtio-blk
SNAP, like other standard SPDK applications, supports JSON-based RPC protocol
commands to control any resources and create, delete, query, or modify commands
easily from CLI.

SNAP supports all standard SPDK RPC commands in addition to an extended SNAP-
specific command set. SPDK standard commands are executed by the spdk_rpc.py tool
while the SNAP-specific command set extension is executed by the snap_rpc.py tool.

Full spdk_rpc.py command set documentation can be found in the SPDK official
documentation site.

Full snap_rpc.py extended commands are detailed further down in this chapter.

Using JSON-based RPC Protocol

The JSON-based RPC protocol can be used via the snap_rpc.py script that is inside the SNAP
container and crictl tool.

To query the active container ID:

To post RPCs to the container using crictl:

Info

The SNAP container is CRI-compatible.

crictl ps -s running -q --name snap

https://spdk.io/doc/jsonrpc.html
https://spdk.io/doc/jsonrpc.html

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 44

For example:

In addition, an alias can be used:

To open a bash shell to the container that can be used to post RPCs:

Log Management

snap_log_level_set

SNAP allows dynamically changing the log level of the logger backend using the
snap_log_level_set. Any log under the requested level is shown.

Parameter Mandatory? Type Description

level Yes Number

Log level

0 – Critical
1 – Error
2 – Warning
3 – Info
4 – Debug
5 – Trace

crictl exec <container-id> snap_rpc.py <RPC-method>

crictl exec 0379ac2c4f34c snap_rpc.py emulation_function_list

alias snap_rpc.py="crictl ps -s running -q --name snap | xargs -I{} crictl exec -i {}
snap_rpc.py "
alias spdk_rpc.py="crictl ps -s running -q --name snap | xargs -I{} crictl exec -i {}
spdk_rpc.py "

crictl exec -it <container-id> bash

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 45

PCIe Function Management

Emulated PCIe functions are managed through IB devices called emulation managers.
Emulation managers are ordinary IB devices with special privileges to control PCIe
communication and device emulations towards the host OS.

SNAP queries an emulation manager that supports the requested set of capabilities.

The emulation manager holds a list of the emulated PCIe functions it controls. PCIe
functions may be approached later in 3 ways:

vuid – recommended as it is guaranteed to remain constant (see Appendix – PCIe
BDF to VUID Translation for details)

vhca_id

Function index (i.e., pf_id or vf_id)

emulation_function_list

emulation_function_list lists all existing functions.

The following is an example response for the emulation_function_list command:

[
{
"hotplugged": false,
"emulation_type": "VBLK",
"pf_index": 0,
"pci_bdf": "27:00.4",
"vhca_id": 4,
"vuid": "MT2142X08235VBLKS0D0F4"
}
]

https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+PCIe+BDF+to+VUID+Translation
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+PCIe+BDF+to+VUID+Translation

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 46

SNAP supports 2 types of PCIe functions:

Static functions – PCIe functions configured at the firmware configuration stage
(physical and virtual). Refer to appendix "DPU Firmware Configuration" for
additional information.

Hot-pluggable functions – PCIe functions configured dynamically at runtime. Users
can add detachable functions. Refer to section "Hot-pluggable PCIe Functions
Management" for additional information.

Hot-pluggable PCIe Functions Management

Hotplug PCIe functions are configured dynamically at runtime using RPCs.

The following commands hot plug a new PCIe function to the system:

Command Description

virtio_blk_emulation_device_attach Attach virtio-blk emulation function

nvme_emulation_device_attach Attach NVMe emulation function

Note

Use -a or --all, to show all inactive VF functions.

Note

Currently, hotplug PFs do not support SR-IOV.

Note

https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+DPU+Firmware+Configuration

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 47

virtio_blk_emulation_device_attach

Attach virtio-blk emulation function.

Command parameters:

Param
eter

Man
dator
y?

Typ
e

Description

id No
Nu
mb
er

Device ID

vid No
Nu
mb
er

Vendor ID

ssid No
Nu
mb
er

Subsystem device ID

ssvid No
Nu
mb
er

Subsystem vendor ID

revid No
Nu
mb
er

Revision ID

class_co
de No

Nu
mb
er

Class code

It is not recommended to use SNAP_RPC_INIT_CONF with hotplug devices
because if the hotplug device already exists (e.g., if the container was
restarting after failure), device_emulation_attach RPC would create
another PCIe function instance, which is most probably not the user
intention.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 48

Param
eter

Man
dator
y?

Typ
e

Description

num_m
six No

Nu
mb
er

MSI-X table size

total_vf No
Nu
mb
er

Maximal number of VFs allowed

bdev No
Stri
ng

Block device to use as backend

num_qu
eues No

Nu
mb
er

Number of IO queues (default 1, range 1-62).

queue_
depth No

Nu
mb
er

Queue depth (default 256, range 1-256)

Note
The actual number of queues is limited by the
number of queues supported by the
hardware.

Tip
It is recommended that the number of MSIX
be greater than the number of IO queues (1 is
used for the config interrupt).

Note
It is only possible to modify the queue depth if
the driver is not loaded.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 49

Param
eter

Man
dator
y?

Typ
e

Description

transitio
nal_devi
ce

No
Boo
lean

Transitional device support. See section "VirtIO-blk Transitional
Device Support" for more details.

nvme_emulation_device_attach

Attach NVMe emulation function.

Command parameters:

Para
mete
r

Mand
atory
?

Typ
e

Description

id No
Nu
mb
er

Device ID

vid No
Nu
mb
er

Vendor ID

ssid No
Nu
mb
er

Subsystem device ID

ssvid No
Nu
mb
er

Subsystem vendor ID

revid No
Nu
mb
er

Revision ID

class_
code No

Nu
mb
er

Class code

https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-VirtIO-blkTransitionalDeviceSupport
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-VirtIO-blkTransitionalDeviceSupport

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 50

Para
mete
r

Mand
atory
?

Typ
e

Description

num_
msix No

Nu
mb
er

MSI-X table size

total_v
f No

Nu
mb
er

Maximal number of VFs allowed

num_
queue
s

No
Nu
mb
er

Number of IO queues (default 31, range 1-31).

versio
n No

Stri
ng

Specification version (currently only 1.4 is supported)

Hot Unplug

The following commands hot-unplug a PCIe function from the system in 2 steps:

Command Description

1 emulation_device_detach_prepare Prepare emulation function to be detached

2 emulation_device_detach Detach emulation function

Note
The actual number of queues is limited by the
number of queues supported by the hardware.

Tip
It is recommended that the number of MSIX be
greater than the number of IO queues (1 is
used for the config interrupt).

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 51

emulation_device_detach_prepare

This is the first step for detaching an emulation device. It prepares the system to detach a
hot plugged emulation function. In case of success, the host's hotplug device state
changes and you may safely proceed to emulation_device_detach.

A controller must be attached to the emulation function before calling this command.

Command parameters:

Parameter Mandatory? Type Description

vhca_id No Number VHCA ID of PCIe function

vuid No String PCIe device VUID

ctrl No String Controller ID

emulation_device_detach

This is the second step which completes detaching of the hotplugged emulation function.
If the detach preparation times out, you may perform a surprise unplug using --force with
the command.

Note

At least one identifier must be provided to describe the PCIe function
to be detached.

Note

The driver must be unprobed, otherwise errors may occur.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 52

Command parameters:

Parameter Mandatory? Type Description

vhca_id No Number VHCA ID of PCIe function

vuid no String PCIe device VUID

ctrl No String Controller ID

force No Boolean Detach with failed preparation

Virtio-blk Hot Plug/Unplug Example

Notes:

After a new PCIe function is plugged, it is shown on the host's PCIe devices list until
it is either explicitly unplugged or the system goes through a cold reboot. A hot-

Note

At least one identifier must be provided to describe the PCIe function
to be detached.

spdk_rpc.py bdev_nvme_attach_controller -b nvme0 -t rdma -a 1.1.1.1 -f ipv4 -s 4420
-n nqn.2022-10.io.nvda.nvme:swx-storage
snap_rpc.py virtio_blk_emulation_device_attach
snap_rpc.py virtio_blk_controller_create --vuid MT2114X12200VBLKS1D0F0 --bdev
nvme0n1
snap_rpc.py emulation_device_detach_prepare --vuid MT2114X12200VBLKS1D0F0
snap_rpc.py emulation_device_detach --vuid MT2114X12200VBLKS1D0F0
snap_rpc.py virtio_blk_controller_destroy -c VblkCtrl1
spdk_rpc.py bdev_nvme_detach_controller nvme0

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 53

plugged PCIe function remains persistent even after SNAP process termination,
hence including hotplug/hotunplug actions in automatic init configuration scripts
(e.g. snap_rpc_init.conf) is not advised.

Some OSs automatically start to communicate with the new function after it is
plugged and some continue to communicate with the function (for a certain time)
even after it is signaled to be unplugged. Therefore, users must always keep an
open controller (of a matching type) over any existing configured PCIe function.

Hot-plug PFs do not currently support SR-IOV.

SPDK Bdev Management

SNAP uses SPDK block device framework as a backend for its NVMe namespaces/VBLK
controllers. Therefore, the SPDK bdev should be configured in advance.

For more information about SPDK block devices, see SPDK bdev documentation and
Appendix SPDK Configuration.

SNAP holds additional instances of bdevs, SNAP bdevs, which are managed using RPCs.
After creating an SPDK block device, expose the bdevs to SNAP using the SNAP bdevs'
management RPCs.

The order in which SNAP should be configured is as follows:

1. Create SPDK bdev.

2. Create SNAP bdev.

3. Create SNAP controllers.

Note

This step is optional. If not performed, SNAP automatically generates
SNAP block devices (bdevs). This RPC is helpful when block devices
which are not SPDK bdevs are utilized.

https://spdk.io/doc/bdev.html
https://github.com/Mellanox/nvmx/blob/main_4_0/doc/UserGuides.md#appen3

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 54

Bdev Management Commands

spdk_bdev_create

Parameter Mandatory? Type Description

bdev Yes String Block device name

spdk_bdev_destroy

Parameter Mandatory? Type Description

bdev Yes String Block device name

bdev_list

Example response:

Notes

If the spdk_bdev_destroy has a bdev that is already attached (i.e., in use), the RPC fails.

[
{
"name": "nvme0n1",
"block_size": 512,
"block_count": 131072,
"uuid": "dfe468c8-c15d-4ea9-93d3-6b8ef8ed6b36",
"transport": "rdma_zc"
}
]

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 55

SNAP supports bdev remove and resize events:

In case of a bdev remove event, SNAP detaches the bdev from the attached
NVMe namespaces/VBLK controllers and deletes the SNAP bdev

In case of a bdev resize event, SNAP updates the new size of the SNAP bdevs

Virtio-blk Emulation Management

Virtio-blk emulation is a storage protocol belonging to the virtio family of devices. These
devices are found in virtual environments yet by design look like physical devices to the
user within the virtual machine.

