
NVIDIA BlueField DPU BSP v4.7.0

Table of contents

Initial Configuration 19

UEFI Menu 19

System Configuration and Services 34

Host-side Interface Configuration 40

Secure Boot 56

Default Passwords and Policies 57

Release Notes 67

Changes and New Features 67

Supported Platforms and Interoperability 70

Bug Fixes In This Version 84

Known Issues 86

Validated and Supported Cables and Modules 107

Release Notes Change Log History 163

Bug Fixes History 167

BlueField Software Overview 184

Software Installation and Upgrade 189

Deploying BlueField Software Using BFB from Host 190

Deploying BlueField Software Using BFB from BMC 224

Deploying BlueField Software Using BFB with PXE 245

Deploying NVIDIA Converged Accelerator 252

Installing Repo Package on Host Side 257

NVIDIA BlueField DPU BSP v4.7.0 1

Table of contents

Initial Configuration

UEFI Menu

System Configuration and Services

Host-side Interface Configuration

Secure Boot

Default Passwords and Policies

Release Notes

Changes and New Features

Supported Platforms and Interoperability

Bug Fixes In This Version

Known Issues

Validated and Supported Cables and Modules

Release Notes Change Log History

Bug Fixes History

BlueField Software Overview

Software Installation and Upgrade

Deploying BlueField Software Using BFB from Host

Deploying BlueField Software Using BFB from BMC

Deploying BlueField Software Using BFB with PXE

Deploying NVIDIA Converged Accelerator

Installing Repo Package on Host Side

Installing Popular Linux Distributions on BlueField 265

Updating DPU Software Packages Using Standard Linux Tools 267

Management 274

Performance Monitoring Counters 274

Intelligent Platform Management Interface 290

Redfish 303

Logging 316

SoC Management Interface 327

BlueField OOB Ethernet Interface 340

BlueField Operation 347

Functional Diagram 348

Modes of Operation 349

Kernel Representors Model 362

Multi-Host 364

Virtual Switch on DPU 369

Configuring Uplink MTU 392

Link Aggregation 393

Scalable Functions 403

RDMA Stack Support on Host and Arm System 410

Controlling Host PF and VF Parameters 411

DPDK on BlueField DPU 413

BlueField SNAP 413

BlueField SR-IOV 414

NVIDIA BlueField DPU BSP v4.7.0 2

Installing Popular Linux Distributions on BlueField

Updating DPU Software Packages Using Standard Linux Tools

Management

Performance Monitoring Counters

Intelligent Platform Management Interface

Redfish

Logging

SoC Management Interface

BlueField OOB Ethernet Interface

BlueField Operation

Functional Diagram

Modes of Operation

Kernel Representors Model

Multi-Host

Virtual Switch on DPU

Configuring Uplink MTU

Link Aggregation

Scalable Functions

RDMA Stack Support on Host and Arm System

Controlling Host PF and VF Parameters

DPDK on BlueField DPU

BlueField SNAP

BlueField SR-IOV

Compression Acceleration 415

Public Key Acceleration 416

IPsec Functionality 418

fTPM over OP-TEE 438

QoS Configuration 444

Virtio-net Emulated Devices 448

Shared RQ Mode 448

Troubleshooting and How-Tos 450

NVIDIA BlueField Reset and Reboot Procedures 450

RShim Troubleshooting and How-Tos 458

Connectivity Troubleshooting 464

Performance Troubleshooting 469

PCIe Troubleshooting and How-Tos 469

SR-IOV Troubleshooting 471

eSwitch Troubleshooting 473

Isolated Mode Troubleshooting and How-Tos 476

General Troubleshooting 476

Installation Troubleshooting and How-Tos 478

Windows Support 488

Document Revision History 498

Legal Notices and 3rd Party Licenses 505

NVIDIA BlueField DPU BSP v4.7.0 3

Compression Acceleration

Public Key Acceleration

IPsec Functionality

fTPM over OP-TEE

QoS Configuration

Virtio-net Emulated Devices

Shared RQ Mode

Troubleshooting and How-Tos

NVIDIA BlueField Reset and Reboot Procedures

RShim Troubleshooting and How-Tos

Connectivity Troubleshooting

Performance Troubleshooting

PCIe Troubleshooting and How-Tos

SR-IOV Troubleshooting

eSwitch Troubleshooting

Isolated Mode Troubleshooting and How-Tos

General Troubleshooting

Installation Troubleshooting and How-Tos

Windows Support

Document Revision History

Legal Notices and 3rd Party Licenses

NVIDIA BlueField DPU BSP v4.7.0 4

List of Figures
Figure 0. System Configuration Version 1 Modificationdate
1715306461403 Api V2

Figure 1. Ram Disk Configuration Version 1 Modificationdate
1715306459227 Api V2

Figure 2. Tls Auth Configuration Version 1 Modificationdate
1715306458691 Api V2

Figure 3. Server Ca Configuration Version 1 Modificationdate
1715306458146 Api V2

Figure 4. Iscsi Configuration Version 1 Modificationdate 1715306457282
Api V2

Figure 5. Network Device List Version 1 Modificationdate
1715306460867 Api V2

Figure 6. Specific Network Device Version 1 Modificationdate
1715306460256 Api V2

Figure 7. Nvidia Network Adaptor Version 1 Modificationdate
1715306459789 Api V2

Figure 8. Disabling Uefi Secure Boot Version 1 Modificationdate
1715306474311 Api V2

Figure 9. Shim Uefi Key Management Version 1 Modificationdate
1715306474879 Api V2

Figure 10. Perform Mok Management Version 1 Modificationdate
1715306473787 Api V2

NVIDIA BlueField DPU BSP v4.7.0 5

Figure 11. Secure Boot Configuration Version 1 Modificationdate
1715306473359 Api V2

Figure 12. Secure Boot Mode Version 1 Modificationdate
1715306472940 Api V2

Figure 13. Enroll Signature Using File Version 1 Modificationdate
1715306472254 Api V2

Figure 14. Enroll Signature Using File Version 1 Modificationdate
1715306472254 Api V2

Figure 15. Default Pwd Version 1 Modificationdate 1715306485718 Api
V2

Figure 16. New Pwd Version 1 Modificationdate 1715306485215 Api V2

Figure 17. Confirm Pwd Version 1 Modificationdate 1715306484401 Api
V2

Figure 18. Pwd Settings Version 1 Modificationdate 1715306487674 Api
V2

Figure 19. Default Pwd Policy Version 1 Modificationdate
1715306489278 Api V2

Figure 20. Save Config Version 1 Modificationdate 1715306488741 Api
V2

Figure 21. Disabled Default Pwd Policy Version 1 Modificationdate
1715306488224 Api V2

Figure 22. Enter Current Password Version 1 Modificationdate
1715306487099 Api V2

Figure 23. Enter New Legacy Password Version 1 Modificationdate
1715306486656 Api V2

NVIDIA BlueField DPU BSP v4.7.0 6

Figure 24. Confirm New Legacy Password Version 1 Modificationdate
1715306486243 Api V2

Figure 25. Interfaces On BlueField Version 1 Modificationdate
1715306507490 Api V2

Figure 26. System Connections Version 1 Modificationdate
1715306506046 Api V2

Figure 27. Redfish Transferring Bfb Image Version 1 Modificationdate
1700495197953 Api V2

Figure 28. Pxe Deployment Version 1 Modificationdate 1715306517017
Api V2

Figure 29. Boot Manager Menu Version 1 Modificationdate
1715306515745 Api V2

Figure 30. BlueField Boot Process Version 1 Modificationdate
1715306524222 Api V2

Figure 31. Embedded Mode Version 1 Modificationdate 1715306538883
Api V2

Figure 32. Bluefield Internal Cpu Configuration Version 1
Modificationdate 1715306538026 Api V2

Figure 33. Internal Cpu Offload Engine Version 1 Modificationdate
1715306537450 Api V2

Figure 34. Nic Mode Version 1 Modificationdate 1715306536799 Api V2

Figure 35. IPsec Full Offload Version 1 Modificationdate 1715306556403
Api V2

Figure 36. StrongSwan Example Version 1 Modificationdate
1715306558446 Api V2

NVIDIA BlueField DPU BSP v4.7.0 7

Figure 37. IPsec Full Offload And OVS Offload Version 1
Modificationdate 1715306557506 Api V2

Figure 38. Booting Bf3 W Op Tee Enabled Version 1 Modificationdate
1715306563612 Api V2

Figure 39. Image2020 7 5 9 20 43 Version 1 Modificationdate
1673403095047 Api V2

Figure 40. Image2020 7 5 9 21 27 Version 2 Modificationdate
1673403624843 Api V2

Figure 41. Image2020 7 5 9 22 45 Version 1 Modificationdate
1673403095190 Api V2

Figure 42. Image2020 7 5 9 29 8 Version 1 Modificationdate
1673403095247 Api V2

Figure 43. Image2020 7 5 9 29 22 Version 2 Modificationdate
1673403748320 Api V2

Figure 44. Device Manager Screenshot Version 1 Modificationdate
1673403095417 Api V2

Figure 45. PuTTY Version 1 Modificationdate 1673403095480 Api V2

Figure 46. Access Via Management Network Adapter Version 1
Modificationdate 1684795730067 Api V2

NVIDIA BlueField DPU BSP v4.7.0 8

About This Document

NVIDIA® BlueField® DPU software is built from the BlueField BSP (Board Support
Package) which includes the operating system and the DOCA framework. BlueField BSP
includes the bootloaders and other essentials for loading and setting software
components. The BSP loads the official BlueField operating system (Ubuntu reference
Linux distribution) to the DPU. DOCA is the software framework and SDK for the
development of applications and infrastructure services. DOCA includes runtime libraries;
the DOCA Runtime stack for Arm supports various accelerations for storage, networking,
and security. As such, customers can run any Linux-based application in the BlueField
software environment seamlessly.

This guide provides product release notes as well as information on the BSP and how to
develop and/or customize applications, system software, and file system images for the
BlueField platform.

Intended Audience

This document is intended for software developers and DevOps engineers interested in
creating and/or customizing software applications and system software for the NVIDIA
BlueField DPU platform.

Software Download

Info

Important: Make sure to download the latest available software
packages for the procedures documented in this guide to run as
expected.

NVIDIA BlueField DPU BSP v4.7.0 9

To download product software, refer to the DOCA SDK developer zone.

Technical Support

Customers who purchased NVIDIA products directly from NVIDIA are invited to contact us
through the following methods:

E-mail: enterprisesupport@nvidia.com
Enterprise Support page: https://www.nvidia.com/en-us/support/enterprise

Customers who purchased NVIDIA M-1 Global Support Services, please see your contract
for details regarding technical support.

Customers who purchased NVIDIA products through an NVIDIA-approved reseller should
first seek assistance through their reseller.

Note

For BlueField-3, a firmware version of 32.38.1002 or greater requires
a BFB version of 2.2.0 or higher. Downgrading to lower BFB/firmware
versions may result in anomalous behavior.

Note

Make sure to perform a graceful shutdown of the Arm OS in advance
of performing system/host power cycle when required by the
manual.

https://developer.nvidia.com/networking/doca
https://docs.nvidia.com/mailto:Enterprisesupport@nvidia.com
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nvidia.com%2Fen-us%2Fsupport%2Fenterprise&data=05%7C01%7Camirn%40nvidia.com%7C1123aef1cfaf4fd44e7f08da4472ff5a%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C637897557943988355%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=B55X06j66qptTA1ycMKbW3PMUw5pdNTZUd40nW8jKPA%3D&reserved=0
file:///networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-Howtoperformgracefulshutdown

NVIDIA BlueField DPU BSP v4.7.0 10

Glossary

Term Description

ACE AXI coherency extensions

ACPI Advanced configuration and power interface

AMBA® Advanced microcontroller bus architecture

ARB Arbitrate

ATF Arm-trusted firmware

AXI4 Advanced eXtensible Interface 4

BDF
address

Bus, device, function address. This is the device's PCIe bus address to
uniquely identify the specific device.

BERT Boot error record table

BF_INST
_DIR

The directory where the BlueField software is installed

BFB BlueField bootstream

BMC Board management controller

BSD BlueField software distribution

BSP BlueField support package

BUF Buffer

CBS Committed burst size

CHI
Coherent hub interface; Arm® protocol used over the BlueField Skymesh
specification

CIR Committed information rate

CL Cache line

CMDQ Command queue

CMO Cache maintenance operation

NVIDIA BlueField DPU BSP v4.7.0 11

Term Description

COB Collision buffer

DAT Data

DEK Data encryption key

DMA Direct memory access

DOCA DPU SDK

DOT Device ownership transfer

DPA
Data path accelerator; a n auxiliary processor designed to accelerate data-
path operations

DPDK Data plane development kit

DPI Deep packet inspection

DPU Data processing unit, the third pillar of the data center with CPU and GPU

DVM Distributed virtual memory

DW Dword

EBS Excess burst size

ECPF Embedded CPU physical function

EIR Excess information rate

EMEM/E
MI

External memory interface; block in the MSS which performs the actual
read/write from the DDR device

eMMC Embedded multi-media card

ESP EFI system partition

ESP
header

Encapsulating security payload

EU Execution unit. HW thread; a logical DPA processing unit.

FIPS Federal Information Processing Standards

FPGA Field-programmable gate arrays

FS File system

FW Firmware

NVIDIA BlueField DPU BSP v4.7.0 12

Term Description

GDB GNU debugger

GPT GUID partition table

HCA Host-channel adapter

HNF Home node interface

Host

When referring to "the host" this documentation is referring to the server
host. When referring to the Arm based host, the documentation will
specifically call out "Arm host".

Server host OS refers to the Host Server OS (Linux or Windows)
Arm host refers to the AARCH64 Linux OS which is running on the
BlueField Arm Cores

HW Hardware

hwmon Hardware monitoring

IB InfiniBand

ICM Interface configuration memory

IKE Internet key exchange

IPMB Intelligent platform management bus

IPMI Intelligent platform management interface

IR Intermediate representation

KGDB Kernel debugger

KGDBO
C

Kernel debugger over console

LAT Latency

LCRD Link credit

LSO Large send offload

LTO Link-time optimization

MMIO Memory-mapped I/O

MSB Most significant bit

NVIDIA BlueField DPU BSP v4.7.0 13

Term Description

MSS Memory subsystem

MST Mellanox software tools

NAT Network address translation

NIC Network interface card

NIST National Institute of Standards and Technology

NS Namespace

OCD On-chip debugger

OOB Out-of-band

OS Operating system

OVS Open vSwitch

PBS Peak burst size

PCIe PCI Express; Peripheral Component Interconnect Express

PF Physical function

PIR Peak information rate

PK Platform key

PKA Public key accelerator

POC Point of coherence

RD Read

RDMA Remote direct memory access

RegEx Regular expression

REQ Request

RES Response

RMC Remote management controller

RN

Request node
RN-F – Fully coherent request node
RN-D – IO coherent request node with DVM support
RN-I – IO coherent request node

NVIDIA BlueField DPU BSP v4.7.0 14

Term Description

RNG Random number generator/generation

RoCE Ethernet and RDMA over converged Ethernet

RQ Receive queue

RShim Random Shim

RTT Round-trip time

RX Receive

SA Security association

SBSA Server base system architecture

SDK Software development kit

SF Sub-function or scalable function

SG Scatter-gather

SHA Secure hash algorithm

SMMU System memory management unit

SNP Snooping

SQ Send queue

SR-IOV Single-root IO virtualization

STL Stall

Sync
event

Synchronization event

TBU Translation buffer unit

TIR Transport interface receive

TIS Transport interface send

TLS Transport layer security

TRB Trail buffer

TSO TCP send offload

TSO Total store order

NVIDIA BlueField DPU BSP v4.7.0 15

Term Description

TX Transmit

UDS Unix domain socket

UEFI Unified extensible firmware interface

UPVS UEFI persistent variable store

VF Virtual function

VFE Virtio full emulation

VM Virtual machine

VPI Virtual protocol interconnect

VST Virtual switch tagging

WorkQ
or
workq

Work queue

WQE Work queue elements

WR Write

WRDB Write data buffer

Related Documentation

Document
Name

Description

InfiniBand
Architecture
Specification,
Vol. 1, Release
1.3.1

The InfiniBand Architecture Specification that is provided by IBTA

Firmware
Release Notes

See Firmware Release Notes

https://www.mellanox.com/page/firmware_download

NVIDIA BlueField DPU BSP v4.7.0 16

Document
Name

Description

MFT
Documentatio
n

See Firmware Tools Release Notes and User Manual

NVIDIA OFED
for Linux User
Manual

Intended for system administrators responsible for the installation,
configuration, management and maintenance of the software and
hardware of VPI adapter cards

WinOF
Documentatio
n

See WinOF Release Notes and User Manual

NVIDIA
BlueField BMC
Software User
Manual

This document provides general information concerning the BMC on
the NVIDIA® BlueField® DPU, and is intended for those who want to
familiarize themselves with the functionality provided by the BMC

NVIDIA
BlueField-3
DPU User
Guide

This document provides details as to the interfaces of the board,
specifications, required software and firmware for operating the
board, and a step-by-step plan of how to bring up BlueField-3 DPUs

NVIDIA
BlueField-2
Ethernet DPU
User Guide

This document provides details as to the interfaces of the board,
specifications, required software and firmware, and a step-by-step plan
of how to bring up BlueField-2 Ethernet DPUs

NVIDIA
BlueField-2
InfiniBand/Eth
ernet DPU
User Guide

This document provides details as to the interfaces of the board,
specifications, required software and firmware, and a step-by-step plan
of how to bring up BlueField-2 InfiniBand/Ethernet DPUs

NVIDIA
BlueField
InfiniBand/Eth
ernet DPU
User Guide

This document provides details as to the interfaces of the board,
specifications, required software and firmware, and a step-by-step plan
of how to bring up BlueField InfiniBand/Ethernet DPUs

NVIDIA DOCA
SDK

The NVIDIA DOCA™ SDK enables developers to rapidly create
applications and services on top of NVIDIA® BlueField® data
processing units (DPUs), leveraging industry-standard APIs. With DOCA,

https://docs.mellanox.com/category/mft
https://docs.mellanox.com/category/winof2
https://docs.nvidia.com/networking/display/BlueFieldBMCSWLatest
https://docs.nvidia.com/networking/display/BlueFieldBMCSWLatest
https://docs.nvidia.com/networking/display/BlueFieldBMCSWLatest
https://docs.nvidia.com/networking/display/BlueFieldBMCSWLatest
https://docs.nvidia.com/networking/display/BlueField3DPU
https://docs.nvidia.com/networking/display/BlueField3DPU
https://docs.nvidia.com/networking/display/BlueField3DPU
https://docs.nvidia.com/networking/display/BlueField3DPU
https://docs.mellanox.com/display/BlueField2DPUENUG
https://docs.mellanox.com/display/BlueField2DPUENUG
https://docs.mellanox.com/display/BlueField2DPUENUG
https://docs.mellanox.com/display/BlueField2DPUENUG
https://docs.mellanox.com/display/BlueField2DPUVPI
https://docs.mellanox.com/display/BlueField2DPUVPI
https://docs.mellanox.com/display/BlueField2DPUVPI
https://docs.mellanox.com/display/BlueField2DPUVPI
https://docs.mellanox.com/display/BlueField2DPUVPI
https://docs.mellanox.com/display/BFVPIDPU
https://docs.mellanox.com/display/BFVPIDPU
https://docs.mellanox.com/display/BFVPIDPU
https://docs.mellanox.com/display/BFVPIDPU
https://docs.mellanox.com/display/BFVPIDPU
https://docs.nvidia.com/doca/sdk/
https://docs.nvidia.com/doca/sdk/

NVIDIA BlueField DPU BSP v4.7.0 17

Document
Name

Description

developers can deliver breakthrough networking, security, and storage
performance by harnessing the power of NVIDIA's DPUs.

NVIDIA
BlueField
Reference
Platform
Hardware User
Manual

Provides details as to the interfaces of the reference platform,
specifications and hardware installation instructions

NVIDIA
BlueField
Ethernet
Controller
Card User
Manual

This document provides details as to the interfaces of the board,
specifications, required software and firmware for operating the card,
hardware installation, driver installation and bring-up instructions

NVIDIA
BlueField UEFI
Secure Boot
User Guide

This document provides details and directions on how to enable UEFI
secure boot and sign UEFI images

NVIDIA
BlueField
Secure Boot
User Guide

This document provides guidelines on how to enable the Secure Boot
on BlueField DPUs

NVIDIA
BlueField SNAP
and virtio-blk
SNAP
Documentatio
n

This document describes the configuration parameters of NVMe SNAP
and virtio-blk SNAP in detail

PKA Driver
Design and
Implementatio
n Architecture
Document

This document provides a description of the design and
implementation of the Public Key accelerator (PKA) hardware driver.
The driver manages and controls the EIP-154 Public Key Infrastructure
Engine, an FIPS 140-3 compliant PKA and operates as a co-processor to
offload the processor of the host.

PKA
Programming

This document is intended to guide a new crypto application developer
or a public key user space driver. It offers programmers the basic

https://docs.nvidia.com/http://csrc.nist.gov/groups/ST/FIPS140_3/documents/FIPS_140-3%20Final_Draft_2007.pdf

NVIDIA BlueField DPU BSP v4.7.0 18

Document
Name

Description

Guide information required to code their own PKA-based application for
NVIDIA® BlueField® DPU.

NVIDIA BlueField DPU BSP v4.7.0 19

Initial Configuration
The following pages provide instructions regarding general configuration of the BlueField
DPU.

UEFI Menu

System Configuration and Services

Host-side Interface Configuration

Secure Boot

Default Passwords and Policies

UEFI Menu
Unified Extensible Firmware Interface (UEFI) is l ow-level firmware that is part of the
NVIDIA® BlueField® bootloader stack. UEFI acts as an interface between the BlueField's
Arm-trusted firmware (ATF) bootloader and the OS.

UEFI provides a menu which supports certain configuration options. This section lists and
describes configurations supported from the UEFI Device Manager menu.

Info

The UEFI specification is available at UEFI.org.

Info

https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu
https://docs.nvidia.com//networking/display/bluefielddpuosv470/System+Configuration+and+Services
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Host-side+Interface+Configuration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Secure+Boot
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Default+Passwords+and+Policies
http://uefi.org/

NVIDIA BlueField DPU BSP v4.7.0 20

To access the UEFI menu, users must have a connection to the BlueField console either
through a UART serial port or the virtual RShim console device. To enter the UEFI menu,
hit the Esc key twice during the normal boot sequence.

For more complete information beyond the Device Manager menu
option, please refer to the NVIDIA Networking Server-Side
Documentation of Flexboot & UEFI > User Manual > User Interface >
HII (UEFI) System Settings Configuration Options.

Info

Most of these menu items are also configurable via Redfish (when
enabled).

Note

All BlueField platforms ship with a default UEFI menu password,
bluefield. If the password is set to bluefield when you enter the UEFI
menu, users are prompted to change it.

Tip

NVIDIA strongly recommends all DPUs have their UEFI password set
to a non-default value. This can be done using the UEFI menu or
Redfish.

https://docs.nvidia.com/networking/software/firmware-management/index.html#networking-server-side-flexboot-uefi
https://docs.nvidia.com/networking/software/firmware-management/index.html#networking-server-side-flexboot-uefi
file:///networking/display/bluefielddpuosv470/Redfish

NVIDIA BlueField DPU BSP v4.7.0 21

System Configuration

Lists different system configuration options.

Note

Some configuration options may require a system reset to take
effect.

NVIDIA BlueField DPU BSP v4.7.0 22

Menu
Optio
n

Description

Set
Passw
ord

Set the system password.
Set the UEFI password. All BlueField Platforms ship with a default UEFI menu
password, bluefield. If the password is set to bluefield when you enter the UEFI
menu, users are prompted to change it.

Tip
NVIDIA strongly recommends all DPUs have their UEFI
password set to a non-default value. This can be done using
the UEFI menu or Redfish.

NVIDIA BlueField DPU BSP v4.7.0 23

Menu
Optio
n

Description

Select
SPCR
UART

Choose UART for serial port console redirection [<Disabled>|<UART Port 0> | <UART

Port 1>].
Users may set the SPCR table (ACPI) to point to UART0, UART1, or disable the
feature. The OS can reference this table to steer serial output. For example,
Linux uses this table for its earlycon feature.

Enabl
e
SMM
U

Enable/disable the SMMU.
BlueField Platforms have an integrated SMMU on the SoC. Users may enable or
disable this unit. Enabling it can make the system more secure but, with certain
network flows, the enabled SMMU could cause performance issues.

Disabl
e
SPMI

Enable/disable ACPI server platform management interface table.
Allows users to enable/disable the ACPI SPMI table. This table instructs the OS
on what interface/device to use for the IPMI SSIF.

Warning
Leave this attribute to its default if you are not certain how
to configure it, or you may destabilize your system.

Warning
Leave this attribute to its default if you do not certain how
to configure it.

Warning
Leave this attribute to its default if you do not certain how
to configure it.

NVIDIA BlueField DPU BSP v4.7.0 24

Menu
Optio
n

Description

Enabl
e 2nd
eMM
C

Enable/disable the second eMMC.
Some legacy BlueField systems have 2 eMMC devices. This feature has been
discontinued.

Boot
Partiti
on
Prote
ction

Enable/disable the eMMC boot partition protection. Takes effect after reboot.
There are 2 logical "boot partitions" on the eMMC device used to store ATF/UEFI
code. These are referred to as the primary/secondary boot partitions. Users can
write-protect these partitions using this attribute.

Warning
Leave this attribute to its default (disabled) if you do not
certain how to configure it, or your system will not boot
correctly.

Info
These are separate devices from the flash storage used by
the OS (for file systems). They do not contain file systems
and are only used for storing binary boot code on raw flash.
Do not confuse an eMMC boot partition with an EFI System
Partition (ESP) used to store boot loaders and OS images on
a FAT32 file system.

Info
If secure boot is enabled, these partitions are write-
protected by default.

Note

NVIDIA BlueField DPU BSP v4.7.0 25

Menu
Optio
n

Description

Disabl
e PCIe

Enable/disable PCIe root complex.
Normally, UEFI enumerates the PCIe bus during the boot process and reports
this information to the OS via the ACPI SSDT table. If this attribute is disabled,
UEFI does not populate the SSDT with the PCIe root complex information, so the
OS does not have visibility to devices on the PCIe bus.

Enabl
e OP-
TEE

Enable/disable support for trusted execution environment.

This menu option is not currently supported for BlueField-3.

Note
This attribute is used for diagnostic purposes and should
not be modified.

Warning
Do not enable this feature. More information will be
provided in future releases.

NVIDIA BlueField DPU BSP v4.7.0 26

Menu
Optio
n

Description

Disabl
e
TMFF

Enable/disable the BlueField-specific ACPI TMFIFO table.
This can be used by some OSes to perform console/debugging over the
BlueField TMFIFO interface. It can override the SPCR table.

Disabl
e
Force
Pxe
Retry

If enabled, PXE boot option entries are attempted only once instead of retrying
them in a loop when "ForcePxe" is requested via IPMI interface

Field
Mode

Disable/enable NIC BMC field mode.
Allows users to enable/disable NIC BMC field mode. When the NIC BMC has field
mode enabled, most of its functionality is disabled (beyond the serial console).
The BlueField Platform's OOB interface will also not be functional if field mode is
enabled.

Set
RTC

Allows users to set the time and date for the real-time clock.

BlueFi
eld

Internal CPU Model: [<Separated>|<Embedded>]
Host Privilege Level: [<Restricted>|<Privileged>]
NIC Mode – sets the BlueField to operate in either NIC mode or DPU mode

Warning
Leave this attribute to its default if you do not certain how
to configure it.

Warning
Leave this attribute to its default unless you are certain you
wish to enable field mode on the NIC BMC. Consult the DPU
BMC user manual for more information on field mode.

NVIDIA BlueField DPU BSP v4.7.0 27

Menu
Optio
n

Description

Mode
s

Redfis
h
Confi
gurati
on

Enable/disable Redfish support. If UEFI is unable to discover a Redfish server, it
reverts to using the defined UEFI boot options (i.e., the "normal" UEFI boot
sequence). Disabling Redfish helps improve boot time as the Redfish server
discovery process is skipped.
The RTCSync option syncs RTC time with Redfish time under the Manager
schema.

Passw
ord
Settin
gs

Default Password Policy – mandates the password being set adheres to
the new policy of 12 characters minimum and 64 characters maximum.
The last 5 passwords cannot be reused.
Set Legacy Password – set password with legacy password policy to
accommodate a UEFI firmware downgrade. The new password policy
(default) is not compatible with older versions of UEFI firmware.