Each virtio-blk device (e.g., virtio-blk PCIe entry) exposed to the host, whether it is PF or
VF, must be backed by a virtio-blk controller.

Virtio-blk Emulation Management Commands

Command Description

virtio_blk_controller_create Create new virtio-blk SNAP controller

virtio_blk_controller_destroy Destroy virtio-blk SNAP controller

Note

Virtio-blk limitations:

Probing a virtio-blk driver on the host without an already
functioning virtio-blk controller may cause the host to hang until
such controller is opened successfully (no timeout mechanism
exists).

Upon creation of a virtio-blk controller, a backend device must
already exist.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 56

Command Description

virtio_blk_controller_suspen
d

Suspend virtio-blk SNAP controller

virtio_blk_controller_resume Resume virtio-blk SNAP controller

virtio_blk_controller_bdev_at
tach

Attach bdev to virtio-blk SNAP controller

virtio_blk_controller_bdev_d
etach

Detach bdev from virtio-blk SNAP controller

virtio_blk_controller_list Virtio-blk SNAP controller list

virtio_blk_controller_modify Virtio-blk controller parameters modification

virtio_blk_controller_dbg_io_
stats_get

Get virtio-blk SNAP controller IO stats

virtio_blk_controller_dbg_de
bug_stats_get

Get virtio-blk SNAP controller debug stats

virtio_blk_controller_state_sa
ve

Save state of the suspended virtio-blk SNAP controller

virtio_blk_controller_state_re
store

Restore state of the suspended virtio-blk SNAP controller

virtio_blk_controller_vfs_msi
x_reclaim

Reclaim virtio-blk SNAP controller VFs MSIX for the free
MSIX pool. Valid only for PFs.

virtio_blk_controller_create

Create a new SNAP-based virtio-blk controller over a specific PCIe function on the host.
To specify the PCIe function to open a controller upon must be provided as described in
section "PCIe Function Management":

1. vuid (recommended as it is guaranteed to remain constant).

2. vhca_id.

3. Function index – pf_id, vf_id.

The mapping for pci_index can be queried by running emulation_function_list.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 57

Command parameters:

Par
ame
ter

Man
dat
ory?

Typ
e

Description

vuid No
Stri
ng

PCIe device VUID

vhca
_id No

Nu
mb
er

VHCA ID of PCIe function

pf_id No
Nu
mb
er

PCIe PF index to start emulation on

vf_id No
Nu
mb
er

PCIe VF index to start emulation on (if the controller is meant to be
opened on a VF)

pci_b
df No

Stri
ng

PCIe device BDF

ctrl No
Stri
ng

Controller ID

num
_que
ues

No Nu
mb
er

Number of IO queues (default 1, range 1-62).

Note
The actual number of queues is limited by the
number of queues supported by the hardware.

Tip
It is recommended that the number of MSIX be
greater than the number of IO queues (1 is used
for the config interrupt).
Based on effective num_msix value (can be
queried from virtio_blk_controller_list RPC), it can

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 58

Par
ame
ter

Man
dat
ory?

Typ
e

Description

queu
e_siz
e

No
Nu
mb
er

Queue depth (default 256, range 1-256)

size_
max No

Nu
mb
er

Maximal SGE data transfer size (default 4096, range 1–MAX_UINT16)

seg_
max No

Nu
mb
er

Maximal SGE list length (default 1, range 1-queue_depth)

bdev No
Stri
ng

SNAP SPDK block device to use as backend

vblk_
id No

Stri
ng

Serial number for the controller

admi
n_q No 0/1 Enables live migration and NVIDIA vDPA

dyna
mic_
msix

No 0/1 Dynamic MSIX for SR-IOV VFs on this PF. Only valid for PFs.

vf_nu
m_m
six

No
Nu
mb
er

Number of MSIX for this VF. Root PF must have dynamic MSIX
configured. (must be an even number ≥ 2)

force
_in_o
rder

No 0/1
Support virtio-blk crash recovery. Enabling this parameter to 1 may
impact virtio-blk performance (default is 0). For more information,
refer to section "Virtio-blk Crash Recovery".

indir
ect_d
esc

No 0/1 Enables indirect descriptors support for the controller's virt-queues.

be later aligned using virtio_blk_controller_modify
RPC).

Note

https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-Virtio-blkCrashRecovery

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 59

Par
ame
ter

Man
dat
ory?

Typ
e

Description

Example response:

virtio_blk_controller_destroy

Destroy a previously created virtio-blk controller. The controller can be uniquely
identified by the controller name as acquired from virtio_blk_controller_create().

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

force No Boolean Force destroying VF controller for SR-IOV

virtio_blk_controller_suspend

While suspended, the controller stops receiving new requests from the host driver and
only finishes handling of requests already in flight. All suspended requests (if any) are
processed after resume.

When using the virtio-blk kernel driver, if indirect
descriptors are enabled, it is always used by the
driver. Using indirect descriptors for all IO traffic
patterns may hurt performance in most cases.

{
"jsonrpc": "2.0",
"id": 1,
"result": "VblkCtrl1"
}

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 60

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

virtio_blk_controller_resume

After the controller stops receiving new requests from the host driver (i.e., is suspended)
and only finishes handling of requests already in flight, the resume command will resume
the handling of IOs by the controller.

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

virtio_blk_controller_bdev_attach

Attach the specified bdev into virtIO-blk SNAP controller. It is possible to change the serial
ID (using the vblk_id parameter) if a new bdev is attached.

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

bdev Yes String Block device name

Note

The controller can be suspended only if the host driver is up.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 61

Parameter Mandatory? Type Description

vblk_id No String Serial number for controller

virtio_blk_controller_bdev_detach

You may replace the bdev for virtio-blk controller. First, you should detach bdev from the
controller. When bdev is detached, the controller stops receiving new requests from the
host driver (i.e., is suspended) and finishes handling requests already in flight only.

At this point, you may attach a new bdev or destroy the controller.

When a new bdev is attached, the controller resumes handling all outstanding I/Os.

Note

The block size cannot be changed if the driver is loaded.

bdev may be replaced with a different block size if the driver is not
loaded.

Note

A controller with no bdev attached to it is considered a temporary
state, in which the controller is not fully operational, and may not
respond to some actions requested by the driver.

If there is no imminent intention to call virtio_blk_controller_bdev_attach, it
is advised to attach a none bdev instead. For example:

snap_rpc.py virtio_blk_controller_bdev_attach -c VblkCtrl1 --bdev
none --dbg_bdev_type null

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 62

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

virtio_blk_controller_list

List virtio-blk SNAP controller.

Command parameters:

Parameter Mandatory? Type Description

ctrl No String Controller name

Example response:

virtio_blk_controller_modify

{
"ctrl_id": "VblkCtrl2",
"vhca_id": 38,
"num_queues": 4,
"queue_size": 256,
"seg_max": 32,
"size_max": 65536,
"bdev": "Nvme1",
"plugged": true,
"indirect_desc": true,
"num_msix": 2,
"min configurable num_msix": 2,
"max configurable num_msix": 32
}

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 63

This function allows user to modify some of the controller's parameters in real-time, after
it was already created.

Modifications can only be done when the emulated function is in idle state - thus there is
no driver communicating with it.

Command parameters:

Parameter
Mandato
ry?

Type Description

ctrl No
Strin
g

Controller Name

num_queu
es

No int Number of queues for the controller

num_msix No int
Number of MSIX to be used for a controller.
Relevant only for VF controllers (when dynamic MSIX
feature is enabled).

virtio_blk_controller_dbg_io_stats_get

Debug counters are per-controller I/O stats that can help knowing the I/O distribution
between different queues of the controller and the total I/O received on the controller.

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

Note

Standard virtio-blk kernel driver currently does not support PCI FLR.
As such,

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 64

Example response:

virtio_blk_controller_dbg_debug_stats_get

Debug counters are per-controller debug statistics that can help knowing the controller
and queues health and status.

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

Example response:

"ctrl_id": "VblkCtrl2",
"queues": [
{
"queue_id": 0,
"core_id": 0,
"read_io_count": 19987068,
"write_io_count": 6319931,
"flush_io_count": 0
},
{
"queue_id": 1,
"core_id": 1,
"read_io_count": 9769556,
"write_io_count": 3180098,
"flush_io_count": 0
}
],
"read_io_count": 29756624,
"write_io_count": 9500029,
"flush_io_count": 0
}

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 65

{
"ctrl_id": "VblkCtrl1",
"queues": [
{
"qid": 0,
"state": "RUNNING",
"hw_available_index": 6,
"sw_available_index": 6,
"hw_used_index": 6,
"sw_used_index": 6,
"hw_received_descs": 13,
"hw_completed_descs": 13
},
{
"qid": 1,
"state": "RUNNING",
"hw_available_index": 2,
"sw_available_index": 2,
"hw_used_index": 2,
"sw_used_index": 2,
"hw_received_descs": 6,
"hw_completed_descs": 6
},
{
"qid": 2,
"state": "RUNNING",
"hw_available_index": 0,
"sw_available_index": 0,
"hw_used_index": 0,
"sw_used_index": 0,
"hw_received_descs": 4,
"hw_completed_descs": 4
},
{
"qid": 3,

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 66

virtio_blk_controller_state_save

Save the state of the suspended virtio-blk SNAP controller.

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

file_name Yes String Filename to save state to

virtio_blk_controller_state_restore

Restore the state of the suspended virtio-blk SNAP controller.

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

file_name Yes String Filename to save state to

"state": "RUNNING",
"hw_available_index": 0,
"sw_available_index": 0,
"hw_used_index": 0,
"sw_used_index": 0,
"hw_received_descs": 3,
"hw_completed_descs": 3
}
]
}

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 67

virtio_blk_controller_vfs_msix_reclaim

Reclaim virtio-blk SNAP controller VFs MSIX back to the free MSIX pool. Valid only for PFs.