Reset
EFI
Varia
bles

This action clears all EFI variables to factory default state. Reset the device to
take effect.

Emmc
Wipe

Clears the eMMC disk. The action is immutable and all data on eMMC is lost
after it is performed.

Note
Any change to this attribute requires device reset to take
effect.

Warning
Only reset the EFI variable store under the advice of NVIDIA
Enterprise Support. Resetting the EFI variable store deletes
all UEFI variables including the boot options and the system
may not boot without setting new boot options.

NVIDIA BlueField DPU BSP v4.7.0 28

Menu
Optio
n

Description

Nvme
Wipe

Clears the NVMe SSD. This action is immutable and all data on NVMe SSD is lost
after it is performed.

Large
ICMC
size

Set the large ICMC size in Hex and MB. Valid value: 0-100000h in 80h
increments.

Secure Boot Configuration

Please refer to section "UEFI Secure Boot" for more information.

RAM Disk Configuration

Provides option to create/delete RAM disks.

Info
This menu option is only relevant for BlueField-3 platforms.

https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Secure+Boot

NVIDIA BlueField DPU BSP v4.7.0 29

Tls Auth Configuration

Provides configuration (enroll/delete) of TLS auth certificates for HTTPS traffic in UEFI.

Note

If TLS Auth certificate is configured then all HTTPS traffic on all
network interfaces will be verified. UEFI only supports Server CA
configuration, Client CA configuration is currently not supported.

NVIDIA BlueField DPU BSP v4.7.0 30

NVIDIA BlueField DPU BSP v4.7.0 31

iSCSI Configuration

Provides configuration options for iSCSI.

Network Device List

Lists the MAC addresses of the available network interfaces in UEFI.

NVIDIA BlueField DPU BSP v4.7.0 32

Users can find more information (Link status, Link speed, PCI ID, Link type, etc.) on each
interface upon selection. Users can also configure the interfaces (IPv4, IPv6, VLAN, HTTP
BOOT) as needed.

NVIDIA BlueField DPU BSP v4.7.0 33

The following menu can be reached by selecting the Nvidia Network Adapter - <mac-address>

menu options:

NVIDIA BlueField DPU BSP v4.7.0 34

System Configuration and Services
This page provides information on system services and scripts based on the default DPU
OS (i.e., Ubuntu).

First Boot After BFB Installation

During the first boot, the cloud-init service configures the system based on the data
provided in the following files:

/var/lib/cloud/seed/nocloud-net/network-config – network interface configuration

/var/lib/cloud/seed/nocloud-net/user-data – default users and commands to run on the first
boot

RDMA and ConnectX Driver Initialization

RDMA and NVIDIA® ConnectX® drivers are loaded upon boot by the openibd.service.

NVIDIA BlueField DPU BSP v4.7.0 35

One of the kernel modules loaded by the openibd.service, ib_umad, triggers modprobe rule
from /etc/modprobe.d/mlnx-bf.conf file that runs the /sbin/mlnx_bf_configure script. See Default
Ports and OVS Configuration for more information.

Firewall Configuration

The BFB image includes the following firewall configuration (enabled by default):

Note

The mlx5_core kernel module is loaded automatically by the kernel as a
registered device driver.

$ cat /etc/iptables/rules.v4

*mangle
:PREROUTING ACCEPT [45:3582]
:INPUT ACCEPT [45:3582]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [36:4600]
:POSTROUTING ACCEPT [36:4600]
:KUBE-IPTABLES-HINT - [0:0]
:KUBE-KUBELET-CANARY - [0:0]
COMMIT
*filter
:INPUT ACCEPT [41:3374]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [32:3672]
:DOCKER-USER - [0:0]
:KUBE-FIREWALL - [0:0]
:KUBE-KUBELET-CANARY - [0:0]
:LOGGING - [0:0]
:POSTROUTING - [0:0]
:PREROUTING - [0:0]

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-DefaultPortsandOVSConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-DefaultPortsandOVSConfiguration

NVIDIA BlueField DPU BSP v4.7.0 36

-A INPUT -j KUBE-FIREWALL
-A INPUT -p tcp -m tcp --dport 111 -j REJECT --reject-with icmp-port-unreachable
-A INPUT -p udp -m udp --dport 111 -j REJECT --reject-with icmp-port-unreachable
-A INPUT -i lo -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -d 127.0.0.0/8 -m mark --mark 0xb -m comment --comment MD_IPTABLES -
j DROP
-A INPUT -m mark --mark 0xb -m state --state RELATED,ESTABLISHED -m comment --
comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp ! --dport 22 ! --tcp-flags FIN,SYN,RST,ACK SYN -m mark --mark
0xb -m state --state NEW -m comment --comment MD_IPTABLES -j DROP
-A INPUT -f -m mark --mark 0xb -m comment --comment MD_IPTABLES -j DROP
-A INPUT -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG
FIN,SYN,RST,PSH,ACK,URG -m mark --mark 0xb -m comment --comment
MD_IPTABLES -j DROP
-A INPUT -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG NONE -m mark --mark
0xb -m comment --comment MD_IPTABLES -j DROP
-A INPUT -m mark --mark 0xb -m state --state INVALID -m comment --comment
MD_IPTABLES -j DROP
-A INPUT -p tcp -m tcp --tcp-flags RST RST -m mark --mark 0xb -m hashlimit --
hashlimit-above 2/sec --hashlimit-burst 2 --hashlimit-mode srcip --hashlimit-name
hashlimit_0 --hashlimit-htable-expire 30000 -m comment --comment MD_IPTABLES -
j DROP
-A INPUT -p tcp -m mark --mark 0xb -m state --state NEW -m hashlimit --hashlimit-
above 50/sec --hashlimit-burst 50 --hashlimit-mode srcip --hashlimit-name
hashlimit_1 --hashlimit-htable-expire 30000
-m comment --comment MD_IPTABLES -j DROP
-A INPUT -p tcp -m mark --mark 0xb -m conntrack --ctstate NEW -m hashlimit --
hashlimit-above 60/sec --hashlimit-burst 20 --hashlimit-mode srcip --hashlimit-name
hashlimit_2 --hashlimit-htable-expire 30000 -m comment --comment MD_IPTABLES -
j DROP
-A INPUT -m mark --mark 0xb -m recent --rcheck --seconds 86400 --name portscan --
mask 255.255.255.255 --rsource -m comment --comment MD_IPTABLES -j DROP
-A INPUT -m mark --mark 0xb -m recent --remove --name portscan --mask
255.255.255.255 --rsource -m comment --comment MD_IPTABLES
-A INPUT -p tcp -m tcp --dport 22 -m mark --mark 0xb -m conntrack --ctstate NEW -m
recent --set --name DEFAULT --mask 255.255.255.255 --rsource -m comment --

NVIDIA BlueField DPU BSP v4.7.0 37

comment MD_IPTABLES
-A INPUT -p tcp -m tcp --dport 22 -m mark --mark 0xb -m conntrack --ctstate NEW -m
recent --update --seconds 60 --hitcount 50 --name DEFAULT --mask 255.255.255.255
--rsource -m comment --comment MD_IPTABLES -j DROP

-A INPUT -p tcp -m tcp --dport 443 -m mark --mark 0xb -m conntrack --ctstate NEW -
m recent --set --name DEFAULT --mask 255.255.255.255 --rsource -m comment --
comment MD_IPTABLES
-A INPUT -p tcp -m tcp --dport 443 -m mark --mark 0xb -m conntrack --ctstate NEW -
m recent --update --seconds 60 --hitcount 10 --name DEFAULT --mask
255.255.255.255 --rsource -m comment --comment MD_IPTABLES -j DROP
-A INPUT -p udp -m udp --dport 161 -m mark --mark 0xb -m conntrack --ctstate NEW
-m recent --set --name DEFAULT --mask 255.255.255.255 --rsource -m comment --
comment MD_IPTABLES
-A INPUT -p udp -m udp --dport 161 -m mark --mark 0xb -m conntrack --ctstate NEW
-m recent --update --seconds 60 --hitcount 100 --name DEFAULT --mask
255.255.255.255 --rsource -m comment --comment MD_IPTABLES -j DROP
-A INPUT -p tcp -m tcp --dport 22 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 443 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 179 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 68 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 122 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 161 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 6306 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 69 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 389 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT

NVIDIA BlueField DPU BSP v4.7.0 38

-A INPUT -p tcp -m tcp --dport 389 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 1812:1813 -m mark --mark 0xb -m conntrack --
ctstate NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 49 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 49 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --sport 53 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --sport 53 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 500 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 4500 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 1293 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 1293 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 1707 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 1707 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -i lo -p udp -m udp --dport 3786 -m conntrack --ctstate NEW,ESTABLISHED -
m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -i lo -p udp -m udp --dport 33000 -m conntrack --ctstate NEW,ESTABLISHED
-m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p icmp -m mark --mark 0xb -m comment --comment MD_IPTABLES -j
ACCEPT
-A INPUT -p udp -m udp --sport 5353 --dport 5353 -m mark --mark 0xb -m conntrack
--ctstate NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 33434:33523 -m mark --mark 0xb -m comment --
comment MD_IPTABLES -j REJECT --reject-with icmp-port-unreachable
-A INPUT -p udp -m udp --dport 123 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT

NVIDIA BlueField DPU BSP v4.7.0 39

-A INPUT -p udp -m udp --dport 514 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 67 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 60102 -m mark --mark 0xb -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment "MD_IPTABLES: Feature HA port" -j
ACCEPT
-A INPUT -m mark --mark 0xb -m comment --comment MD_IPTABLES -j LOGGING
-A FORWARD -j DOCKER-USER
-A OUTPUT -o oob_net0 -m comment --comment MD_IPTABLES -j ACCEPT
-A DOCKER-USER -j RETURN

-A LOGGING -m mark --mark 0xb -m comment --comment MD_IPTABLES -j NFLOG --
nflog-prefix "IPTables-Dropped: " --nflog-group 3
-A LOGGING -m mark --mark 0xb -m comment --comment MD_IPTABLES -j DROP
-A PREROUTING -i oob_net0 -m comment --comment MD_IPTABLES -j MARK --set-
xmark 0xb/0xffffffff
-A PREROUTING -p tcp -m tcpmss ! --mss 536:65535 -m tcp ! --dport 22 -m mark --
mark 0xb -m conntrack --ctstate NEW -m comment --comment MD_IPTABLES -j
DROP
COMMIT
*nat
:PREROUTING ACCEPT [1:320]
:INPUT ACCEPT [1:320]
:OUTPUT ACCEPT [8:556]
:POSTROUTING ACCEPT [8:556]
:KUBE-KUBELET-CANARY - [0:0]
:KUBE-MARK-DROP - [0:0]
:KUBE-MARK-MASQ - [0:0]
:KUBE-POSTROUTING - [0:0]
-A POSTROUTING -m comment --comment "kubernetes postrouting rules" -j KUBE-
POSTROUTING
-A KUBE-MARK-DROP -j MARK --set-xmark 0x8000/0x8000
-A KUBE-MARK-MASQ -j MARK --set-xmark 0x4000/0x4000
-A KUBE-POSTROUTING -m mark ! --mark 0x4000/0x4000 -j RETURN
-A KUBE-POSTROUTING -j MARK --set-xmark 0x4000/0x0

NVIDIA BlueField DPU BSP v4.7.0 40

This configuration is provided by the bf-release package and is installed during the first
boot of the Ubuntu OS after the BFB installation using the cloud-init service and the
/var/lib/cloud/seed/nocloud-net/user-data configuration file.

To disable this default firewall configuration after OS is UP, run:

To disable this default firewall configuration during the BFB installation, use bf.cfg with the
following command in the bfb_modify_os function:

Host-side Interface Configuration
The NVIDIA® BlueField® DPU registers on the host OS a "DMA controller" for DPU
management over PCIe. This can be verified by running the following:

A special driver called RShim must be installed and run to expose the various BlueField
management interfaces on the host OS. Refer to section "Install RShim on Host" for
information on how to obtain and install the host-side RShim driver.

-A KUBE-POSTROUTING -m comment --comment "kubernetes service traffic
requiring SNAT" -j MASQUERADE --random-fully
COMMIT

$ rm -f /etc/iptables/rules.v4
$ iptables -F

bfb_modify_os()
{
 perl -ni -e "if(/^write_files:/../^users/) {next unless m{^users}; print} else {print}"
/mnt/var/lib/cloud/seed/nocloud-net/user-data
}

lspci -d 15b3: | grep 'SoC Management Interface'
27:00.2 DMA controller: Mellanox Technologies MT42822 BlueField-2 SoC
Management Interface (rev 01)

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-InstallRShimonHost

NVIDIA BlueField DPU BSP v4.7.0 41

When the RShim driver runs properly on the host side, a sysfs device, /dev/rshim0/*, and a
virtual Ethernet interface, tmfifo_net0, become available. The following is an example for
querying the status of the RShim driver on the host side:

If the RShim device does not appear, refer to section "RShim Troubleshooting and How-
Tos".

Virtual Ethernet Interface

On the host, the RShim driver exposes a virtual Ethernet device called tmfifo_net0. This
virtual Ethernet can be thought of as a peer-to-peer tunnel connection between the host
and the DPU OS. The DPU OS also configures a similar device. The DPU OS's BFB images
are customized to configure the DPU side of this connection with a preset IP of
192.168.100.2/30. It is up to the user to configure the host side of this connection.
Configuration procedures vary for different OSs.

systemctl status rshim
● rshim.service - rshim driver for BlueField SoC
Loaded: loaded (/lib/systemd/system/rshim.service; disabled; vendor preset:
enabled)
Active: active (running) since Tue 2022-05-31 14:57:07 IDT; 1 day 1h ago
Docs: man:rshim(8)
Process: 90322 ExecStart=/usr/sbin/rshim $OPTIONS (code=exited,
status=0/SUCCESS)
Main PID: 90323 (rshim)
Tasks: 11 (limit: 76853)
Memory: 3.3M
CGroup: /system.slice/rshim.service
└─90323 /usr/sbin/rshim
May 31 14:57:07 … systemd[1]: Starting rshim driver for BlueField SoC...
May 31 14:57:07 … systemd[1]: Started rshim driver for BlueField SoC.
May 31 14:57:07 … rshim[90323]: Probing pcie-0000:a3:00.2(vfio)
May 31 14:57:07 … rshim[90323]: Create rshim pcie-0000:a3:00.2
May 31 14:57:07 … rshim[90323]: rshim pcie-0000:a3:00.2 enable
May 31 14:57:08 … rshim[90323]: rshim0 attached

https://docs.nvidia.com//networking/display/bluefielddpuosv470/RShim+Troubleshooting+and+How-Tos
https://docs.nvidia.com//networking/display/bluefielddpuosv470/RShim+Troubleshooting+and+How-Tos

NVIDIA BlueField DPU BSP v4.7.0 42

The following example configures the host side of tmfifo_net0 with a static IP and enables
IPv4-based communication to the DPU OS:

Logging in from the host to the DPU OS is now possible over the virtual Ethernet. For
example:

RShim Support for Multiple DPUs

Multiple DPUs may connect to the same host machine. When the RShim driver is loaded
and operating correctly, each board is expected to have its own device directory on sysfs,
/dev/rshim<N>, and a virtual Ethernet device, tmfifo_net<N>.