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

Virtio-blk Configuration Examples

Virtio-blk Configuration for Single Controller

Virtio-blk Cleanup for Single Controller

Virtio-blk Dynamic Configuration For 125 VFs

1. Update the firmware configuration as described section "SR-IOV Firmware
Configuration".

2. Reboot the host.

3. Run:

spdk_rpc.py bdev_nvme_attach_controller -b nvme0 -t rdma -a 1.1.1.1 -f ipv4 -s 4420
-n nqn.2022-10.io.nvda.nvme:swx-storage
snap_rpc.py virtio_blk_controller_create --vuid MT2114X12200VBLKS1D0F0 --bdev
nvme0n1

snap_rpc.py virtio_blk_controller_destroy -c VblkCtrl1
spdk_rpc.py bdev_nvme_detach_controller nvme0

https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-SR-IOVFirmwareConfiguration
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-SR-IOVFirmwareConfiguration

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 68

Virtio-blk Suspend, Resume Example

[dpu] spdk_rpc.py bdev_nvme_attach_controller -b nvme0 -t rdma -a 1.1.1.1 -f
ipv4 -s 4420 -n nqn.2022-10.io.nvda.nvme:swx-storage
[dpu] snap_rpc.py virtio_blk_controller_create --vuid
MT2114X12200VBLKS1D0F0

[host] modprobe -v virtio-pci && modprobe -v virtio-blk
[host] echo 125 > /sys/bus/pci/devices/0000:86:00.3/sriov_numvfs

[dpu] for i in `seq 0 124`; do snap_rpc.py virtio_blk_controller_create --pf_id 0 --
vf_id $i --bdev nvme0n1; done;

Note

When SR-IOV is enabled, it is recommended to destroy virtio-blk
controllers on VFs using the following and not the
virito_blk_controller_destroy RPC command:

To destroy a single virtio-blk controller, run:

[host] echo 0 >
/sys/bus/pci/devices/0000:86:00.3/sriov_numvfs

[dpu] ./snap_rpc.py -t 1000 virtio_blk_controller_destroy -c
VblkCtrl5 –f

[host] // Run fio
[dpu] snap_rpc.py virtio_blk_controller_suspend -C VBLKCtrl1
[host] // IOs will get suspended
[dpu] snap_rpc.py virtio_blk_controller_resume -C VBLKCtrl1

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 69

Virtio-blk Bdev Attach, Detach Example

Notes

Virtio-blk protocol controller supports one backend device only

Virtio-blk protocol does not support administration commands to add backends.
Thus, all backend attributes are communicated to the host virtio-blk driver over
PCIe BAR and must be accessible during driver probing. Therefore, backends can
only be changed once the PCIe function is not in use by any host storage driver.

NVMe Emulation Management

NVMe Subsystem

The NVMe subsystem as described in the NVMe specification is a logical entity which
encapsulates sets of NVMe backends (or namespaces) and connections (or controllers).
NVMe subsystems are extremely useful when working with multiple NVMe controllers
especially when using NVMe VFs. Each NVMe subsystem is defined by its serial number
(SN), model number (MN), and qualified name (NQN) after creation.

The RPCs listed in this section control the creation and destruction of NVMe subsystems.

[host] // fio will resume sending IOs

[host] // Run fio
[dpu] snap_rpc.py virtio_blk_controller_bdev_detach -c VBLKCtrl1
[host] // Bdev will be detached and IOs will get suspended
[dpu] snap_rpc.py virtio_blk_controller_bdev_attach -c VBLKCtrl1 --bdev null2
[host] // The null2 bdev will be attached into controller and fio will resume sending
IOs

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 70

NVMe Namespace

NVMe namespaces are the representors of a continuous range of LBAs in the
local/remote storage. Each namespace must be linked to a subsystem and have a unique
identifier (NSID) across the entire NVMe subsystem (e.g., 2 namespaces cannot share the
same NSID even if they are linked to different controllers).

After creation, NVMe namespaces can be attached to a controller.

The SNAP application uses an SPDK block device framework as a backend for its NVMe
namespaces. Therefore, they should be configured in advance. For more information
about SPDK block devices, see SPDK bdev documentation and Appendix SPDK
Configuration.

NVMe Controller

Each NVMe device (e.g., NVMe PCIe entry) exposed to the host, whether it is a PF or VF,
must be backed by NVMe controller, which is responsible for all protocol communication
with the host's driver.

Every new NVMe controller must also be linked to an NVMe subsystem. After creation,
NVMe controllers can be addressed using either their name (e.g., "Nvmectrl1") or both
their subsystem NQN and controller ID.

Attaching NVMe Namespace to NVMe Controller

Note

SNAP does not currently support shared namespaces between
different controllers. So, each namespace should be attached to a
single controller.

https://spdk.io/doc/bdev.html
https://github.com/Mellanox/nvmx/blob/main_4_0/doc/UserGuides.md#appen3
https://github.com/Mellanox/nvmx/blob/main_4_0/doc/UserGuides.md#appen3

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 71

After creating an NVMe controller and an NVMe namespace under the same subsystem,
the following method is used to attach the namespace to the controller.

NVMe Emulation Management Command

Command Description

nvme_subsystem_create Create NVMe subsystem

nvme_subsystem_destro
y

Destroy NVMe subsystem

nvme_subsystem_list NVMe subsystem list

nvme_namespace_create Create NVMe namespace

nvme_namespace_destro
y

Destroy NVMe namespace

nvme_controller_suspen
d

Suspend NVMe controller

nvme_controller_resume Resume NVMe controller

nvme_controller_snapsh
ot_get

Take snapshot of NVMe controller to a file

nvme_namespace_list NVMe namespace list

nvme_controller_create Create new NVMe controller

nvme_controller_destroy Destroy NVMe controller

nvme_controller_list NVMe controller list

nvme_controller_modify NVMe controller parameters modification

nvme_controller_attach_
ns

Attach NVMe namespace to controller

nvme_controller_detach_
ns

Detach NVMe namespace from controller

nvme_controller_vfs_msi
x_reclaim

Reclaim NVMe SNAP controller VFs MSIX back to free MSIX
pool. Valid only for PFs.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 72

Command Description

nvme_controller_dbg_io_
stats_get

Get NVMe controller IO debug stats

nvme_subsystem_create

Create a new NVMe subsystem to be controlled by one or more NVMe SNAP controllers.
An NVMe subsystem includes one or more controllers, zero or more namespaces, and
one or more ports. An NVMe subsystem may include a non-volatile memory storage
medium and an interface between the controller(s) in the NVMe subsystem and non-
volatile memory storage medium.

Command parameters:

Paramet
er

Mandat
ory?

Type Description

nqn Yes String Subsystem qualified name

serial_nu
mber No String Subsystem serial number

model_nu
mber No String Subsystem model number

nn No
Num
ber

Maximal namespace ID allowed in the subsystem (default
0xFFFFFFFE; range 1-0xFFFFFFFE)

mnan No
Num
ber

Maximal number of namespaces allowed in the subsystem
(default 1024; range 1-0xFFFFFFFE)

Example request:

{
"jsonrpc": "2.0",
"id": 1,
"method": "nvme_subsystem_create",
"params": {
"nqn": "nqn.2022-10.io.nvda.nvme:0"
}
}

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 73

nvme_subsystem_destroy

Destroy (previously created) NVMe SNAP subsystem.

Command parameters:

Paramet
er

Mandato
ry?

Type Description

nqn Yes
Strin
g

Subsystem qualified name

force No Bool
Force the deletion of all the controllers and namespaces
under the subsystem

nvme_subsystem_list

List NVMe subsystems.

nvme_namespace_create

Create new NVMe namespaces that represent a continuous range of LBAs in the
previously configured bdev. Each namespace must be linked to a subsystem and have a
unique identifier (NSID) across the entire NVMe subsystem.

Command parameters:

Para
mete
r

Mand
atory?

Typ
e

Description

nqn Yes
Strin
g

Subsystem qualified name

bdev_
name Yes

Strin
g

SPDK block device to use as backend

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 74

Para
mete
r

Mand
atory?

Typ
e

Description

nsid Yes
Nu
mbe
r

Namespace ID

uuid No
Nu
mbe
r

Namespace UUID

nvme_namespace_destroy

Destroy a previously created NVMe namespaces.

Command parameters:

Parameter Mandatory? Type Description

nqn Yes String Subsystem qualified name

nsid Yes Number Namespace ID

nvme_namespace_list

List NVMe SNAP namespaces.

Command parameters:

Note
To safely detach/attach namespaces, the UUID
should be provided to force the UUID to
remain persistent.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 75

Parameter Mandatory? Type Description

nqn No String Subsystem qualified name

nvme_controller_create

Create a new SNAP-based NVMe blk controller over a specific PCIe function on the host.

To specify the PCIe function to open the controller upon, pci_index must be provided.

The mapping for pci_index can be queried by running emulation_function_list.

Command parameters:

Para
mete
r

Man
dato
ry?

Typ
e

Description

nqn Yes
Stri
ng

Subsystem qualified name

vuid No
Nu
mb
er

VUID of PCIe function

pf_id No
Nu
mb
er

PCIe PF index to start emulation on

vf_id No
Nu
mb
er

PCIe VF index to start emulation on (if the controller is destined to be
opened on a VF)

pci_b
df No

Stri
ng

PCIe BDF to start emulation on

vhca_i
d No

Nu
mb
er

VHCA ID of PCIe function

ctrl No Nu
mb

Controller ID

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 76

Para
mete
r

Man
dato
ry?

Typ
e

Description

er

num_
queue
s

No
Nu
mb
er

Number of IO queues (default 31, range 1-31).

mdts No
Nu
mb
er

MDTS (default 7, range 1-7)

fw_slo
ts No

Nu
mb
er

Maximum number firmware slots (default 4)

write_
zeroe
s

No 0/1 Enable the write_zeroes optional NVMe command

comp
are No 0/1 Set the value of the compare support bit in the controller

comp
are_w
rite

No 0/1 Set the value of the compare_write support bit in the controller

Note
The actual number of queues is limited by the
number of queues supported by the hardware.

Tip
It is recommended for the number of MSIX to be
greater than the number of IO queues (1 is used
for the config interrupt).

Note

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 77

Para
mete
r

Man
dato
ry?

Typ
e

Description

deallo
cate_
dsm

No 0/1
Set the value of the dsm (dataset management) support bit in the
controller. The only dsm request currently supported is deallocate.

suspe
nded No 0/1

Open the controller in suspended state (requires an additional call to
nvme_controller_resume before it becomes active)

snaps
hot No

Stri
ng

Create a controller out of a snapshot file path. Snapshot is previously
taken using nvme_controller_snapshot_get.

dyna
mic_
msix

No 0/1
Enable dynamic MSIX management for the controller (default 0).
Applies only for PFs.

vf_nu
m_ms
ix

No
Nu
mb
er

Control the number of MSIX tables to associate with this controller.
Valid only for VFs and only when their parent PF controller is created
using the --dynamic_msix option.

admin
_only No 0/1

Creates NVMe controller with admin queues only (i.e., without IO
queues)

quirks No Nu
mb
er

Bitmask to support buggy drivers which are non-compliant per NVMe
specification.