The following are some guidelines on how to set up the RShim virtual Ethernet interfaces
properly if multiple DPUs are installed in the host system.

There are two methods to manage multiple tmfifo_net interfaces on a Linux platform:

Using a bridge, with all tmfifo_net<N> interfaces on the bridge – the bridge device
bares a single IP address on the host while each DPU has unique IP in the same
subnet as the bridge

Directly over the individual tmfifo_net<N> – each interface has a unique subnet IP and
each DPU has a corresponding IP per subnet

ip addr add dev tmfifo_net0 192.168.100.1/30

Note

For instructions on persistent IP configuration of the tmfifo_net0
interface, refer to step "Assign a static IP to tmfifo_net0" under
"Updating Repo Package on Host Side".

ssh ubuntu@192.168.100.2

file:///networking/display/bluefielddpuosv470/Installing+Repo+Package+on+Host+Side

NVIDIA BlueField DPU BSP v4.7.0 43

Whichever method is selected, the host-side tmfifo_net interfaces should have different
MAC addresses, which can be:

Configured using ifconfig. For example:

Or saved in configuration via the /udev/rules as can be seen later in this section.

In addition, each Arm-side tmfifo_net interface must have a unique MAC and IP address
configuration, as BlueField OS comes uniformly pre-configured with a generic MAC, and
192.168.100.2. The latter must be configured in each DPU manually or by DPU
customization scripts during BlueField OS installation.

Multi-board Management Example

This example deals with two BlueField DPUs installed on the same server (the process is
similar for more DPUs).

This example assumes that the RShim package has been installed on the host server.

Configuring Management Interface on Host

1. Create a bf_tmfifo interface under /etc/sysconfig/network-scripts. Run:

2. Inside ifcfg-br_tmfifo, insert the following content:

$ ifconfig tmfifo_net0 192.168.100.1/24 hw ether 02:02:02:02:02:02

Note

This example is relevant for CentOS/RHEL operating systems only.

vim /etc/sysconfig/network-scripts/ifcfg-br_tmfifo

DEVICE="br_tmfifo"

NVIDIA BlueField DPU BSP v4.7.0 44

3. Create a configuration file for the first BlueField DPU, tmfifo_net0. Run:

4. Inside ifcfg-tmfifo_net0, insert the following content:

5. Create a configuration file for the second BlueField DPU, tmfifo_net1. Run:

6. Create the rules for the tmfifo_net interfaces. Run:

7. Restart the network for the changes to take effect. Run:

BOOTPROTO="static"
IPADDR="192.168.100.1"
NETMASK="255.255.255.0"
ONBOOT="yes"
TYPE="Bridge"

vim /etc/sysconfig/network-scripts/ifcfg-tmfifo_net0

DEVICE=tmfifo_net0
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br_tmfifo

DEVICE=tmfifo_net1
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br_tmfifo

vim /etc/udev/rules.d/91-tmfifo_net.rules

/etc/init.d/network restart

NVIDIA BlueField DPU BSP v4.7.0 45

Configuring BlueField DPU Side

BlueField DPUs arrive with the following factory default configurations for tmfifo_net0.

Address Value

MAC 00:1a:ca:ff:ff:01

IP 192.168.100.2

Therefore, if you are working with more than one DPU, you must change the default MAC
and IP addresses.

Updating RShim Network MAC Address

1. Use a Linux console application (e.g. screen or minicom) to log into each BlueField.
For example:

2. Create a configuration file for tmfifo_net0 MAC address. Run:

3. Inside bf.cfg, insert the new MAC:

Restarting network (via systemctl): [OK]

Note

This procedure is relevant for Ubuntu/Debian (sudo needed), and
CentOS BFBs. The procedure only affects the tmfifo_net0 on the Arm
side.

sudo screen /dev/rshim<0|1>/console 115200

sudo vi /etc/bf.cfg

NVIDIA BlueField DPU BSP v4.7.0 46

4. Apply the new MAC address. Run:

5. Repeat this procedure for the second BlueField DPU (using a different MAC
address).

Updating IP Address

For Ubuntu:

1. Access the file 50-cloud-init.yaml and modify the tmfifo_net0 IP address:

NET_RSHIM_MAC=00:1a:ca:ff:ff:03

sudo bfcfg

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the IP address before you do that to
avoid unnecessary reboots.

Note

For comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

sudo vim /etc/netplan/50-cloud-init.yaml

tmfifo_net0:

file:///networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-bf.cfgParameters

NVIDIA BlueField DPU BSP v4.7.0 47

2. Reboot the Arm. Run:

3. Repeat this procedure for the second BlueField DPU (using a different IP address).

For CentOS:

1. Access the file ifcfg-tmfifo_net0. Run:

2. Modify the value for IPADDR:

3. Reboot the Arm. Run:

Or perform netplan apply.

4. Repeat this procedure for the second BlueField DPU (using a different IP address).

addresses:
- 192.168.100.2/30 ===>>> 192.168.100.3/30

sudo reboot

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the MAC address before you do that
to avoid unnecessary reboots.

vim /etc/sysconfig/network-scripts/ifcfg-tmfifo_net0

IPADDR=192.168.100.3

reboot

NVIDIA BlueField DPU BSP v4.7.0 48

Permanently Changing Arm-side MAC Address

The default MAC address is 00:1a:ca:ff:ff:01. It can be changed using ifconfig or by updating
the UEFI variable as follows:

1. Log into Linux from the Arm console.

2. Run:

3. If not mounted, run:

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the MAC address before you do that
to avoid unnecessary reboots.

Note

It is assumed that the commands in this section are executed with
root (or sudo) permission.

$ "ls /sys/firmware/efi/efivars".

$ mount -t efivarfs none /sys/firmware/efi/efivars
$ chattr -i /sys/firmware/efi/efivars/RshimMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c
$ printf "\x07\x00\x00\x00\x00\x1a\xca\xff\xff\x03" > \

NVIDIA BlueField DPU BSP v4.7.0 49

The printf command sets the MAC address to 00:1a:ca:ff:ff:03 (the last six bytes of the printf

value). Either reboot the device or reload the tmfifo driver for the change to take effect.

The MAC address can also be updated from the server host side while the Arm-side Linux
is running:

1. Enable the configuration. Run:

2. Display the current setting. Run:

3. Modify the MAC address. Run:

For more information and an example of the script that covers multiple DPU installation
and configuration, refer to section "Installing Full DOCA Image on Multiple DPUs" of the
NVIDIA DOCA Installation Guide.

OOB Ethernet Interface

/sys/firmware/efi/efivars/RshimMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c

echo "DISPLAY_LEVEL 1" > /dev/rshim0/misc

cat /dev/rshim0/misc
DISPLAY_LEVEL 1 (0:basic, 1:advanced, 2:log)
BOOT_MODE 1 (0:rshim, 1:emmc, 2:emmc-boot-swap)
BOOT_TIMEOUT 300 (seconds)
DROP_MODE 0 (0:normal, 1:drop)
SW_RESET 0 (1: reset)
DEV_NAME pcie-0000:04:00.2
DEV_INFO BlueField-2(Rev 1)
PEER_MAC 00:1a:ca:ff:ff:01 (rw)
PXE_ID 0x00000000 (rw)
VLAN_ID 0 0 (rw)

$ echo "PEER_MAC xx:xx:xx:xx:xx:xx" > /dev/rshim0/misc

https://docs.nvidia.com/doca/sdk/installation-guide/index.html#installing-full-doca-image-on-multiple-dpus

NVIDIA BlueField DPU BSP v4.7.0 50

The OOB interface is a gigabit Ethernet interface which provides TCP/IP network
connectivity to the Arm cores. This interface is named oob_net0 and is intended to be used
for management traffic (e.g. file transfer protocols, SSH, etc). The Linux driver that
controls this interface is named mlxbf_gige.ko, and is automatically loaded upon boot. This
interface can be configured and monitored by use of standard tools (e.g. ifconfig, ethtool,
etc). The OOB interface is subject to the following design limitations:

Only supports 1Gb/s full-duplex setting

Only supports GMII access to external PHY device

Supports maximum packet size of 2KB (i.e. no support for jumbo frames)

The OOB interface can also be used for PXE boot. This OOB port is not a path for the boot
stream. Any attempt to push a BFB to this port will not work. Please refer to How to use
the UEFI boot menu for more information about UEFI operations related to the OOB
interface.

OOB Interface MAC Address

The MAC address to be used for the OOB port is burned into Arm-accessible UPVS
EEPROM during the manufacturing process. This EEPROM device is different from the SPI
Flash storage device used for the NIC firmware and associated NIC MACs/GUIDs. The
value of the OOB MAC address is specific to each platform and is visible on the board-
level sticker.

If there is a need to re-configure this MAC for any reason, follow these steps to configure
a UEFI variable to hold new value for OOB MAC.:

Warning

It is not recommended to reconfigure the MAC address from the MAC
configured during manufacturing.

Note

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-HowtousetheUEFIbootmenu
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-HowtousetheUEFIbootmenu

NVIDIA BlueField DPU BSP v4.7.0 51

1. Log into Linux from the Arm console.

2. Issue the command ls /sys/firmware/efi/efivars to show whether efivarfs is mounted. If it
is not mounted, run:

3. Run:

4. Set the MAC address to 00:1a:ca:ff:ff:03 (the last six bytes of the printf value).

5. Reboot the device for the change to take effect.

To revert this change and go back to using the MAC as programmed during
manufacturing, follow these steps:

1. Log into UEFI from the Arm console, go to "Boot Manager" then "EFI Internal Shell".

2. Delete the OOB MAC UEFI variable. Run:

3. Reboot the device by running "reset" from UEFI.

The creation of an OOB MAC address UEFI variable will override the
OOB MAC address defined in EEPROM, but the change can be
reverted.

mount -t efivarfs none /sys/firmware/efi/efivars

chattr -i /sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c

printf "\x07\x00\x00\x00\x00\x1a\xca\xff\xff\x03" >
/sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c

dmpstore -d OobMacAddr

NVIDIA BlueField DPU BSP v4.7.0 52

4. Log into Linux from the Arm console.

5. Issue the command ls /sys/firmware/efi/efivars to show whether efivarfs is mounted. If it
is not mounted, run:

6. Run:

7. Reconfigure the original MAC address burned by the manufacturer in the format
aa\bb\cc\dd\ee\ff. Run:

8. Reboot the device for the change to take effect.

Supported ethtool Options for OOB Interface

The Linux driver for the OOB port supports the handling of some basic ethtool requests:
get driver info, get/set ring parameters, get registers, and get statistics.

To use the ethtool options available, use the following format:

Where <option> may be:

<no-argument> – display interface link information

-i – display driver general information

mount -t efivarfs none /sys/firmware/efi/efivars

chattr -i /sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c

printf "\x07\x00\x00\x00\x00\<original-MAC-address>" >
/sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c

$ ethtool [<option>] <interface>

NVIDIA BlueField DPU BSP v4.7.0 53

-S – display driver statistics

-d – dump driver register set

-g – display driver ring information

-G – configure driver ring(s)

-k – display driver offload information

-a – query the specified Ethernet device for pause parameter information

-r – restart auto-negotiation on the specified Ethernet device if auto-negotiation is
enabled

For example:

$ ethtool oob_net0
Settings for oob_net0:
Supported ports: [TP]
Supported link modes: 1000baseT/Full
Supported pause frame use: Symmetric
Supports auto-negotiation: Yes
Supported FEC modes: Not reported
Advertised link modes: 1000baseT/Full
Advertised pause frame use: Symmetric
Advertised auto-negotiation: Yes
Advertised FEC modes: Not reported
Link partner advertised link modes: 1000baseT/Full
Link partner advertised pause frame use: Symmetric
Link partner advertised auto-negotiation: Yes
Link partner advertised FEC modes: Not reported
Speed: 1000Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 3
Transceiver: internal
Auto-negotiation: on

NVIDIA BlueField DPU BSP v4.7.0 54

IP Address Configuration for OOB Interface

MDI-X: Unknown
Link detected: yes

$ ethtool -i oob_net0
driver: mlxbf_gige
version:
firmware-version:
expansion-rom-version:
bus-info: MLNXBF17:00
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: yes
supports-priv-flags: no

Display statistics specific to BlueField-2 design (i.e. statistics that are not shown in
the output of "ifconfig oob0_net")
$ ethtool -S oob_net0
NIC statistics:
hw_access_errors: 0
tx_invalid_checksums: 0
tx_small_frames: 1
tx_index_errors: 0
sw_config_errors: 0
sw_access_errors: 0
rx_truncate_errors: 0
rx_mac_errors: 0
rx_din_dropped_pkts: 0
tx_fifo_full: 0
rx_filter_passed_pkts: 5549
rx_filter_discard_pkts: 4

NVIDIA BlueField DPU BSP v4.7.0 55

The files that control IP interface configuration are specific to the Linux distribution. The
udev rules file (/etc/udev/rules.d/92-oob_net.rules) that renames the OOB interface to oob_net0

and is the same for Yocto, CentOS, and Ubuntu:

The files that control IP interface configuration are slightly different for CentOS and
Ubuntu:

CentOS configuration of IP interface:

Configuration file for oob_net0: /etc/sysconfig/network-scripts/ifcfg-oob_net0

For example, use the following to enable DHCP:

For example, to configure static IP use the following:

SUBSYSTEM=="net", ACTION=="add",
DEVPATH=="/devices/platform/MLNXBF17:00/net/eth[0-9]", NAME="oob_net0"

NAME="oob_net0"
DEVICE="oob_net0"
NM_CONTROLLED="yes"
PEERDNS="yes"
ONBOOT="yes"
BOOTPROTO="dhcp"
TYPE=Ethernet

NAME="oob_net0"
DEVICE="oob_net0"
IPV6INIT="no"
NM_CONTROLLED="no"
PEERDNS="yes"
ONBOOT="yes"
BOOTPROTO="static"
IPADDR="192.168.200.2"
PREFIX=30
GATEWAY="192.168.200.1"

NVIDIA BlueField DPU BSP v4.7.0 56

For Ubuntu configuration of IP interface, refer to section "Default Network Interface
Configuration".