During crash recovery, all compare and write
commands are expected to fail.

Note
This is required if NVMe recovery is expected or
when creating the controller when the driver is
already loaded. Therefore, it is advisable to use it
in all scenarios.
To resume the controller after attaching
namespaces, use nvme_controller_resume.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 78

Para
mete
r

Man
dato
ry?

Typ
e

Description

Bit 0 – send "Namespace Attribute Changed" async event, even
though it is disabled by the driver during "Set Features"
command
Bit 1 – keep sending "Namespace Attribute Changed" async
events, even when "Changed Namespace List" Get Log Page has
not arrived from driver
Bit 2 – reserved
Bit 3 – force-enable "Namespace Management capability" NVMe
OACS even though it is not supported by the controller
Bit 4 - Disable Scatter-Gather Lists support.

For more details, see section "OS Issues".

Example request:

Note

If not set, the SNAP NVMe controller supports an optional NVMe
command only if all the namespaces attached to it when loading the
driver support it. To bypass this feature, you may explicitly set the
NVMe optional command support bit by using its corresponding flag.

For example, a controller created with –-compare 0 would not support
the optional compare NVMe command regardless of its attached
namespaces.

{
"jsonrpc": "2.0",
"id": 1,
"method": "nvme_controller_create",
"params": {
"nqn": "nqn.2022-10.io.nvda.nvme:0",

https://docs.nvidia.com//networking/display/bluefield3snap440/Known+Issues#src-2866990845_KnownIssues-OSIssues

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 79

nvme_controller_destroy

Destroy a previously created NVMe controller. The controller can be uniquely identified
by a controller name as acquired from nvme_controller_create.

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

release_msix No 1/0 Release MSIX back to free pool. Applies only for VFs.

nvme_controller_suspend

While suspended, the controller stops handling new requests from the host driver. All
pending requests (if any) will be processed after resume.

Command parameters:

Param
eter

Mand
atory
?

Typ
e

Description

ctrl Yes
Stri
ng

Controller name

timeout_
ms

No Nu
mbe
r

Suspend timeout

"pf_id": 0,
"num_queues": 8,
}
}

Note
If IOs are pending in the bdev layer (or in the
remote target), the operation fails and

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 80

Param
eter

Mand
atory
?

Typ
e

Description

force No 0/1 Force suspend even when there are inflight I/Os

admin_o
nly No 0/1 Suspend only the admin queue

live_upd
ate_notifi
er

No 0/1 Send a live update notification via IPC

nvme_controller_resume

The resume command continues the (previously-suspended) controller's handling of new
requests sent by the driver. If the controller is created in suspended mode, resume is
also used to start initial communication with host driver.

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

live_update No 0/1 Live update resume

nvme_controller_snapshot_get

Take a snapshot of the current state of the controller and dump it into a file. This file may
be used to create a controller based on this snapshot. For the snapshot to be consistent,
users should call this function only when the controller is suspended (see
nvme_controller_suspend).

resumes after this timeout.
If timeout_ms is not provided, the operation
waits until the IOs complete without a
timeout on the SNAP layer.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 81

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

filename Yes String File path

nvme_controller_vfs_msix_reclaim

Reclaims all VFs MSIX back to the PF's free MSIX pool.

This function can only be applied on PFs and can only be run when SR-IOV is not set on
host side (i.e., sriov_numvfs = 0).

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

nvme_controller_list

Provide a list of all active (created) NVMe controllers with their characteristics.

Command parameters:

Parameter Mandatory? Type Description

nqn No String Subsystem qualified name

ctrl No String Only search for a specific controller

nvme_controller_modify

This function allows user to modify some of the controller's parameters in real-time, after
it was already created.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 82

Modifications can only be done when the emulated function is in idle state - thus there is
no driver communicating with it.

Command parameters:

Parameter
Mandato
ry?

Type Description

ctrl No
Strin
g

Controller Name

num_queu
es

No int Number of queues for the controller

num_msix No int
Number of MSIX to be used for a controller.
Relevant only for VF controllers (when dynamic MSIX
feature is enabled).

nvme_controller_attach_ns

Attach a previously created NVMe namespace to given NVMe controller under the same
subsystem.

The result in the response object returns true for success and false for failure.

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

nsid Yes Number Namespace ID

nvme_controller_detach_ns

Detach a previously attached namespace with a given NSID from the NVMe controller.

The result in the response object returns true for success and false for failure.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 83

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

nsid Yes Number Namespace ID

nvme_controller_dbg_io_stats_get

The result in the response object returns true for success and false for failure.

Command parameters:

Parameter Mandatory? Type Description

ctrl Yes String Controller name

"ctrl_id": "NVMeCtrl2",
"queues": [
{
"queue_id": 0,
"core_id": 0,
"read_io_count": 19987068,
"write_io_count": 6319931,
"flush_io_count": 0
},
{
"queue_id": 1,
"core_id": 1,
"read_io_count": 9769556,
"write_io_count": 3180098,
"flush_io_count": 0
}
],
"read_io_count": 29756624,
"write_io_count": 9500029,

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 84

NVMe Configuration Examples

NVMe Configuration for Single Controller

On the DPU:

"flush_io_count": 0
}

spdk_rpc.py bdev_nvme_attach_controller -b nvme0 -t rdma -a 1.1.1.1 -f ipv4 -s 4420
-n nqn.2022-10.io.nvda.nvme:swx-storage
snap_rpc.py nvme_subsystem_create --nqn nqn.2022-10.io.nvda.nvme:0
snap_rpc.py nvme_namespace_create -b nvme0n1 -n 1 --nqn nqn.2022-
10.io.nvda.nvme:0 --uuid 263826ad-19a3-4feb-bc25-4bc81ee7749e
snap_rpc.py nvme_controller_create --nqn nqn.2022-10.io.nvda.nvme:0 --pf_id 0 --
suspended
snap_rpc.py nvme_controller_attach_ns -c NVMeCtrl1 -n 1
snap_rpc.py nvme_controller_resume -c NVMeCtrl1

Note

It is necessary to create a controller in a suspended state. Afterward,
the namespaces can be attached, and only then should the controller
be resumed using the nvme_controller_resume RPC.

Note

To safely detach/attach namespaces, the UUID must be provided to
force the UUID to remain persistent.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 85

NVMe Cleanup for Single Controller

NVMe and Hotplug Cleanup for Single Controller

NVMe Configuration for 125 VFs SR-IOV

1. Update the firmware configuration as described section "SR-IOV Firmware
Configuration".

2. Reboot the host.

3. Create a dummy controller on the parent PF:

snap_rpc.py nvme_controller_detach_ns -c NVMeCtrl2 -n 1
snap_rpc.py nvme_controller_destroy -c NVMeCtrl2
snap_rpc.py nvme_namespace_destroy -n 1 --nqn nqn.2022-10.io.nvda.nvme:0
snap_rpc.py nvme_subsystem_destroy --nqn nqn.2022-10.io.nvda.nvme:0
spdk_rpc.py bdev_nvme_detach_controller nvme0

snap_rpc.py nvme_controller_detach_ns -c NVMeCtrl1 -n 1
snap_rpc.py emulation_device_detach_prepare --vuid MT2114X12200VBLKS1D0F0
snap_rpc.py emulation_device_detach --vuid MT2114X12200VBLKS1D0F0
snap_rpc.py nvme_controller_destroy -c NVMeCtrl1
snap_rpc.py nvme_namespace_destroy -n 1 --nqn nqn.2022-10.io.nvda.nvme:0
snap_rpc.py nvme_subsystem_destroy --nqn nqn.2022-10.io.nvda.nvme:0
spdk_rpc.py bdev_nvme_detach_controller nvme0

[dpu] # snap_rpc.py nvme_subsystem_create --nqn nqn.2022-
10.io.nvda.nvme:0
[dpu] # snap_rpc.py nvme_controller_create --nqn nqn.2022-
10.io.nvda.nvme:0 --ctrl NVMeCtrl1 --pf_id 0 --admin_only

https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-SR-IOVFirmwareConfiguration
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-SR-IOVFirmwareConfiguration

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 86

4. Create 125 Bdevs (Remote or Local), 125 NSs and 125 controllers:

5. Load the driver and configure VFs:

Environment Variable Management

snap_global_param_list

snap_global_param_list lists all existing environment variables.

The following is an example response for the snap_global_param_lis command:

[dpu] for i in `seq 0 124`; do \
spdk_rpc.py bdev_null_create null$((i+1)) 64 512;
snap_rpc.py nvme_namespace_create -b null$((i+1)) -n $((i+1)) --nqn
nqn.2022-10.io.nvda.nvme:0 --uuid 3d9c3b54-5c31-410a-b4f0-
7cf2afd9e48$((i+100));
 # snap_rpc.py nvme_controller_create --nqn nqn.2022-10.io.nvda.nvme:0 --
ctrl NVMeCtrl$((i+2)) --pf_id 0 --vf_id $i --suspended;
snap_rpc.py nvme_controller_attach_ns -c NVMeCtrl$((i+2)) -n $((i+1));
snap_rpc.py nvme_controller_resume -c NVMeCtrl1;
done

[host] # modprobe -v nvme
[host] # echo 125 > /sys/bus/pci/devices/0000\:25\:00.2/sriov_numvfs

[
"SNAP_ENABLE_POLL_SKIP : set : 0 ",
"SNAP_POLL_CYCLE_SIZE : not set : 16 ",
"SNAP_RPC_LOG_ENABLE : set : 1 ",
"SNAP_MEMPOOL_SIZE_MB : set : 1024",
"SNAP_MEMPOOL_4K_BUFFS_PER_CORE : not set : 1024",
"SNAP_RDMA_ZCOPY_ENABLE : set : 1 ",

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 87

"SNAP_TCP_XLIO_ENABLE : not set : 1 ",
"SNAP_TCP_XLIO_TX_ZCOPY : not set : 1 ",
"MLX5_SHUT_UP_BF : not set : 0 ",
"SNAP_SHARED_RX_CQ : not set : 1 ",
"SNAP_SHARED_TX_CQ : not set : 1 ",
...

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 88

Advanced Features
RPC Log History

RPC log history is a debug feature (enabled by default) which records all the RPC requests
(from snap_rpc.py and spdk_rpc.py) sent to the SNAP application and the RPC response for
each RPC requests in a dedicated log file, /var/log/snap-log/rpc-log. This file is visible outside
the container (i.e., the log file's path on the DPU is /var/log/snap-log/rpc-log as well).

The SNAP_RPC_LOG_ENABLE env can be used to enable (1) or disable (0) this feature.