Secure Boot
These pages provide guidelines on how to operate secured NVIDIA® BlueField® DPUs.
They provide UEFI secure boot references for the UEFI portion of the secure boot
process.

Secure boot is a process which verifies each element in the boot process prior to
execution, and halts or enters a special state if a verification step fails at any point during
the boot. It is based on an unmodifiable ROM code which acts as the root-of-trust (RoT)
and uses an off-chip public key, to authenticate the initial code which is loaded from an

DNS1="192.168.200.1"
TYPE=Ethernet

Note

This section provides directions for illustration purposes, it does not
intend to enforce or mandate any procedure about managing keys
and/or production guidelines. Platform users are solely responsible
of implementing secure strategies and safe approaches to manage
their boot images and their associated keys and certificates.

Note

Security aspects such as key generation, key management, key
protection, and certificate generation are out of the scope of this
section.

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-NetworkInterfaceConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-NetworkInterfaceConfiguration

NVIDIA BlueField DPU BSP v4.7.0 57

external non-volatile storage. The off-chip public key integrity is verified by the ROM code
against an on-chip public key hash value stored in E-FUSEs. Then the authenticated code
and each element in the boot process cryptographically verify the next element prior to
passing execution to it. This extends the chain-of-trust (CoT) by verifying elements that
have their RoT in hardware. In addition, no external intervention in the authentication
process is permitted to prevent unauthorized software and firmware from being loaded.
There should be no way to interrupt or bypass the RoT with runtime changes.

Supported BlueField DPUs

Secured BlueField devices have pre-installed software and firmware signed with NVIDIA
signing keys. The on-chip public key hash is programmed into E-FUSEs.

To verify whether the DPU in your possession supports secure boot, run the following
command:

“GA SECURED” indicates that the BlueField device has secure boot enabled.

To verify whether the BlueField Arm has secure boot enabled, run the following
command from the BlueField console:

Default Passwords and Policies
BMC Passwords

The BMC password must comply with the following policy parameters:

Using ASCII and Unicode characters is permitted

Minimum length: 12

sudo mst start
sudo flint -d /dev/mst/mt41686_pciconf0 q full | grep "Life cycle"
Life cycle: GA SECURED

ubuntu@localhost:~$ sudo mlxbf-bootctl | grep lifecycle
lifecycle state: GA Secured

NVIDIA BlueField DPU BSP v4.7.0 58

Maximum length: 20

Maximum number of consecutive character pairs: 4

The following is a valid example password:

HelloNvidia3D!

UEFI Menu Password

A password is required to enter the UEFI menu during BlueField bootup. The UEFI menu
contains various settings which impact BlueField behavior. Therefore, it is very important
to keep that password secure.

Default Password

1. A first-time user accessing the UEFI menu must enter the default password for the
UEFI menu, bluefield:

Info

Two characters are consecutive if |hex(char_1)-hex(char_2)|=1.

Examples of passwords with 5 consecutive character pairs
(invalid): DcBa123456AbCd!; ab1XbcYcdZdeGef!; Testing_123abcgh!.

Note

A user account is locked for 10 minutes after 10 consecutive failed
attempts.

NVIDIA BlueField DPU BSP v4.7.0 59

2. The user is prompted to provide a new password:

3. The user is prompted to confirm the new password:

Default Password Policy

The user can enable/disable the UEFI password policy. The default password policy is
enabled by default using a checkbox in the UEFI menu.

The user can browse the UEFI menu and disable as follows:

Note

The new password entered above must be in compliance with
the password policy:

The password must be between 12 and 64 characters
(inclusive)

There are no requirements for upper/lower case, or
special characters. Spaces are allowed.

NVIDIA BlueField DPU BSP v4.7.0 60

1. Navigate to "Device Configuration" > "System Configuration" > "Password Settings":

2. The "Default Password Policy" checkbox controls whether the more secure
password policy is enabled:

Info

NVIDIA BlueField DPU BSP v4.7.0 61

3. The user must hit ESC ESC and answer "Y" to save the configuration change.

Disabling Default Password Policy

To disable the Default Password Policy, hit the spacebar to clear the checkbox.

To disable the Default Password Policy, hit the spacebar to clear
the checkbox.

NVIDIA BlueField DPU BSP v4.7.0 62

Software Downgrade

The UEFI's password policy is not backward compatible. Although downgrade is not
recommended, users are allowed to downgrade their software while their password is
set. But , if and only if the password is set, users must configure the legacy password
prior to performing any downgrade.

For BSP 4.6.0 (DOCA 2.6.0) or higher, users must change the UEFI password saved to the
older "Legacy" format.

Info

If the Default Password Policy is disabled, the password entered must
be between 1 and 64 characters.

NVIDIA BlueField DPU BSP v4.7.0 63

In the UEFI menu:

1. Navigate to "Device Manager" > "System Configuration" >"Password Settings" >" Set
Legacy Password".

2. Select " Set Legacy Password ".

3. Enter your current password:

4. Type in a new legacy password between 1 and 20 characters:

Warning

If this procedure is not followed before performing a software
downgrade, users would not be able to enter the UEFI menu.

Note

NVIDIA BlueField DPU BSP v4.7.0 64

5. Confirm the new password:

The password format allows up to 64 characters but anything
greater than 20 characters is not backward compatible.

NVIDIA BlueField DPU BSP v4.7.0 65

Now, you may downgrade your BlueField image.

Password Reset

To reset the UEFI menu password, users may use the ready to use capsule file
EnrollKeysCap installed under /lib/firmware/mellanox/boot/capsule/EnrollKeysCap on the BlueField
DPU file system. From the BlueField console, execute the following command, then
reboot:

On the next reboot, the capsule file is processed, and the UEFI password is reset to
bluefield.

GRUB Password

GRUB menu entries are protected by a username and password to prevent unwanted
changes to the default boot options or parameters.

The default credentials are as follows:

Username admin

Password BlueField

The password can be changed during BFB installation by providing a new
grub_admin_PASSWORD parameter in bf.cfg:

To get a new encrypted password value use the command grub-mkpasswd-pbkdf2.

ubuntu@localhost:~$ bfrec --
capsule /lib/firmware/mellanox/boot/capsule/EnrollKeysCap

vim bf.cfg
grub_admin_PASSWORD='
grub.pbkdf2.sha512.10000.5EB1FF92FDD89BDAF3395174282C77430656A6DBEC1F92

NVIDIA BlueField DPU BSP v4.7.0 66

After the installation, the password can be updated by editing the file /etc/grub.d/40_custom

and then running the command update-grub which updates the file /boot/grub/grub.cfg.

NVIDIA BlueField DPU BSP v4.7.0 67

Release Notes
The release note pages provide information for NVIDIA® BlueField® DPU family software
such as changes and new features, supported platforms, and reports on software known
issues as well as bug fixes.

Changes and New Features

Supported Platforms and Interoperability

Bug Fixes In This Version

Known Issues

Validated and Supported Cables and Modules

Release Notes Change Log History

Bug Fixes History

Changes and New Features

Info

For an archive of changes and features from previous releases, refer
to Release Notes Change Log History.

Info

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Changes+and+New+Features
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Supported+Platforms+and+Interoperability
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Bug+Fixes+In+This+Version
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Known+Issues
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Validated+and+Supported+Cables+and+Modules
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Release+Notes+Change+Log+History
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Bug+Fixes+History
file:///networking/display/bluefielddpuosv470/Release+Notes+Change+Log+History

NVIDIA BlueField DPU BSP v4.7.0 68

Changes and New Features in 4.7.0

Added support for new BlueField reset and reboot procedures for loading new
firmware and firmware configuration changes which replace previous need for
server power cycle

Updated the default operation mode of SuperNICs to NIC mode (from DPU mode).
This is relevant to the following SKUs:

900-9D3B4-00CC-EA0

900-9D3B4-00SC-EA0

900-9D3B4-00CV-EA0

900-9D3B4-00SV-EA0

900-9D3B4-00EN-EA0

900-9D3B4-00PN-EA0

900-9D3D4-00EN-HA0

900-9D3D4-00NN-HA0

NVIDIA® BlueField ® DPUs support configuring network ports as
either Ethernet only or InfiniBand only .

Note

When upgrading one of these SuperNICs to 2.7.0, if its
mode of operation was changed at any point in the past,
then the last configured mode of operation will remain
unchanged. Otherwise, the SuperNIC will rise in NIC
operation mode.

https://docs.nvidia.com//networking/display/bluefielddpuosv470/NVIDIA+BlueField+Reset+and+Reboot+Procedures

NVIDIA BlueField DPU BSP v4.7.0 69

Installing the BFB Bundle now performs NIC firmware update by default

Added ability to install NIC firmware and BMC software in NIC mode in NVIDIA®
BlueField®-3.

Software packaging – new BlueField firmware bundle package (bf-fwbundle-

<version>.prod.bfb), a smaller image for Day 2 upgrades, without the OS and DOCA
runtime. Includes ATF, UEFI, nic-fw, bmc-fw, and eROT only.

Improved BlueField BMC robustness –

Report LLDP for L2 discovery via Redfish

Improved BlueField DPU debuggability

Increased support for virtio-net VF devices on BlueField-3 networking platforms to
2K

Reduced power consumption for BlueField NIC mode

Note

It is important to note the following:

During BFB Bundle installation, Linux is expected to boot
to upgrade NIC firmware and BMC software

As Linux is booting during BFB Bundle installation, it is
expected for the mlx5 core driver to timeout on the
BlueField Arm

During the BFB Bundle installation, it is expected for the
mlx5 driver to error messages on the x86 host. These
prints may be ignored as they are resolved by a
mandatory, post-installation power cycle.

It is mandatory to power cycle the host after the
installation is complete for the changes to take effect

NVIDIA BlueField DPU BSP v4.7.0 70

RAS

Report DDR Error to OS, including both single-bit ECC error and UCE error

Support error injection in processors, memory, and PCIe devices

Supported Platforms and
Interoperability
Supported NVIDIA BlueField-3 DPU Platforms

SKU PSID Description

900-
9D3D4-
00NN-HA0

MT_0
00000
1070

NVIDIA BlueField-3 B3140H E-series HHHL DPU; 400GbE(default
mode)/NDR IB; Single-port QSFP112; PCIe Gen5.0 x16; 8 Arm cores;
16GB on board DDR; integrated BMC; Crypto Disabled

900-
9D3B4-
00CV-EA0

MT_0
00000
1093

NVIDIA BlueField-3 B3220L E-Series FHHL DPU; 200GbE (default
mode) / NDR200 IB; Dual-port QSFP112; PCIe Gen5.0 x16; 8 Arm
cores; 16GB on-board DDR; integrated BMC; Crypto Enabled

900-
9D3B6-
00SC-EA0

MT_0
00000
1117

NVIDIA BlueField-3 B3210E E-Series FHHL DPU; 100GbE (default
mode) / HDR100 IB; Dual-port QSFP112; PCIe Gen5.0 x16 with x16
PCIe extension option; 16 Arm cores; 32GB on-board DDR;
integrated BMC; Crypto Disabled

900-
9D3B6-
00SN-AB0

MT_0
00000
0964

NVIDIA BlueField-3 B3240 P-Series Dual-slot FHHL DPU; 400GbE /
NDR IB (default mode); Dual-port QSFP112; PCIe Gen5.0 x16 with
x16 PCIe extension option; 16 Arm cores; 32GB on-board DDR;
integrated BMC; Crypto Disabled

900-
9D3B4-
00CC-EA0

MT_0
00000
0966

NVIDIA BlueField-3 B3210L E-series FHHL DPU; 100GbE (default
mode) / HDR100 IB; Dual port QSFP112; PCIe Gen4.0 x16; 8 Arm
cores; 16GB on-board DDR; integrated BMC; Crypto Enabled

900-
9D3B4-
00PN-EA0

MT_0
00000
1011

NVIDIA BlueField-3 B3140L E-Series FHHL DPU; 400GbE / NDR IB
(default mode); Single-port QSFP112; PCIe Gen5.0 x16; 8 Arm cores;
16GB on-board DDR; integrated BMC; Crypto Disabled

900-
9D3B6-

MT_0
00000

NVIDIA BlueField-3 B3210 P-Series FHHL DPU; 100GbE (default
mode) / HDR100 IB; Dual-port QSFP112; PCIe Gen5.0 x16 with x16

NVIDIA BlueField DPU BSP v4.7.0 71

SKU PSID Description

00CC-AA0 1024 PCIe extension option; 16 Arm cores; 32GB on-board DDR;
integrated BMC; Crypto Enabled

900-
9D3B6-
00SC-AA0

MT_0
00000
1025

NVIDIA BlueField-3 B3210 P-Series FHHL DPU; 100GbE (default
mode) / HDR100 IB; Dual-port QSFP112; PCIe Gen5.0 x16 with x16
PCIe extension option; 16 Arm cores; 32GB on-board DDR;
integrated BMC; Crypto Disabled

900-
9D3D4-
00EN-HA0
/ 900-
9D3D4-
00EN-HAQ

MT_0
00000
1069

Nvidia BlueField-3 B3140H E-series HHHL DPU; 400GbE(default
mode)/NDR IB; Single-port QSFP112; PCIe Gen5.0 x16; 8 Arm cores;
16GB on board DDR; integrated BMC; Crypto Enabled

900-
9D3B4-
00SC-EA0

MT_0
00000
0967

NVIDIA BlueField-3 B3210L E-series FHHL DPU; 100GbE (default
mode) / HDR100 IB; Dual port QSFP112; PCIe Gen4.0 x16; 8 Arm
cores; 16GB on-board DDR; integrated BMC; Crypto Disabled

900-
9D3D4-
03EN-HA0

MT_0
00000
1125

HPE Data Processing Unit InfiniBand NDR/Ethernet 400Gb 1-port
QSFP112 HHHL B3140H Adapter

699-21014-
0230

NVD0
00000
0038

NVIDIA A800T WITH BLUEFIELD-3; P1014 SKU 230; GENERIC; GA100
80GB HBM2E; PASSIVE DUAL SLOT 350W GEN5; DPU CRYPTO ON

900-
9D3B4-
00EN-EA0

MT_0
00000
1010

NVIDIA BlueField-3 B3140L E-Series FHHL DPU; 400GbE / NDR IB
(default mode); Single-port QSFP112; PCIe Gen5.0 x16; 8 Arm cores;
16GB on-board DDR; integrated BMC; Crypto Enabled

900-
9D3B4-
00SV-EA0

MT_0
00000
1094

NVIDIA BlueField-3 B3220L E-Series FHHL DPU; 200GbE (default
mode) / NDR200 IB; Dual-port QSFP112; PCIe Gen5.0 x16; 8 Arm
cores; 16GB on-board DDR; integrated BMC; Crypto Disabled

900-
9D3C6-
00SV-GA0

MT_0
00000
1101

NVIDIA BlueField-3 B3220SH E-Series No Heatsink FHHL Storage
Controller; 200GbE (default mode) / NDR200 IB; Dual-port
QSFP112; PCIe Gen5.0 x16 with x16 PCIe extension option; 16 Arm
cores; 48GB on-board DDR; integrated BMC; Crypto Disabled

900-
9D3C6-
00SV-DA0

MT_0
00000
1102

NVIDIA BlueField-3 B3220SH E-Series FHHL Storage Controller;
200GbE (default mode) / NDR200 IB; Dual-port QSFP112; PCIe

NVIDIA BlueField DPU BSP v4.7.0 72

SKU PSID Description

Gen5.0 x16 with x16 PCIe extension option; 16 Arm cores; 48GB on-
board DDR; integrated BMC; Crypto Disabled;

900-
9D3B6-
00CV-AA0

MT_0
00000
0884

NVIDIA BlueField-3 B3220 P-Series FHHL DPU; 200GbE (default
mode) / NDR200 IB; Dual-port QSFP112; PCIe Gen5.0 x16 with x16
PCIe extension option; 16 Arm cores; 32GB on-board DDR;
integrated BMC; Crypto Enabled

900-
9D3B6-
00SV-AA0

MT_0
00000
0965

NVIDIA BlueField-3 B3220 P-Series FHHL DPU; 200GbE (default
mode) / NDR200 IB; Dual-port QSFP112; PCIe Gen5.0 x16 with x16
PCIe extension option; 16 Arm cores; 32GB on-board DDR;
integrated BMC; Crypto Disabled

900-
9D3B6-
H1CN-AB0

MT_0
00000
0883

NVIDIA BlueField-3 B3240 P-Series Dual-slot FHHL DPU; 400GbE /
NDR IB (default mode); Dual-port QSFP112; PCIe Gen5.0 x16 with
x16 PCIe extension option; 16 Arm cores; 32GB on-board DDR;
integrated BMC; Crypto Enabled

900-
9D3C6-
00CV-DA0

MT_0
00000
1075

NVIDIA BlueField-3 B3220SH E-Series FHHL Storage Controller;
200GbE (default mode) / NDR200 IB; Dual-port QSFP112; PCIe
Gen5.0 x16 with x16 PCIe extension option; 16 Arm cores; 48GB on-
board DDR; integrated BMC; Crypto Enabled; Secure Boot

900-
9D3C6-
00CV-GA0

MT_0
00000
1083

NVIDIA BlueField-3 B3220SH E-Series No heatsink FHHL Storage
Controller; 200GbE (default mode) / NDR200 IB; Dual-port
QSFP112; PCIe Gen5.0 x16 with x16 PCIe extension option; 16 Arm
cores; 48GB on-board DDR; integrated BMC; Crypto Enabled

900-
9D3B6-
00CC-EA0

MT_0
00000
1115

NVIDIA BlueField-3 B3210E E-Series FHHL DPU; 100GbE (default
mode) / HDR100 IB; Dual-port QSFP112; PCIe Gen5.0 x16 with x16
PCIe extension option; 16 Arm cores; 32GB on-board DDR;
integrated BMC; Crypto Enabled

900-
9D3B4-
00EN-EAS

MT_0
00000
1029

NVIDIA BlueField-3 BF3140L E-series SuperNIC NDR/400GbE single
port QSFP112; PCIe Gen5.0 x16 FHHL; Crypto Enabled; 16GB on
board DDR; integrated BMC; Tall Bracket; IPN QP

Supported NVIDIA BlueField-2 DPU Platforms

NVIDIA BlueField DPU BSP v4.7.0 73

NVIDIA
SKU

Legacy
OPNs

PSID Description

900-
9D219-
0056-
SN1

MBF2M
516A-
CENOT

MT_0
0000
0056
0

BlueField-2 E-Series DPU 100GbE Dual-Port QSFP56; PCIe
Gen4 x16; Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management; FHHL

900-
9D218-
0073-
ST0

MBF2H
532C-
AESOT

MT_0
0000
0076
6

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated
BMC; PCIe Gen4 x8; Secure Boot Enabled; Crypto Disabled;
32GB on-board DDR; 1GbE OOB management; FHHL

900-
9D219-
0086-
ST1

MBF2M
516A-
CECOT

MT_0
0000
0037
5

BlueField-2 E-Series DPU 100GbE Dual-Port QSFP56; PCIe
Gen4 x16; Crypto and Secure Boot Enabled; 16GB on-board
DDR; 1GbE OOB management; FHHL

900-
9D208-
0076-
ST2

MBF2H
516C-
EESOT

MT_0
0000
0073
7

BlueField-2 P-Series DPU 100GbE/EDR/HDR100 VPI Dual-
Port QSFP56; integrated BMC; PCIe Gen4 x16; Secure Boot
Enabled; Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-
9D208-
0076-
STA

MBF2H
516C-
CEUOT

MT_0
0000
0097
3

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled with
UEFI disabled; Crypto Disabled; 16GB on-board DDR; 1GbE
OOB management

900-
9D208-
0086-
ST4

MBF2M
516C-
EECOT

MT_0
0000
0072
8

BlueField-2 E-Series DPU 100GbE/EDR/HDR100 VPI Dual-
Port QSFP56; integrated BMC; PCIe Gen4 x16; Secure Boot
Enabled; Crypto Enabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-
9D208-
0086-
ST2

MBF2H
536C-
CECOT

MT_0
0000
0076
8

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled;
Crypto Enabled; 32GB on-board DDR; 1GbE OOB
management; FHHL

900-
9D206-
0063-
ST1

MBF2H
322A-
AEEOT

MT_0
0000
0054
3

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4
x8; Crypto Enabled; 8GB on-board DDR; 1GbE OOB
management; HHHL

900-
9D250-

MBF2M
345A-

MT_0
0000

BlueField-2 E-Series DPU; 200GbE/HDR single-port QSFP56;
PCIe Gen4 x16; Secure Boot Enabled; Crypto Enabled; 16GB

NVIDIA BlueField DPU BSP v4.7.0 74

NVIDIA
SKU

Legacy
OPNs

PSID Description

0048-
ST1

HECOT 0071
6

on-board DDR; 1GbE OOB management; HHHL

900-
9D218-
0083-
ST2

MBF2H
512C-
AECOT

MT_0
0000
0072
4

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated
BMC; PCIe Gen4 x8; Secure Boot Enabled; Crypto Enabled;
16GB on-board DDR; 1GbE OOB management; FHHL

900-
9D208-
0086-
SQ0

MBF2H
516C-
CECOT

MT_0
0000
0072
9

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled;
Crypto Enabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-
9D208-
0076-
ST5

MBF2M
516C-
CESOT

MT_0
0000
0073
1

BlueField-2 E-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled;
Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-
9D208-
0076-
ST3

MBF2H
536C-
CESOT

MT_0
0000
0076
7

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled;
Crypto Disabled; 32GB on-board DDR; 1GbE OOB
management; FHHL

6991402
80000

N/A

NVD0
0000
0002
0

ZAM/NAS

900-
9D219-
0066-
ST2

MBF2M
516A-
CEEOT

MT_0
0000
0056
1

BlueField-2 E-Series DPU 100GbE Dual-Port QSFP56; PCIe
Gen4 x16; Crypto Enabled; 16GB on-board DDR; 1GbE OOB
management; FHHL

900-
9D219-
0086-
ST0

MBF2M
516A-
EECOT

MT_0
0000
0037
6

BlueField-2 E-Series DPU 100GbE/EDR/HDR100 VPI Dual-
Port QSFP56; PCIe Gen4 x16; Crypto and Secure Boot
Enabled; 16GB on-board DDR; 1GbE OOB management;
FHHL

900-
9D206-
0053-
SQ0

MBF2H
332A-
AENOT

MT_0
0000
0053
9

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4
x8; Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management; HHHL

NVIDIA BlueField DPU BSP v4.7.0 75

NVIDIA
SKU

Legacy
OPNs

PSID Description

900-
9D219-
0006-
ST0

MBF2H
516A-
CEEOT

MT_0
0000
0070
2

BlueField-2 DPU 100GbE Dual-Port QSFP56; PCIe Gen4 x16;
Crypto; 16GB on-board DDR; 1GbE OOB management; FHHL

900-
9D219-
0056-
ST2

MBF2H
516A-
CENOT

MT_0
0000
0070
3

BlueField-2 DPU 100GbE Dual-Port QSFP56; PCIe Gen4 x16;
Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management; FHHL

900-
9D219-
0066-
ST3

MBF2H
516A-
EEEOT

MT_0
0000
0070
4

BlueField-2 DPU 100GbE/EDR/HDR100 VPI Dual-Port
QSFP56; PCIe Gen4 x16; Crypto Enabled; 16GB on-board
DDR; 1GbE OOB management; FHHL

900-
9D218-
0073-
ST1

MBF2H
512C-
AESOT

MT_0
0000
0072
3

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated
BMC; PCIe Gen4 x8; Secure Boot Enabled; Crypto Disabled;
16GB on-board DDR; 1GbE OOB management; FHHL

900-
9D208-
0076-
ST6

MBF2M
516C-
EESOT

MT_0
0000
0073
2

BlueField-2 E-Series DPU 100GbE/EDR/HDR100 VPI Dual-
Port QSFP56; integrated BMC; PCIe Gen4 x16; Secure Boot
Enabled; Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-
9D208-
0086-
ST3

MBF2M
516C-
CECOT

MT_0
0000
0073
3

BlueField-2 E-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled;
Crypto Enabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-
9D218-
0083-
ST4

MBF2H
532C-
AECOT

MT_0
0000
0076
5

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated
BMC; PCIe Gen4 x8; Secure Boot Enabled; Crypto Enabled;
32GB on-board DDR; 1GbE OOB management; FHHL

P1004 /
6992100
40230

N/A

NVD0
0000
0001
5

ROY BlueField-2 + GA100 PCIe Gen4 x8; two 100Gbe/EDR
QSFP28 ports; FHFL

900-
9D219-

MBF2M
516A-

MT_0
0000

BlueField-2 E-Series DPU 100GbE/EDR/HDR100 VPI Dual-
Port QSFP56; PCIe Gen4 x16; Crypto Disabled; 16GB on-

NVIDIA BlueField DPU BSP v4.7.0 76

NVIDIA
SKU

Legacy
OPNs

PSID Description

0056-
ST1

EENOT 0037
7

board DDR; 1GbE OOB management; FHHL

900-
9D206-
0063-
ST2

MBF2H
332A-
AEEOT

MT_0
0000
0054
0

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4
x8; Crypto Enabled; 16GB on-board DDR; 1GbE OOB
management; HHHL

900-
9D206-
0053-
ST2

MBF2H
322A-
AENOT

MT_0
0000
0054
4

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4
x8; Crypto Disabled; 8GB on-board DDR; 1GbE OOB
management; HHHL

900-
9D219-
0066-
ST0

MBF2M
516A-
EEEOT

MT_0
0000
0055
9

BlueField-2 E-Series DPU 100GbE/EDR/HDR100 VPI Dual-
Port QSFP56; PCIe Gen4 x16; Crypto Enabled; 16GB on-
board DDR; 1GbE OOB management; FHHL

900-
9D208-
0076-
ST1

MBF2H
516C-
CESOT

MT_0
0000
0073
8

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled;
Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-
9D206-
0083-
ST3

MBF2H
332A-
AECOT

MT_0
0000
0054
1

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4
x8; Crypto and Secure Boot Enabled; 16GB on-board DDR;
1GbE OOB management; HHHL

900-
9D219-
0056-
SQ0

MBF2H
516A-
EENOT

MT_0
0000
0070
5

BlueField-2 DPU 100GbE/EDR/HDR100 VPI Dual-Port
QSFP56; PCIe Gen4 x16; Crypto Disabled; 16GB on-board
DDR; 1GbE OOB management; FHHL

900-
9D250-
0038-
ST1

MBF2M
345A-
HESOT

MT_0
0000
0071
5

BlueField-2 E-Series DPU; 200GbE/HDR single-port QSFP56;
PCIe Gen4 x16; Secure Boot Enabled; Crypto Disabled; 16GB
on-board DDR; 1GbE OOB management; HHHL

900-
9D218-
0073-
ST4

MBF2H
512C-
AEUOT

MT_0
0000
0097
2

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated
BMC; PCIe Gen4 x8; Secure Boot Enabled with UEFI
disabled; Crypto Disabled; 16GB on-board DDR; 1GbE OOB
management

NVIDIA BlueField DPU BSP v4.7.0 77

NVIDIA
SKU

Legacy
OPNs

PSID Description

900-
9D208-
0076-
STB

MBF2H
536C-
CEUOT

MT_0
0000
0100
8

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56;
integrated BMC; PCIe Gen4 x16; Secure Boot Enabled with
UEFI Disabled; Crypto Disabled; 32GB on-board DDR; 1GbE
OOB management; FHHL

900-
9D206-
0083-
ST1

MBF2H
322A-
AECOT

MT_0
0000
0054
2

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4
x8; Crypto and Secure Boot Enabled; 8GB on-board DDR;
1GbE OOB management; HHHL

900-
9D206-
0063-
ST4

MBF2M
322A-
AEEOT

MT_0
0000
0049
0

BlueField-2 E-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4
x8; Crypto Enabled; 8GB on-board DDR; 1GbE OOB
management; HHHL

Embedded Software

The BlueField DPU installation DOCA local repo package for DPU for this release is
DOCA_2.7.0_BSP_4.7.0_Ubuntu_22.04-2.23-07.prod.bfb.