SR-IOV

SR-IOV configuration depends on the kernel version:

Optimal configuration may be achieved with a new kernel in which the
sriov_drivers_autoprobe sysfs entry exists in /sys/bus/pci/devices/<BDF>/

Info

RPC log history is supported with SPDK version spdk23.01.2-12 and
above.

Warning

When RPC log history is enabled, the SNAP application writes (in
append mode) RPC request and response message to /var/log/snap-

log/rpc-log constantly. Pay attention to the size of this file. If it gets too
large, delete the file on the DPU before launching the SNAP pod.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 89

Otherwise, the minimal requirement may be met if the sriov_totalvfs sysfs entry exists
in /sys/bus/pci/devices/<BDF>/

Zero Copy (SNAP-direct)

Note

After configuration is finished, no disk is expected to be exposed in
the hypervisor. The disk only appears in the VM after the PCIe VF is
assigned to it using the virtualization manager. If users want to use
the device from the hypervisor, they must bind the PCIe VF manually.

Note

Hot-plug PFs do not support SR-IOV.

Info

It is recommended to add pci=assign-busses to the boot command line
when creating more than 127 VFs.

0000018f-c4ed-dc04-a5ff-d7fdac130000

Note

Zero-copy is supported on SPDK 21.07 and higher.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 90

SNAP-direct allows SNAP applications to transfer data directly from the host memory to
remote storage without using any staging buffer inside the DPU.

SNAP enables the feature according to the SPDK BDEV configuration only when working
against an SPDK NVMe-oF RDMA block device.

To enable zero copy, set the environment variable (as it is enabled by default):

For more info refer to the section SNAP Environment Variables.

NVMe/TCP XLIO Zero Copy

NVMe/TCP Zero Copy is implemented as a custom NVDA_TCP transport in SPDK NVMe
initiator and it is based on a new XLIO socket layer implementation.

The implementation is different for Tx and Rx:

The NVMe/TCP Tx Zero Copy is similar between RDMA and TCP in that the data is
sent from the host memory directly to the wire without an intermediate copy to
Arm memory

The NVMe/TCP Rx Zero Copy allows achieving partial zero copy on the Rx flow by
eliminating copy from socket buffers (XLIO) to application buffers (SNAP). But data
still must be DMA'ed from Arm to host memory.

To enable NVMe/TCP Zero Copy, use SPDK v22.05.nvda --with-xlio (v22.05.nvda or higher).

To enable SNAP TCP XLIO Zero Copy:

SNAP_RDMA_ZCOPY_ENABLE=1

Note

For more information about XLIO including limitations and bug fixes,
refer to the NVIDIA Accelerated IO (XLIO) Documentation.

https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Environment+Variables
https://docs.nvidia.com/networking/category/xlio

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 91

1. SNAP container: Set the environment variables and resources in the YAML file:

2. SNAP sources: Set the environment variables and resources in the relevant scripts

1. In run_snap.sh, edit the APP_ARGS variable to use the SPDK command line
argument --wait-for-rpc:

2. In set_environment_variables.sh, uncomment the SPDK_XLIO_PATH environment
variable:

resources:
requests:
memory: "4Gi"
cpu: "8"
limits:
hugepages-2Mi: "4Gi"
memory: "6Gi"
cpu: "16"

Set according to the local setup
env:
- name: APP_ARGS
value: "--wait-for-rpc"
- name: SPDK_XLIO_PATH
value: "/usr/lib/libxlio.so"

APP_ARGS="--wait-for-rpc"

export SPDK_XLIO_PATH="/usr/lib/libxlio.so"

Note

NVMe/TCP XLIO requires a BlueField Arm OS hugepage size of 4G
(i.e., 2G more hugepages than non-XLIO). For information on

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 92

Expose an NVMe-oF subsystem with one namespace by using a TCP transport type on the
remote SPDK target.

configuring the hugepages, refer to sections "Step 1: Allocate
Hugepages" and "Adjusting YAML Configuration".

At high scale, it is required to use the global variable XLIO_RX_BUFS=4096

even though it leads to high memory consumption. Using
XLIO_RX_BUFS=1024 requires lower memory consumption but limits the
ability to scale the workload.

Info

For more info refer to the section "SNAP Environment Variables".

Tip

It is recommended to configure NVMe/TCP XLIO with the transport
ack timeout option increased to 12.

Other bdev_nvme options may be adjusted according to requirements.

[dpu] spdk_rpc.py bdev_nvme_set_options --transport-ack-
timeout 12

[dpu] spdk_rpc.py sock_set_default_impl -i xlio
[dpu] spdk_rpc.py framework_start_init
[dpu] spdk_rpc.py bdev_nvme_set_options --transport-ack-timeout 12
[dpu] spdk_rpc.py bdev_nvme_attach_controller -b nvme0 -t nvda_tcp -a 3.3.3.3 -f
ipv4 -s 4420 -n nqn.2023-01.io.nvmet

file:///networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-AllocateHugepages
file:///networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-AllocateHugepages
file:///networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-AdjustingYAMLConfiguration
file:///networking/display/bluefield3snap440/SNAP+Environment+Variables

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 93

VirtIO-blk Live Migration

Live migration is a standard process supported by QEMU which allows system
administrators to pass devices between virtual machines in a live running system. For
more information, refer to QEMU VFIO Device Migration documentation.

Live migration is supported for SNAP virtio-blk devices. It can be activated using a driver
with proper support (e.g., NVIDIA's proprietary vDPA-based Live Migration Solution).

SNAP Container Live Upgrade

Live upgrade allows upgrading the SNAP image a container is using without SNAP
container downtime.

[dpu] snap_rpc.py nvme_subsystem_create --nqn nqn.2023-01.com.nvda:nvme:0
[dpu] snap_rpc.py nvme_namespace_create -b nvme0n1 -n 1 --nqn nqn. 2023-
01.com.nvda:nvme:0 --uuid 16dab065-ddc9-8a7a-108e-9a489254a839
[dpu] snap_rpc.py nvme_controller_create --nqn nqn.2023-01.com.nvda:nvme:0 --
ctrl NVMeCtrl1 --pf_id 0 --suspended --num_queues 16
[dpu] snap_rpc.py nvme_controller_attach_ns -c NVMeCtrl1 -n 1
[dpu] snap_rpc.py nvme_controller_resume -c NVMeCtrl1 -n 1

[host] modprobe -v nvme
[host] fio --filename /dev/nvme0n1 --rw randrw --name=test-randrw --
ioengine=libaio --iodepth=64 --bs=4k --direct=1 --numjobs=1 --runtime=63 --
time_based --group_reporting --verify=md5

Info

For more information on XLIO, please refer to XLIO documentation.

snap_rpc.py virtio_blk_controller_create --dbg_admin_q …

https://www.qemu.org/docs/master/devel/vfio-migration.html
https://docs.nvidia.com/networking/spaces/viewspace.action?key=XLIOv129

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 94

Live Upgrade Prerequisites

To enable live upgrade, perform the following modifications:

1. Allocate double hugepages for the destination and source containers.

2. Make sure the requested amount of CPU cores is available.

The default YAML configuration sets the container to request a CPU core range of 8-
16. This means that the container is not deployed if there are fewer than 8 available
cores, and if there are 16 free cores, the container utilizes all 16.

For instance, if a container is currently using all 16 cores and, during a live upgrade,
an additional SNAP container is deployed. In this case, each container uses 8 cores
during the upgrade process. Once the source container is terminated, the
destination container starts utilizing all 16 cores.

3. Change the name of the doca_snap.yaml file that describes the destination container
(e.g., doca_snap_new.yaml) so as to not overwrite the running container .yaml.

4. Change the name of the new .yaml pod in line 16 (e.g., snap-new).

Note

It is important to note that since newer releases may introduce
additional content, there may be behavioral differences between
versions during the live update process. Despite these potential
differences, the upgrade process is designed to maintain backward
compatibility and should not result in any disruptions.

Note

For 8-core DPUs, the .yaml must be edited to the range of 4-8
CPU cores.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 95

Live Upgrade Flow

The way to live upgrade the SNAP image is to move the SNAP controllers and SPDK block
devices between different containers while minimizing the duration of the host VMs
impact.

Source container – the running container before live upgrade

Destination container – the running container after live upgrade

SNAP Container Live Upgrade Procedure

1. Follow the steps in section "Live Upgrade Prerequisites" and deploy the destination
SNAP container using the modified yaml file.

2. Query the source and destination containers:

3. Check for SNAP started successfully in the logs of the destination container, then copy
the live update from the container to your environment.

crictl ps -r

[dpu] crictl logs -f <dest-container-id>
[dpu] crictl exec <dest-container-id> cp
/opt/nvidia/nvda_snap/bin/live_update.py /etc/nvda_snap/

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 96

4. Run the live_update.py script to move all active objects from the source container to
the destination container:

5. Delete the source container.

SR-IOV Dynamic MSIX Management

Message Signaled Interrupts eXtended (MSIX) is an interrupt mechanism that allows
devices to use multiple interrupt vectors, providing more efficient interrupt handling than
traditional interrupt mechanisms such as shared interrupts. In Linux, MSIX is supported

[dpu] cd /etc/nvda_snap
[dpu] ./live_update.py -s <source-container-id> -d <dest-container-id>

Note

To post RPCs, use the crictl tool:

crictl exec -it <container-id X> snap_rpc.py <RPC-method>
crictl exec -it <container-id Y> spdk_rpc.py <RPC-method>

Note

To automate the SNAP configuration (e.g., following failure or
reboot) as explained in section "Automate SNAP Configuration
(Optional)", spdk_rpc_init.conf and snap_rpc_init.conf must not include
any configs as part of the live upgrade. Then, once the transition
to the new container is done, spdk_rpc_init.conf and snap_rpc_init.conf

can be modified with the desired configuration.

file:///networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_safe-id-U05BUERlcGxveW1lbnQtQXV0b21hdGVTTkFQQ29uZmlndXJhdGlvbihPcHRpb25hbCk
file:///networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_safe-id-U05BUERlcGxveW1lbnQtQXV0b21hdGVTTkFQQ29uZmlndXJhdGlvbihPcHRpb25hbCk

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 97

in the kernel and is commonly used for high-performance devices such as network
adapters, storage controllers, and graphics cards. MSIX provides benefits such as
reduced CPU utilization, improved device performance, and better scalability, making it a
popular choice for modern hardware.

However, proper configuration and management of MSIX interrupts can be challenging
and requires careful tuning to achieve optimal performance, especially in a multi-function
environment as SR-IOV.