The following software components are embedded in it:

Compone
nt

Version Description

ATF
v2.2(release):
4.7.0-25-
g5569834

Arm-trusted firmware is a reference implementation of
secure world software for Arm architectures

UEFI
4.7.0-42-
g13081ae

UEFI is a specification that defines the architecture of the
platform firmware used for booting and its interface for
interaction with the operating system

BlueField-3
NIC
firmware

32.41.1000
Firmware is used to run user programs on the BlueField-3
which allow hardware to run

BlueField-2
NIC
firmware

24.41.1000
Firmware is used to run user programs on the BlueField-2
which allow hardware to run

https://docs.nvidia.com/networking/display/bluefielddpuosv470
https://docs.nvidia.com/networking/display/bluefielddpuosv470
https://docs.nvidia.com/networking/display/bluefielddpuosv470
https://docs.nvidia.com/networking/display/bluefielddpuosv470
https://docs.nvidia.com/networking/display/bluefielddpuosv470
https://docs.nvidia.com/networking/display/BlueField3Firmwarev32411000
https://docs.nvidia.com/networking/display/BlueField2Firmwarev24411000

NVIDIA BlueField DPU BSP v4.7.0 78

Compone
nt

Version Description

BMC
firmware

24.04 BlueField BMC firmware

BlueField-3
eROT
(Glacier)

cec_ota_BMG
P-04.0f

BlueField-3 eROT firmware

BlueField-2
eROT (CEC)

00.02.0182.0
000.n02

BlueField-2 eROT firmware

Supported DPU Linux Distributions (aarch64)

Ubuntu 22.04

Supported Host OS per DOCA-Host Installation Profile

The default operating system included with the BlueField Bundle (for DPU and SuperNIC)
is Ubuntu 22.04.

The supported operating systems on the host machine per DOCA-Host installation profile
are the following:

Info

For more information about embedded software components and
drivers, refer to the DOCA Release Notes.

Note

Only the following generic kernel versions are supported for DOCA
local repo package for host installation.

https://docs.nvidia.com/networking/display/bluefieldbmcv2404
https://docs.nvidia.com/doca/sdk/nvidia+doca+release+notes/index.html#src-2571330357_NVIDIADOCAReleaseNotes-InstallationNotes

NVIDIA BlueField DPU BSP v4.7.0 79

OS
OS
Version

Default Kernel Version Arch
doca-
all

doca-
networking

doca-
ofed

Alinux 3.2 5.10.134-13.al8.x86_64 x86 ✔ ✔ ✔

Anolis 8.6 5.10.134+

aarch
64

✔

x86 ✔

BCLinux
21.10S
P2

4.19.90-
2107.6.0.0098.oe1.bclinux.aarc
h64

aarch
64

✔

4.19.90-
2107.6.0.0100.oe1.bclinux.x86_
64

x86 ✔

CTYunOS

2.0

4.19.90-
2102.2.0.0062.ctl2.aarch64

aarch
64

✔

4.19.90-
2102.2.0.0062.ctl2.x86_64

x86 ✔

3.0
(23.01)

5.10.0-136.12.0.86.ctl3.aarch64
aarch
64

✔ ✔ ✔

5.10.0-136.12.0.86.ctl3.x86_64 x86 ✔ ✔ ✔

Debian

10.13
4.19.0-21-arm64

aarch
64

✔

4.19.0-21-amd64 x86 ✔

10.8
4.19.0-14-arm64

aarch
64

✔

4.19.0-14-amd64 x86 ✔ ✔ ✔

10.9 4.19.0-16-amd64 x86 ✔

11.3
5.10.0-13-arm64

aarch
64

✔

5.10.0-13-amd64 x86 ✔

12.1
6.1.0-10-arm64

aarch
64

✔

NVIDIA BlueField DPU BSP v4.7.0 80

OS
OS
Version

Default Kernel Version Arch
doca-
all

doca-
networking

doca-
ofed

6.1.0-10-amd64 x86 ✔

EulerOS

2.0sp1
1

5.10.0-
60.18.0.50.h323.eulerosv2r11.a
arch64

aarch
64

✔

5.10.0-
60.18.0.50.h323.eulerosv2r11.x
86_64

x86 ✔

2.0sp1
2

5.10.0-
136.12.0.86.h1032.eulerosv2r1
2.aarch64

aarch
64

✔

5.10.0-
136.12.0.86.h1032.eulerosv2r1
2.x86_64

x86 ✔

Kylin

10sp2

4.19.90-
24.4.v2101.ky10.aarch64

aarch
64

✔

4.19.90-24.4.v2101.ky10.x86_64 x86 ✔

10sp3

4.19.90-
52.22.v2207.ky10.aarch64

aarch
64

✔

4.19.90-
52.22.v2207.ky10.x86_64

x86 ✔

Mariner 2.0 5.15.118.1-1.cm2.x86_64 x86 ✔

Oracle
Linux

7.9 5.4.17-2011.6.2.el7uek.x86_64 x86 ✔

8.4
5.4.17-
2102.201.3.el8uek.x86_64

x86 ✔

8.6
5.4.17-
2136.307.3.1.el8uek.x86_64

x86 ✔

8.7 5.15.0-3.60.5.1.el8uek.x86_64 x86 ✔ ✔ ✔

8.8
5.15.0-
101.103.2.1.el8uek.x86_64

x86 ✔

9.1 5.15.0-3.60.5.1.el9uek.x86_64 x86 ✔

NVIDIA BlueField DPU BSP v4.7.0 81

OS
OS
Version

Default Kernel Version Arch
doca-
all

doca-
networking

doca-
ofed

9.2
5.15.0-
101.103.2.1.el9uek.x86_64

x86 ✔

openEule
r

20.03s
p3

4.19.90-
2112.8.0.0131.oe1.aarch64

aarch
64

✔

4.19.90-
2112.8.0.0131.oe1.x86_64

x86 ✔

22.03

5.10.0-
60.18.0.50.oe2203.aarch64

aarch
64

✔

5.10.0-
60.18.0.50.oe2203.x86_64

x86 ✔

RHEL/Ce
ntOS

8.0
4.18.0-80.el8.aarch64

aarch
64

✔

4.18.0-80.el8.x86_64 x86 ✔

8.1
4.18.0-147.el8.aarch64

aarch
64

✔

4.18.0-147.el8.x86_64 x86 ✔

8.2
4.18.0-193.el8.aarch64

aarch
64

✔

4.18.0-193.el8.x86_64 x86 ✔ ✔ ✔

8.3
4.18.0-240.el8.aarch64

aarch
64

✔

4.18.0-240.el8.x86_64 x86 ✔

8.4
4.18.0-305.el8.aarch64

aarch
64

✔

4.18.0-305.el8.x86_64 x86 ✔

RHEL/Ro
cky 8.5

4.18.0-348.el8.aarch64
aarch
64

✔

4.18.0-348.el8.x86_64 x86 ✔

NVIDIA BlueField DPU BSP v4.7.0 82

OS
OS
Version

Default Kernel Version Arch
doca-
all

doca-
networking

doca-
ofed

8.6
4.18.0-372.41.1.el8_6.aarch64

aarch
64

✔

4.18.0-372.41.1.el8_6.x86_64 x86 ✔ ✔ ✔

8.7
4.18.0-425.14.1.el8_7.aarch64

aarch
64

✔

4.18.0-425.14.1.el8_7.x86_64 x86 ✔

8.8
4.18.0-477.10.1.el8_8.aarch64

aarch
64

✔ ✔ ✔

4.18.0-477.10.1.el8_8.x86_64 x86 ✔ ✔ ✔

8.9
4.18.0-513.5.1.el8_9.aarch64

aarch
64

✔ ✔ ✔

4.18.0-513.5.1.el8_9.x86_64 x86 ✔ ✔ ✔

9.0
5.14.0-70.46.1.el9_0.aarch64

aarch
64

✔

5.14.0-70.46.1.el9_0.x86_64 x86 ✔

9.1
5.14.0-162.19.1.el9_1.aarch64

aarch
64

✔

5.14.0-162.19.1.el9_1.x86_64 x86 ✔ ✔ ✔

9.2
5.14.0-284.11.1.el9_2.aarch64

aarch
64

✔

5.14.0-284.11.1.el9_2.x86_64 x86 ✔

9.3
5.14.0-362.8.1.el9_3.aarch64

aarch
64

✔

5.14.0-362.8.1.el9_3.x86_64 x86 ✔

SLES

15sp2 5.3.18-22-default

aarch
64

✔

x86 ✔

15sp3 5.3.18-57-default aarch
64

✔

NVIDIA BlueField DPU BSP v4.7.0 83

OS
OS
Version

Default Kernel Version Arch
doca-
all

doca-
networking

doca-
ofed

x86 ✔

15sp4 5.14.21-150400.22-default

aarch
64

✔

x86 ✔

15sp5 5.14.21-150500.53-default

aarch
64

✔

x86 ✔

TKLinux 3.3
5.4.119-19.0009.39

aarch
64

✔

5.4.119-19.0009.39 x86 ✔

Ubuntu

20.04 5.4.0-26-generic

aarch
64

✔

x86 ✔ ✔ ✔

22.04 5.15.0-25-generic

aarch
64

✔ ✔ ✔

x86 ✔ ✔ ✔

24.04 6.8.0-31-generic

aarch
64

✔

x86 ✔

UOS

20.106
0a

5.10.0-46.uelc20.aarch64
aarch
64

✔

5.10.0-46.uelc20.x86_64 x86 ✔

20.106
0e

5.10.0-46.uel20.aarch64
aarch
64

✔

5.10.0-46.uel20.x86_64 x86 ✔

Supported Open vSwitch

NVIDIA BlueField DPU BSP v4.7.0 84

2.15.1

Bug Fixes In This Version

Ref
#

Issue Description

381
452
6

Description: Kubernetes official repository changed location and it causes apt/yum
failures on the BlueField OSes older than BSP 4.7.0 (DOCA 2.7.0).

Keywords: Kubernetes; OS

Reported in version: 4.6.0

381
452
6

Description: The location of the official Kubernetes repository changed, causing
apt/yum failures.

Keywords: Kubernetes

Reported in version: 4.6.0

382
066
1

Description: Virtio-net may see TX timeout on specific queues.

Keywords: Emulated devices

Reported in version: 4.6.0

385
045
9

Description: BMC components update fails while using default BMC root
password.

Keywords: BMC; update

Reported in version: 4.6.0

377
408
8

Description: When enrolling a certificate to the UEFI DB, the failure message
"ERROR: Unsupported file type!" is displayed when the DB was full.

Info

For an archive of bug fixes from previous releases, please see "Bug
Fixes History".

file:///networking/display/bluefielddpuosv470/Bug+Fixes+History
file:///networking/display/bluefielddpuosv470/Bug+Fixes+History

NVIDIA BlueField DPU BSP v4.7.0 85

Ref
#

Issue Description

Keywords: SNAP; UEFI; error

Reported in version: 4.5.0

378
700
3

Description: Host PCIe driver hangs when hot plugging a device due to SF creation
and error flow handling failure.

Keywords: Subfunction; hot-plug

Reported in version: 4.5.0

366
339
8

Description: On rare occasions, OP-TEE may panic upon boot.

Keywords: fTPM over OP-TEE

Reported in version: 4.5.0

367
736
6

Description: On rare occasions, the devices /dev/tpm0 and /dev/tpmrm0 are not
created triggering an fTPM panic during boot. This message indicates that the
fTPM over OP-TEE feature is not functional.

Keywords: fTPM over OP-TEE

Reported in version: 4.5.0

371
291
6

Description: The following fTMP over OP-TEE error appears when booting
BlueField:

Keywords: fTPM over OP-TEE

Reported in version: 4.5.0

383
003
4

Description: The following bfscripts have been deprecated and may no longer
work as expected: bfinst, bfdracut, bfacpievt. These scripts are no longer
supported and will eventually be removed. Warning logs have been added to
notify users.

Keywords: Deprecated bfscripts

Reported in version: 4.5.0

361
893

Description: When moving to DPU mode from NIC mode, it is necessary to reinstall
the BFB and perform a graceful reboot to the DPU by shutting down the Arm cores

ftpm-tee PRP0001:01: ftpm_tee_probe: tee_client_open_session failed,
err=ffff3024

NVIDIA BlueField DPU BSP v4.7.0 86

Ref
#

Issue Description

6 before rebooting the host system.

Keywords: NIC mode

Reported in version: 4.2.2

360
314
6

Description: Running mlxfwreset on BlueField-3 may cause the external host to crash
when the RShim driver is running on that host.

Keywords: RShim; mlxfwreset

Reported in version: 4.2.1

344
407
3

Description: mlxfwreset is not supported in this release.

Keywords: mlxfwreset; support

Reported in version: 4.0.2

Known Issues
R
ef
#

Issue

32
39
32
0

Description: Resetting hugepage size to 0 on Rocky Linux 8.6 using the sysctl tool
fails.

Workaround: Use the following command instead:

Keyword: Hugepage; sysctl

Reported in version: 4.7.0

38
59
11
3

Description: Reloading MLNX_OFED drivers with the command /etc/init.d/openibd

restart fails when the NVMe driver is installed and in use.

Workaround: Reboot the machine to load all the MLNX_OFED drivers.

Keyword: NVMe; driver

Reported in version: 4.7.0

echo 0 > /sys/kernel/mm/hugepages/hugepages-<Size>/nr_hugepages

NVIDIA BlueField DPU BSP v4.7.0 87

R
ef
#

Issue

37
48
64
9

Description: With the numbering of CPUs in an 8-core configuration, the kernel is
expected to assign virtual CPU ID numbers from 0-7, where N is the number of
cores enabled. With CTyunOS, however, the numbering is unexpected.

Workaround: N/A

Keyword: CTyunOS; CPU numbering

Reported in version: 4.7.0

37
56
74
8

Description: When performing BFB push repeatedly, BlueField-3 may in rare
instances fail to boot with the message "PSC error -60" appearing in the RShim log
sometimes.

Workaround: Reset the card or repeat the operation (bfb push).

Keyword: BFB Push; FW Reset

Reported in version: 4.7.0

38
31
23
0

Description: In OpenEuler 20.03, the Linux Kernel version 4.19.90 is affected by an
issue that impacts the discard/trim functionality for the BlueField's eMMC which
may cause degraded performance of the eMMC over time.

Workaround: Upgrade to Linux Kernel version 5.10 or later.