By default, BlueField distributes MSIX vectors evenly between all virtual PCIe functions
(VFs). This approach is not optimal as users may choose to attach VFs to different VMs,
each with a different number of resources. Dynamic MSIX management allows the user
to manually control of the number of MSIX vectors provided per each VF independently.

Dynamic MSIX management is built from several configuration steps:

1. PF controller must be opened with dynamic MSIX management enabled.

2. At this point, and in any other time in the future when no VF controllers are opened
(sriov_numvfs=0), all PF-related MSIX vectors can be reclaimed from the VFs to the PF's
free MSIX pool.

3. User must take some of the MSIX from the free pool and give them to a certain VF
during VF controller creation.

4. When destroying a VF controller, the user may choose to release its MSIX back to
the pool.

Once configured, the MSIX link to the VFs remains persistent and may change only in the
following scenarios:

User explicitly requests to return VF MSIXs back to the pool during controller
destruction.

Note

Configuration and behavior are similar for all emulation types, and
specifically NVMe and virtio-blk.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 98

PF explicitly reclaims all VF MSIXs back to the pool.

Arm reboot (FE reset/cold boot) has occurred.

To emphasize, the following scenarios do not change MSIX configuration:

Application restart/crash.

Closing and reopening PF/VFs without dynamic MSIX support.

The following is an NVMe example of dynamic MSIX configuration steps (similar
configuration also applies for virtio-blk):

1. Open controller on PF with dynamic MSIX capability:

2. Reclaim all MSIX from VFs to PF's free MSIX pool:

3. Query controllers list to get information about how many MSIX are returned to the
pool:

4. Distribute MSIX between VFs during their creation process:

5. Upon VF teardown, release MSIX back to the free pool:

snap_rpc.py nvme_controller_create_ --dynamic_msix …

snap_rpc.py nvme_controller_vfs_msix_reclaim <CtrlName>

snap_rpc.py nvme_controller_list -c <CtrlName>
… 'num_free_msix': N,
…

snap_rpc.py nvme_controller_create_ --vf_num_msix <n> …

snap_rpc.py nvme_controller_destroy_ --release_msix …

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 99

6. Set SR-IOV on the host driver:

echo <N> > /sys/bus/pci/devices/<BDF>/sriov_numvfs

Note

It is highly advised to open all VF controllers in SNAP in advance
before binding VFs to the host/guest driver. That way, for
example in case of a configuration mistake which does not leave
enough MSIX for all VFs, the configuration remains reversible as
MSIX is still modifiable. Otherwise, the driver may try to use the
already-configured VFs before all VF configuration has finished
but will not be able to use all of them (due to lack of MSIX). The
latter scenario may result in host deadlock which, at worst, can
be recovered only with cold boot.

Note

There are several ways to configure dynamic MSIX safely
(without VF binding):

1. Disable kernel driver automatic VF binding to kernel driver:

After finishing MSIX configuration for all VFs, they can then
be bound to VMs, or even back to the hypervisor:

echo 0 >
/sys/bus/pci/devices/sriov_driver_autoprobe

echo "0000:01:00.0" >
/sys/bus/pci/drivers/nvme/bind

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 100

Recovery

NVMe Recovery

NVMe recovery allows the NVMe controller to be recovered after a SNAP application is
closed whether gracefully or after a crash (e.g., kill -9).

To use NVMe recovery, the controller must be re-created in a suspended state with the
same configuration as before the crash (i.e., the same bdevs, num queues, and
namespaces with the same uuid, etc).

NVMe recovery uses files on the BlueField under /dev/shm to recover the internal state of
the controller. Shared memory files are deleted when the BlueField is reset. For this
reason, recovery is not supported after BF reset.

Virtio-blk Crash Recovery

2. Use VFIO driver (instead of kernel driver) for SR-IOV
configuration.

For example:

echo 0000:af:00.2 > /sys/bus/pci/drivers/vfio-pci/bind
Bind PF to VFIO driver
echo 1 > /sys/module/vfio_pci/parameters/enable_sriov
echo <N> > /sys/bus/pci/drivers/vfio-
pci/0000:af:00.2/sriov_numvfs # Create VFs device for it

Note

The controller must be resumed only after all NSs are attached.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 101

The following options are available to enable virtio-blk crash recovery.

Virtio-blk Crash Recovery with --force_in_order

For virtio-blk crash recovery with --force_in_order, disable the VBLK_RECOVERY_SHM

environment variable and create a controller with the --force_in_order argument.

In virtio-blk SNAP, the application is not guaranteed to recover correctly after a sudden
crash (e.g., kill -9).

To enable the virtio-blk crash recovery, set the following:

Virtio-blk Crash Recovery without --force_in_order

For virtio-blk crash recovery without --force_in_order, enable the VBLK_RECOVERY_SHM

environment variable and create a controller without the --force_in_order argument.

snap_rpc.py virtio_blk_controller_create --force_in_order …

Note

Setting force_in_order to 1 may impact virtio-blk performance as it will
serve the command in-order.

Note

If --force_in_order is not used, any failure or unexpected teardown in
SNAP or the driver may result in anomalous behavior because of
limited support in the Linux kernel virtio-blk driver.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 102

Virtio-blk recovery allows the virtio-blk controller to be recovered after a SNAP application
is closed whether gracefully or after a crash (e.g., kill -9).

To use virtio-blk recovery without --force_in_order flag. VBLK_RECOVERY_SHM must be enabled,
the controller must be recreated with the same configuration as before the crash (i.e.,
same bdevs, num queues, etc).

When VBLK_RECOVERY_SHM is enabled, virtio-blk recovery uses files on the BlueField under
/dev/shm to recover the internal state of the controller. Shared memory files are deleted
when the BlueField is reset. For this reason, recovery is not supported after BlueField
reset.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 103

Appendixes
Appendix – DPU Firmware Configuration

Appendix – Building SNAP Container with Custom SPDK

Appendix – Deploying Container on Setups Without Internet Connectivity

Appendix – Install Legacy SPDK

Appendix – PCIe BDF to VUID Translation

Appendix – SNAP Memory Consumption

Appendix – Host OS Configuration

Appendix – DPU Firmware
Configuration
Before configuring SNAP, the user must ensure that all firmware configuration
requirements are met. By default, SNAP is disabled and must be enabled by running both
common SNAP configurations and additional protocol-specific configurations depending
on the expected usage of the application (e.g., hot-plug, SR-IOV, UEFI boot, etc).

After configuration is finished, the host must be power cycled for the changes to take
effect.

Note

To verify that all configuration requirements are satisfied, users may
query the current/next configuration by running the following:

https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+DPU+Firmware+Configuration
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+Building+SNAP+Container+with+Custom+SPDK
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+Deploying+Container+on+Setups+Without+Internet+Connectivity
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+Install+Legacy+SPDK
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+PCIe+BDF+to+VUID+Translation
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+SNAP+Memory+Consumption
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+Host+OS+Configuration

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 104

System Configuration Parameters

Paramet
er

Description

Poss
ible
Valu
es

INTERNAL_
CPU_MOD
EL

Enable BlueField to work in internal CPU model

0/1

SRIOV_EN Enable SR-IOV 0/1

PCI_SWITC
H_EMULATI
ON_ENABL
E

Enable PCI switch for emulated PFs 0/1

PCI_SWITC
H_EMULATI
ON_NUM_
PORT

The maximum number of hotplug emulated PFs which equals 
PCI_SWITCH_EMULATION_NUM_PORT–2. For example, if
PCI_SWITCH_EMULATION_NUM_PORT=16, then the maximum number of
hotplug emulated PFs would be 14.

[0,3-
16]

mlxconfig -d /dev/mst/mt41692_pciconf0 -e query

Note
Must be set to 1 for storage emulations.

Note
One switch port is reserved for all static PFs.

Note

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 105

RDMA/RoCE Configuration

BlueField's RDMA/RoCE communication is blocked for BlueField's default OS interfaces
(nameds ECPFs, typically mlx5_0 and mlx5_1). If RoCE traffic is required, additional
network functions (scalable functions) must be added which support RDMA/RoCE traffic.

To enable RoCE interfaces, run the following from within the DPU:

NVMe Configuration

Paramet
er

Description

Possi
ble
Valu
es

NVME_EMU
LATION_EN
ABLE

Enable NVMe device emulation 0/1

NVME_EMU
LATION_NU
M_PF

Number of static emulated NVMe PFs [0-4]

SRIOV_EN is valid only for static PFs.

Note

The following is not required when working over TCP or even
RDMA/IB.

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s PER_PF_NUM_SF=1
[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s PF_SF_BAR_SIZE=8 PF_TOTAL_SF=2
[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0.1 s PF_SF_BAR_SIZE=8
PF_TOTAL_SF=2

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 106

Paramet
er

Description

Possi
ble
Valu
es

NVME_EMU
LATION_NU
M_MSIX

Number of MSIX assigned to emulated NVMe PF/VF

[0-
63]

NVME_EMU
LATION_NU
M_VF

Number of VFs per emulated NVMe PF

[0-
512]

EXP_ROM_
NVME_UEFI
_x86_ENAB
LE

Enable NVMe UEFI exprom driver

0/1

Virtio-blk Configuration

Note
The firmware treats this value as a best effort
value. The effective number of MSI-X given to the
function should be queried as part of the
nvme_controller_list RPC command.

Note
If not 0, overrides NUM_OF_VFS; valid only when
SRIOV_EN=1.

Note
Used for UEFI boot process.

Warning

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 107

Paramete
r

Description

Poss
ible
Valu
es

VIRTIO_BLK_
EMULATION
_ENABLE

Enable virtio-blk device emulation 0/1

VIRTIO_BLK_
EMULATION
_NUM_PF

Number of static emulated virtio-blk PFs

[0-4]

VIRTIO_BLK_
EMULATION
_NUM_MSIX

Number of MSIX assigned to emulated virtio-blk PF/VF [0-
63]

Due to virtio-blk protocol limitations, using bad configuration while
working with static virtio-blk PFs may cause the host server OS to fail
on boot.

Before continuing, make sure you have configured:

A working channel to access Arm even when the host is shut
down. Setting such channel is out of the scope of this
document. Please refer to NVIDIA BlueField DPU BSP
documentation for more details.

Add the following line to /etc/nvda_snap/snap_rpc_init.conf:

For more information, please refer to section "Virtio-blk
Emulation Management".

virtio_blk_controller_create –pf_id 0

Note
See WARNING above.

https://docs.nvidia.com/networking/display/bluefielddpuos
file:///networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-Virtio-blkEmulationManagement
file:///networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-Virtio-blkEmulationManagement

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 108

Paramete
r

Description

Poss
ible
Valu
es

VIRTIO_BLK_
EMULATION
_NUM_VF

Number of VFs per emulated virtio-blk PF

[0-
1000
]

EXP_ROM_VI
RTIO_BLK_U
EFI_x86_ENA
BLE

Enable virtio-blk UEFI exprom driver

0/1

Appendix – Building SNAP Container
with Custom SPDK
The SNAP source package contains the files necessary for building a container with a
custom SPDK.

Note
The firmware treats this value as a best effort
value. The effective number of MSI-X given to the
function should be queried as part of the
virtio_blk_controller_list RPC command.

Note
If not 0, overrides NUM_OF_VFS; valid only when
SRIOV_EN=1

Note
Used for UEFI boot process.

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 109

To build the container:

1. Download and install the SNAP sources package:

2. Navigate to the src folder and use it as the development environment:

3. Copy the following to the container folder:

SNAP source package – required for installing SNAP inside the container

Custom SPDK – to container/spdk. For example:

4. Modify the spdk.sh file if necessary as it is used to compile SDPK.

5. To build the container:

For Ubuntu, run:

For CentOS, run:

[dpu] # dpkg -i /path/snap-sources_<version>_arm64.deb

[dpu] # cd /opt/nvidia/nvda_snap/src

[dpu] # cp /path/snap-sources_<version>_arm64.deb container/
[dpu] # git clone -b v23.01.1 --single-branch --depth 1 --recursive --
shallow-submodules https://github.com/spdk/spdk.git container/spdk

[dpu] # ./container/build_public.sh --snap-pkg-file=snap-
sources_<version>_arm64.deb

[dpu] # rpm -i snap-sources-<version>.el8.aarch64.rpm
[dpu] # cd /opt/nvidia/nvda_snap/src/
[dpu] # cp /path/snap-sources_<version>_arm64.deb container/
[dpu] # git clone -b v23.01.1 --single-branch --depth 1 --recursive --
shallow-submodules https://github.com/spdk/spdk.git container/spdk

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 110

6. Transfer the created image from the Docker tool to the crictl tool. Run:

7. To verify the image, run:

8. Edit the image filed in the container/doca_snap.yaml file. Run:

9. Use the YAML file to deploy the container. Run:

[dpu] # yum install docker-ce docker-ce-cli
[dpu] # ./container/build_public.sh --snap-pkg-file=snap-
sources_<version>_arm64.deb

[dpu] # docker save doca_snap:<version> doca_snap.tar
[dpu] # ctr -n=k8s.io images import doca_snap.tar

Note

To transfer the container image to other setups, refer to
appendix "Appendix – Deploying Container on Setups Without
Internet Connectivity".

[DPU] # crictl images
IMAGE TAG IMAGE ID SIZE
docker.io/library/doca_snap <version> 79c503f0a2bd7 284MB

image: doca_snap:<version>

[dpu] # cp doca_snap.yaml /etc/kubelet.d/

Note

file:///networking/display/bluefield3snap440/Appendix+%E2%80%93+Deploying+Container+on+Setups+Without+Internet+Connectivity
file:///networking/display/bluefield3snap440/Appendix+%E2%80%93+Deploying+Container+on+Setups+Without+Internet+Connectivity

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 111

Appendix – Deploying Container on
Setups Without Internet
Connectivity
When Internet connectivity is not available on a DPU, Kubelet scans for the container
image locally upon detecting the SNAP YAML. Users can load the container image
manually before the deployment.

To accomplish this, users must download the necessary resources using a DPU with
Internet connectivity and subsequently transfer and load them onto DPUs that lack
Internet connectivity.

1. To download the .yaml file:

2. To download SNAP container image:

The "Container deployment preparation steps" are required.

[dpu] # wget --content-disposition
https://api.ngc.nvidia.com/v2/resources/nvidia/doca/doca_container_configs/ver
to yaml>/doca_snap.yaml

Note

Access the latest download command on NGC by visiting
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_snap
SNAP tag "doca_snap:4.1.0-doca2.0.2" is used in this section as
an example. Latest tag is also available on NGC.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_snap

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 112

3. To verify that the SNAP container image exists:

4. To save the images as a .tar file:

5. Transfer the .tar files and run the following to load them into Kubelet:

6. Now, the image exists in the tool and is ready for deployment.

[dpu] # crictl pull nvcr.io/nvidia/doca/doca_snap:4.1.0-doca2.0.2

[dpu] # crictl images

IMAGE TAG IMAGE ID SIZE
nvcr.io/nvidia/doca/doca_snap 4.1.0-doca2.0.2 9d941b5994057 267MB
k8s.gcr.io/pause 3.2 2a060e2e7101d 251kB

Note

k8s.gcr.io/pause image is required for the SNAP container.

[dpu] # mkdir images
[dpu] # ctr -n=k8s.io image export images/snap_container_image.tar
nvcr.io/nvidia/doca/doca_snap:4.1.0-doca2.0.2
[dpu] # ctr -n=k8s.io image export images/pause_image.tar
k8s.gcr.io/pause:3.2

[dpu] # sudo ctr --namespace k8s.io image import
images/snap_container_image.tar
[dpu] # sudo ctr --namespace k8s.io image import images/pause_image.tar

[dpu] # crictl images

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 113

Appendix – Install Legacy SPDK
To build SPDK-19.04 for SNAP integration:

1. Cherry-pick a critical fix for SPDK shared libraries installation (originally applied on
upstream only since v19.07).

2. Configure SPDK:

3. Make SPDK (and DPDK libraries):

IMAGE TAG IMAGE ID SIZE
nvcr.io/nvidia/doca/doca_snap 4.1.0-doca2.0.2 9d941b5994057 267MB
k8s.gcr.io/pause 3.2 2a060e2e7101d 251kB

[spdk.git] git cherry-pick cb0c0509

[spdk.git] git submodule update --init
[spdk.git] ./configure --prefix=/opt/mellanox/spdk --disable-tests --without-
crypto --without-fio --with-vhost --without-pmdk --without-rbd --with-rdma --
with-shared --with-iscsi-initiator --without-vtune
[spdk.git] sed -i -e
's/CONFIG_RTE_BUILD_SHARED_LIB=n/CONFIG_RTE_BUILD_SHARED_LIB=y/g'
dpdk/build/.config

Note

The flags --prefix, --with-rdma, and --with-shared are mandatory.

[spdk.git] make && make install
[spdk.git] cp dpdk/build/lib/* /opt/mellanox/spdk/lib/

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 114

Appendix – PCIe BDF to VUID
Translation
PCIe BDF (Bus, Device, Function) is a unique identifier assigned to every PCIe device
connected to a computer. By identifying each device with a unique BDF number, the
computer's OS can manage the system's resources efficiently and effectively.

PCIe BDF values are determined by host OS and are hence subject to change between
different runs, or even in a single run. Therefore, the BDF identifier is not the best fit for
permanent configuration.

To overcome this problem, NVIDIA devices add an extension to PCIe attributes, called
VUIDs. As opposed to BDF, VUID is persistent across runs which makes it useful as a PCIe
function identifier.

PCI BDF and VUID can be extracted one out of the other, using lspci command:

1. To extract VUID out of BDF:

2. To extract BDF out of VUID:

[spdk.git] cp dpdk/build/include/* /opt/mellanox/spdk/include/

[host] lspci -s <BDF> -vvv | grep -i VU | awk '{print $4}'

[host] ./get_bdf.py <VUID>
[host] cat ./get_bdf.py
#!/usr/bin/python3

import subprocess
import sys

vuid = sys.argv[1]

Split the output into individual PCI function entries

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 115

Appendix – SNAP Memory
Consumption
This appendix explains how SNAP consumes memory and how to manage memory
allocation.

The user must allocate the DPA hugepages memory according to the section "Step 1:
Allocate Hugepages". It is possible to use use a portion of the DPU memory allocation in
the SNAP container as described in section "Adjusting YAML Configuration". This
configuration includes the following minimum and maximum values:

The minimum allocation which the SNAP container consumes:

The maximum allocation that the SNAP container is allowed to consume:

lspci_output = subprocess.check_output(['lspci']).decode().strip().split('\n')

Create an empty dictionary to store the results
pci_functions = {}

Loop through each PCI function and extract the BDF and full info
for line in lspci_output:
bdf = line.split()[0]
if vuid in subprocess.check_output(['lspci', '-s', bdf, '-vvv']).decode():
print(bdf)
exit(0)

print("Not Found")

resources:
requests:
memory: "4Gi"

resources:

https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-AllocateHugepages
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-AllocateHugepages
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-AdjustingYAMLConfiguration

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 116

Hugepage memory is used by the following:

SPDK mem-size global variable which controls the SPDK hugepages consumption
(configurable in SPDK, 1GB by default)

SNAP SNAP_MEMPOOL_SIZE_MB – used with non-ZC mode as IO buffers staging buffers
on the Arm. By default, the SNAP mempool consumes 1G from the SPDK mem-size

hugepages allocation. SNAP mempool may be configured using the
SNAP_MEMPOOL_SIZE_MB global variable (minimum is 64 MB).

SNAP and SPDK internal usage – 1G should be used by default. This may be reduced
depending on the overall scale (i.e., VFs/num queues/QD).

XLIO buffers – allocated only when NVMeTCP XLIO is enabled.

The following is the limit of the container memory allowed to be used by the SNAP
container:

limits:
 hugepages-2Mi: "4Gi"

Note

If the value assigned is too low, with non-ZC, a performance
degradation could be seen.

resources:
limits:
memory: "6Gi"

Info

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 117

The SNAP container also consumes DPU SHMEM memory when NVMe recovery is used
(described in section "NVMe Recovery"). In addition, the following resources are used:

Appendix – Host OS Configuration
With Linux environment on host OS, additional kernel boot parameters may be required
to support SNAP related features:

To use SR-IOV:

For Intel, "intel_iommu=on iommu=pt" must be added

For AMD, "amd_iommu=on iommu=pt" must be added

To use PCIe hotplug, pci=realloc must be added

modprobe.blacklist=virtio_blk for non-built in virtio-blk driver

To view boot parameter values, use the command cat /proc/cmdline.

It is recommended to use the following with virtio-blk:

To enable VFs (virtio_blk/NVMe):

This includes the hugepages limit (in this example, additional 2G of
non-hugepages memory).

limits:
memory:

[dpu] cat /proc/cmdline BOOT_IMAGE … pci=realloc modprobe.blacklist=virtio_blk

echo 125 > /sys/bus/pci/devices/0000\:27\:00.4/sriov_numvfs

https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-NVMeRecovery

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 118

Intel Server Performance Optimizations

AMD Server Performance Optimizations

cat /proc/cmdline
BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.15.0_mlnx root=UUID=91528e6a-b7d3-4e78-
9d2e-9d5ad60e8273 ro crashkernel=auto resume=UUID=06ff0f35-0282-4812-894e-
111ae8d76768 rhgb quiet iommu=pt intel_iommu=on pci=realloc
modprobe.blacklist=virtio_blk

cat /proc/cmdline
cat /proc/cmdline BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.15.0_mlnx
root=UUID=91528e6a-b7d3-4e78-9d2e-9d5ad60e8273 ro crashkernel=auto
resume=UUID=06ff0f35-0282-4812-894e-111ae8d76768 rhgb quiet iommu=pt
amd_iommu=on pci=realloc modprobe.blacklist=virtio_blk

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 119

Document Revision History
Rev 4.4.0 – May 01, 2024

Added:

Section "UEFI Firmware Configuration"

Section "virtio_blk_controller_modify"

Section "virtio_blk_controller_dbg_debug_stats_get"

Section "nvme_controller_modify"

Section "Environment Variable Management"

Updated:

Section "DPA Core Mask"

Section "Allocate Hugepages"

Section "Spawning SNAP Container"

Default value for queue_depth in section "virtio_blk_emulation_device_attach"

num_queues description in section "virtio_blk_controller_create"

Section "virtio_blk_controller_bdev_detach" with new note

Example response in section "virtio_blk_controller_list"

Section "NVMe Namespace"

Section "nvme_controller_create" with bit 4 for the quirks parameter

Section "NVMe/TCP XLIO Zero Copy"

https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-UEFIFirmwareConfiguration
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-virtio_blk_controller_modify
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-virtio_blk_controller_dbg_debug_stats_get
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-nvme_controller_modify
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-EnvironmentVariableManagement
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-DPACoreMask
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-AllocateHugepages
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-SpawningSNAPContainer
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-virtio_blk_emulation_device_attach
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-virtio_blk_controller_create
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-virtio_blk_controller_bdev_detach
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-virtio_blk_controller_list
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-NVMeNamespace
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-nvme_controller_create
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_safe-id-QWR2YW5jZWRGZWF0dXJlcy1OVk1lL1RDUFhMSU9aZXJvQ29weQ

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 120

Section "RPC Log History"

Section "Supported Environment Variables" VBLK_RECOVERY_SHM default value to 1

Rev 4.3.1 – February 08, 2024

Updated:

Section "Adjusting YAML Configuration"

Section "Stop, Start, Restart SNAP Container"

Page "SNAP RPC Commands" by removing snap_rpc.py spdk_bdev_create nvme0n1 and
snap_rpc.py spdk_bdev_destroy nvme0n1

Section "Log Management"

Section "virtio_blk_controller_create" with the indirect_desc parameter

Section "Virtio-blk Hot Plug/Unplug Example"

Section "SPDK Bdev Management"

Section "NVMe Cleanup for Single Controller"

Section "NVMe and Hotplug Cleanup for Single Controller"

Section "NVMe Configuration for 125 VFs SR-IOV"

Page "Advanced Features" by removing snap_rpc.py spdk_bdev_create nvme0n1

Rev 4.3.0 – December 12, 2023

Added:

Section "DPA Core Mask"

Section "RPC Log History"

Section "NVMe and Hotplug Cleanup for Single Controller"

Section "accel_set_options"

https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-RPCLogHistory
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Environment+Variables#src-2866990852_SNAPEnvironmentVariables-SupportedEnvironmentVariables
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-AdjustingYAMLConfiguration
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_safe-id-U05BUERlcGxveW1lbnQtU3RvcCxTdGFydCxSZXN0YXJ0U05BUENvbnRhaW5lcg
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-LogManagement
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-virtio_blk_controller_create
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_safe-id-U05BUFJQQ0NvbW1hbmRzLVZpcnRpby1ibGtIb3RQbHVnL1VucGx1Z0V4YW1wbGU
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-SPDKBdevManagement
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-NVMeCleanupforSingleController
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-NVMeandHotplugCleanupforSingleController
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-NVMeConfigurationfor125VFsSR-IOV
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-DPACoreMask
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-RPCLogHistory
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-NVMeandHotplugCleanupforSingleController
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-accel_set_options

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 121

Section "NVMe TCP Digest Offload" code

Updated:

Number of supported NVMe VFs in section "SR-IOV Firmware Configuration" to 512

Section "Adjusting YAML Configuration"

Section "Automate SNAP Configuration (Optional)"

Section "Virtio-blk Hot Plug/Unplug Example"

Section "Debug and Log"

Section "UEFI Firmware Configuration"

Section "Supported Environment Variables"

Section "Using JSON-based RPC Protocol"

Section "emulation_device_detach_prepare" by removing pci_bdf parameter

Section "emulation_device_detach" by removing the pci_bdf and adding the ctrl

parameters

Section "nvme_controller_create"

Section "nvme_controller_resume"

Section "nvme_controller_suspend"

Section "virtio_blk_controller_list" example response

Section "NVMe Cleanup for Single Controller"

Step 3 in section "NVMe Configuration for 125 VFs SR-IOV"

Section "SNAP Container Live Upgrade Procedure"

Section "NVMe/TCP XLIO Zero Copy"

Section "Virtio-blk Crash Recovery"

https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-NVMeTCPDigestOffload
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-SR-IOVFirmwareConfiguration
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-AdjustingYAMLConfiguration
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_safe-id-U05BUERlcGxveW1lbnQtQXV0b21hdGVTTkFQQ29uZmlndXJhdGlvbihPcHRpb25hbCk
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_safe-id-U05BUFJQQ0NvbW1hbmRzLVZpcnRpby1ibGtIb3RQbHVnL1VucGx1Z0V4YW1wbGU
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-DebugandLog
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-UEFIFirmwareConfiguration
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Environment+Variables#src-2866990852_SNAPEnvironmentVariables-SupportedEnvironmentVariables
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-UsingJSON-basedRPCProtocol
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-emulation_device_detach_prepare
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-emulation_device_detach
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-nvme_controller_create
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-nvme_controller_resume
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-nvme_controller_suspend
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-virtio_blk_controller_list
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-NVMeCleanupforSingleController
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-NVMeConfigurationfor125VFsSR-IOV
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-SNAPContainerLiveUpgradeProcedure
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-ExposeanNVMe-oFsubsystem
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-Virtio-blkCrashRecovery

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 122

Section "accel_crypto_key_create" with --tweak-mode parameter

Section "NVMe TCP Digest Offload" with accel_set_options

Section "NVMe TCP Digest Offload Example" code

Section "SPDK Crypto Example" code

Section "SPDK NVMe Multipath" code

Section "OCI Configuration Example" code

NVME_EMULATION_NUM_VF value in section "NVMe Configuration"

Rev 4.2.2 – September 30, 2023

Updated:

Section "SPDK NVMe Multipath"

Rev 4.2.1 – August 21, 2023

Added:

Section "Recovery"

Appendix "SNAP Memory Consumption"

Moved:

Section "Host OS Configuration" to appendix

Updated:

Section "SR-IOV Firmware Configuration"

Section "Hot-plug Firmware Configuration"

Section "Downloading YAML Configuration"

Section "Stop, Start, Restart SNAP Container"

https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-accel_crypto_key_create
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-NVMeTCPDigestOffload
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-NVMeTCPDigestOffloadExample
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-SPDKCryptoExample
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-SPDKCryptoExample
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-SPDKCryptoExample
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+DPU+Firmware+Configuration#src-2866990866_safe-id-QXBwZW5kaXjigJNEUFVGaXJtd2FyZUNvbmZpZ3VyYXRpb24tTlZNZUNvbmZpZ3VyYXRpb24
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-SPDKNVMeMultipath
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-Recovery
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+SNAP+Memory+Consumption
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+Host+OS+Configuration
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-SR-IOVFirmwareConfiguration
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-Hot-plugFirmwareConfiguration
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_SNAPDeployment-DownloadingYAMLConfiguration
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Deployment#src-2866990848_safe-id-U05BUERlcGxveW1lbnQtU3RvcCxTdGFydCxSZXN0YXJ0U05BUENvbnRhaW5lcg

NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk v4.4.0 123

Section "Supported Environment Variables"

The description of the parameters num_queues , num_msix, vf_num_msix, under "SNAP
RPC Commands"

Section "virtio_blk_controller_bdev_attach"

Section "Virtio-blk Crash Recovery"

Section "NVMe Configuration for Single Controller"

Diagram under section "Live Upgrade Flow"

Section "NVMe Configuration"

Section "VirtIO-blk Configuration"

Section "System Configuration Parameters"

Rev 4.1.0 – May 01, 2023

First release
© Copyright 2024, NVIDIA. PDF Generated on 06/07/2024

https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+Environment+Variables#src-2866990852_SNAPEnvironmentVariables-SupportedEnvironmentVariables
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-virtio_blk_controller_bdev_attach
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-Virtio-blkCrashRecovery
https://docs.nvidia.com//networking/display/bluefield3snap440/SNAP+RPC+Commands#src-2866990853_SNAPRPCCommands-NVMeConfigurationforSingleController
https://docs.nvidia.com//networking/display/bluefield3snap440/Advanced+Features#src-2866990854_AdvancedFeatures-LiveUpgradeFlow
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+DPU+Firmware+Configuration#src-2866990866_safe-id-QXBwZW5kaXjigJNEUFVGaXJtd2FyZUNvbmZpZ3VyYXRpb24tTlZNZUNvbmZpZ3VyYXRpb24
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+DPU+Firmware+Configuration#src-2866990866_safe-id-QXBwZW5kaXjigJNEUFVGaXJtd2FyZUNvbmZpZ3VyYXRpb24tVmlydElPLWJsa0NvbmZpZ3VyYXRpb24
https://docs.nvidia.com//networking/display/bluefield3snap440/Appendix+%E2%80%93+DPU+Firmware+Configuration#src-2866990866_safe-id-QXBwZW5kaXjigJNEUFVGaXJtd2FyZUNvbmZpZ3VyYXRpb24tU3lzdGVtQ29uZmlndXJhdGlvblBhcmFtZXRlcnM

	Introduction
	Release Notes
	Changes and New Features
	Known Issues
	Change Log History

	SNAP Deployment
	SNAP Environment Variables
	SNAP RPC Commands
	Advanced Features
	Appendixes
	Appendix – DPU Firmware Configuration
	Appendix – Building SNAP Container with Custom SPDK
	Appendix – Deploying Container on Setups Without Internet Connectivity
	Appendix – Install Legacy SPDK
	Appendix – PCIe BDF to VUID Translation
	Appendix – SNAP Memory Consumption
	Appendix – Host OS Configuration

	Document Revision History