Keyword: eMMC discard; trim functionality

Reported in version: 4.7.0

36
65
07
0

Description: Virtio-net controller fails to load if DPA_AUTHENTICATION is enabled.

Workaround: N/A

Keyword: Virtio-net; DPA

Reported in version: 4.7.0

38
62
68
3

Description: Creating VFs and hotplug PFs in parallel can lead to controller crash.

Workaround: Create VFs followed by hotplug PF or vice versa.

Keyword: Virtio-net emulation

Reported in version: 4.7.0

NVIDIA BlueField DPU BSP v4.7.0 88

R
ef
#

Issue

38
44
06
6

Description: On CentOS 7.6 with kernel 4.19, bringing up OVS bridge interface
causes call traces:
WARNING: CPU: 5 PID: 14339 at kernel/rcu/tree_plugin.h:342 rcu_note_context_switch+0x48/0x538

Workaround: Do not bring UP OVS bridge interfaces.

Keyword: CentOS; kernel; rcu_note_context_switch

Reported in version: 4.7.0

38
86
31
5

Description: To reset or shut down the BlueField Arm, it is mandatory to specify the
--sync 0 argument. For example:

Workaround: N/A

Keyword: Arm; shutdown

Reported in version: 4.7.0

38
81
94
1

Description: When working with RShim 2.0.28, PCIe host crash may rarely occur at
the beginning of BFB push after the Arm reset.

Workaround: Downgrade to RShim 2.0.27 or upgrade to RShim 2.0.29.

Keyword: RShim; driver

Reported in version: 4.7.0

38
44
70
5

Description: In OpenEuler 20.03, the Linux Kernel version 4.19.90 is affected by an
issue that impacts the discard/trim functionality for the DPU eMMC device which
may cause degraded performance of the DPU eMMC over time.

Workaround: Upgrade to Linux Kernel version 5.10 or later.

Keyword: eMMC discard; trim functionality

Reported in version: 4.7.0

38
77
72
5

Description: During BFB installation in NIC mode on BlueField-3, too much
information is added into RShim log which fills it, causing the Linux installation
progress log to not appear in the RShim log.

mlxfwreset -d <device> -l 1 -t 4 --sync 0 r

echo "DISPLAY_LEVEL 2" > /dev/rshim0/misc

NVIDIA BlueField DPU BSP v4.7.0 89

R
ef
#

Issue

Workaround: Monitor the BlueField-3 Arm's UART console to check whether BFB
installation has completed or not for NIC mode.

Keyword: NIC mode; BFB install

Reported in version: 4.7.0

38
75
39
4

Description: After the BFB installation, the root partition UUID in /etc/fstab does not
match current partition UUID. As a result root partition is mounted as read-only:
/dev/nvme0n1p2 on / type xfs (ro,relatime,attr2,inode64,logbufs=8,logbsize=32k,noquota)

Workaround:

1. Fix root partition UUID in the /etc/fstab:

2. Get UUID:

3. Update UUID in the /etc/fstab to match the one printed by lsblk:

Keyword: Read-only; OL; UUID

Reported in version: 4.7.0

38
55

Description: Trying to jump from a steering level in the hardware to a lower level
using software steering is not supported on rdma-core lower than 48.x.

cat /dev/rshim0/misc

[13:58:39] INFO: Installation finished
...
[14:01:53] INFO: Rebooting...

mount -o remount,rw /dev/nvme0n1p2 /

lsblk -o UUID /dev/nvme0n1p2
UUID
ae1d5e37-7aee-4234-984b-9a9203bfd182

UUID=ae1d5e37-7aee-4234-984b-9a9203bfd182 / xfs defaults
 0 1

NVIDIA BlueField DPU BSP v4.7.0 90

R
ef
#

Issue

70
2

Workaround: N/A

Keyword: RDMA; SWS

Reported in version: 4.7.0

38
44
70
5

Description: In OpenEuler 20.03, the Linux Kernel version 4.19.90 is affected by a
bug that impacts the discard/trim functionality for the DPU eMMC device which may
cause degraded performance of the DPU eMMC over time.

Workaround: Upgrade to Linux Kernel version 5.10 or later.

Keyword: eMMC discard; trim functionality

Reported in version: 4.7.0

37
43
87
9

Description: mlxfwreset could timeout on servers where the RShim driver is running
and INTx is not supported. The following error message is printed: BF reset flow

encountered a failure due to a reset state error of negotiation timeout.

Workaround: Set PCIE_HAS_VFIO=0 and PCIE_HAS_UIO=0 in /etc/rshim.conf and restart the
RShim driver. Then re-run the mlxfwreset command.
If host Linux kernel lockdown is enabled, then manually unbind the RShim driver
before mlxfwreset and bind it back after mlxfwreset:

Keyword: Timeout; mlxfwreset; INTx

Reported in version: 4.7.0

36
70
36
1

Description: Rarely, the driver takes more than several minutes to load.

Workaround: Re-run /sbin/mlnx_bf_configure.

Keywords: Driver; boot

Reported in version: 4.6.0

37
46

Description: The error message IANA PEN registry open failed: No such file or directory may
appear when using ipmitool version 1.8.19-7. This message can be safely ignored.

echo "DROP_MODE 1" > /dev/rshim0/misc
mlxfwreset <arguments>
echo "DROP_MODE 0" > /dev/rshim0/misc

NVIDIA BlueField DPU BSP v4.7.0 91

R
ef
#

Issue

86
6

Workaround: N/A

Keywords: IPMI; Debian

Reported in version: 4.6.0

37
55
14
3

Description: UEFI synchronous exception is observed at address 0x479B7xxxx
where the UEFI module names are not printed. See the following example:

Workaround: Run software reset or reinstall the BFB.

Keywords: UEFI synchronous exception

Reported in version: 4.6.0

37
72
17
7

Description: SHHing to the DPU with Debian 12 can print the following warning: -
bash: warning: setlocale: LC_ALL: cannot change locale (en_US.UTF-8).

Workaround: Run:

Keywords: Debian 12; locale; LC_ALL

Reported in version: 4.6.0

37
04
98
5

Description: When the RShim driver is not running on the external host or when the
tmfifo_net0 interface is down on the DPU side, the following kernel warning may
appear on the DPU side: virtio_net virtio1 tmfifo_net0: TX timeout.

Workaround: N/A

Keywords: RShim; log

Reported in version: 4.6.0

37
67

Description: On Debian 12, the first boot after BFB installation may fail with the
following kernel panic:

ERR[UEFI]: PC=0x479B78480(B4000040 3900001F A94153F3 F94013F5)
ERR[UEFI]: PC=0x479B78480

ERR[UEFI]: PC=0x479B7E684

ERR[UEFI]: PC=0x47A0E93F4

ERR[UEFI]: PC=0x47A0E9608

sudo dpkg-reconfigure locales

NVIDIA BlueField DPU BSP v4.7.0 92

R
ef
#

Issue

58
0

Workaround: Reset the DPU using the RShim interface:

Keywords: Debian 12; Kernel panic; kill init

Reported in version: 4.6.0

37
71
60
1

Description: On Debian 12, /etc/init.d/openibd restart fails with the following error:

Workaround: Run:

Keywords: Debian 12; openibd; nvme_rdma

Reported in version: 4.6.0

36
86
05
3

Description: BlueField-2 supports a total of 120GB of PCIe memory space. When the
GPU is configured to be exposed to the BlueField, it requests 32GB of space for its
BAR0. The Linux 5.15 kernel also attempts to reserve space for the total number of
VFs, even if they are not enabled. By default, the A100 allows 20 VFs which each
need 4GB of memory space. Because of PCIe memory alignment requirements and
other small devices on the bus, this additional 80GB causes PCIe resource allocation
to fail.

Workaround: Add "pci=realloc=off" to the Linux command line. This will force Linux
to accept the resource allocation done by UEFI and allow enumeration to succeed.

Keyword: VF; kernel; resources

Reported in version: 4.6.0

36
78
06
9

Description: If using DPUs with NVMe and mmcbld and configured to boot from
mmcblk, users must create a bf.cfg file with device=/dev/mmcblk0 before installing the
*.bfb.

Workaround: N/A

[end Kernel panic - not syncing: Attempted to kill init! exitcode=0x00000100]

echo "SW_RESET 1" > /dev/rshim0/misc

rmmod: ERROR: Module rdma_cm is in use by: nvme_rdma

modprobe -r nvme_rdma; /etc/init.d/openibd restart

NVIDIA BlueField DPU BSP v4.7.0 93

R
ef
#

Issue

Keyword: NVMe

Reported in version: 4.6.0

37
47
28
5

Description: The ipmitool command to force PXE in BMC modifies both the IPMI and
Redfish request settings. When Redfish is enabled in UEFI, Redfish takes priority, so
all PXE boot entries are attempted and before regular boot continues.

Workaround: Redfish must be disabled if IPMI force PXE retry behavior is expected.

Keyword: PXE; retry; fail

Reported in version: 4.6.0

37
45
52
9

Description: When rebooting the DPU while the host side is running traffic over
bond, TX timeout is likely to occur. This generates a TX timeout recovery flow that
may conflict with host recovery attempts from the DPU reboot.

Workaround: N/A

Keyword: Bond; timeout

Reported in version: 4.6.0

37
33
71
3

Description: CA certificates in the UEFI are stored in the database provided by the
user. It is user responsibility to enroll the correct certificate. The user is the owner
of the certificate and should make sure of its validity.

Workaround: N/A

Keyword: CA certificates; UEFI

Reported in version: 4.6.0

37
33
74
0

Description: CA certificates in the BMC are owned by the user who is required to
enroll valid and correct certificates. If incorrect BMC CA certificates are enrolled,
then DPU-BMC redfish communication will be invalid.

Workaround: N/A

Keyword: CA certificates; BMC

Reported in version: 4.6.0

36
66

Description: Running systemctl restart openibd on the DPU can result in openvswitch
service crash.

NVIDIA BlueField DPU BSP v4.7.0 94

R
ef
#

Issue

57
4

Workaround: Run /etc/init.d/openvswitch-switch start.

Keyword: OVS fail; openibd

Reported in version: 4.6.0

32
04
15
3

Description: On BlueField-2, the OOB may not get an IP address due to the interface
being down.

Workaround: restart auto-negotiation using the command ethtool -r oob_net0.

Keyword: OOB; IP

Reported in version: 4.5.0

36
01
49
1

Description: Symmetric pause must be enabled in the DHCP server for the OOB to
be able to reliably get an IP address assigned.

Workaround: N/A

Keyword: OOB; IP

Reported in version: 4.5.0

36
73
33
0

Description: On Debian 12, Arm ports remain in Legacy mode after multiple Arm
reboot iterations. The following error message appears in /var/log/syslog:

Workaround: Run:

Keyword: Debian; Arm

Reported in version: 4.5.0

36
95
54
3

Description: PXE boot may fail after a firmware upgrade from 32.36.xxxx,
32.37.xxxx, to 32.38.xxxx and above.

Workaround: Create /etc/bf.cfg with the following lines, then run bfcfg to recreate the
PXE boot entries:

mlnx_bf_configure[2601]: ERR: Failed to configure switchdev mode
for 0000:03:00.0 after 61 retries

$ echo SET_MODE_RETRY_NUM=300 >> /etc/mellanox/mlnx-bf.conf
$ reboot

NVIDIA BlueField DPU BSP v4.7.0 95

R
ef
#

Issue

Keyword: MAC allocation; PXE boot

Reported in version: 4.5.0

36
47
47
6

Description: Debian 12 OS does not support CT tunnel offload.

Workaround: Recompile the kernel with CONFIG_NET_TC_SKB_EXT set.

Keyword: Connection tracking; Linux

Reported in version: 4.5.0

30
07
69
6

Description: When configuring a static IP address for tmfifo_net0 interface in
/etc/network/interfaces, the IP address is lost after restarting the RShim driver on
Debian Linux.

Workaround: Use netplan configuration. For example

Then run "netplan apply".

Keyword: IP address; tmfifo_net0; host

BOOT0=DISK
BOOT1=NET-NIC_P0-IPV4
BOOT2=NET-NIC_P0-IPV6
BOOT3=NET-NIC_P1-IPV4
BOOT4=NET-NIC_P1-IPV6
BOOT5=NET-OOB-IPV4
BOOT6=NET-OOB-IPV6

cat /etc/netplan/tmfifo_net0.yaml
network:
version: 2
renderer: networkd
ethernets:
tmfifo_net0:
addresses:
- 192.168.100.1/30

dhcp4: false

NVIDIA BlueField DPU BSP v4.7.0 96

R
ef
#

Issue

Reported in version: 4.5.0

36
70
62
8

Description: When NIC subsystem is in recovery mode, the interface towards to
NVMe is not accessible. Thus, the SSD boot device would not be available.

Workaround: The admin must configure the Arm subsystem boot device to boot
from the eMMC, for example.

Keyword: mlxfwreset; RShim

Reported in version: 4.5.0

37
02
39
3

Description: On rare occasions, the boot process part of SWRESET (via RShim) or
FWRESET (via mlxfwreset) may result in a device hanging on the boot flow or cause
the host server to reboot.

Workaround: Perform graceful shutdown and then a power cycle.

Keyword: mlxfwreset; RShim

Reported in version: 4.5.0

36
65
72
4

Description: If the UEFI password is an empty string (""), then it cannot be changed
via Redfish.

Workaround: UEFI; password; Redfish

Keyword: UEFI; password; Redfish

Reported in version: 4.5.0

36
71
18
5

Description: XFRM rules must be deleted before driver restart or warm reboot are
performed.

Workaround: N/A

Keyword: IPsec

Reported in version: 4.5.0

36
66
16
0

Description: Installing BFB using bfb-install when mlxconfig PF_TOTAL_SF>1700, triggers
server reboot immediately.

Workaround: Change PF_TOTAL_SF to 0, perform graceful shutdown, then power
cycle, and then install the BFB.

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-Howtoperformgracefulshutdown
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-Howtoperformgracefulshutdown

NVIDIA BlueField DPU BSP v4.7.0 97

R
ef
#

Issue

Keyword: SF; PF_TOTAL_SF; BFB installation

Reported in version: 4.2.2

36
05
25
4

Description: Following a system power cycle, both the DPU and BMC boot
independently which may lead to the DPU's UEFI boot process to complete before
the BMC's. As a result, when attempting to establish Redfish communication, the
BMC may not yet be prepared to respond.

Workaround: Wait until the BMC is done booting before issuing a reset command to
the DPU.

Keyword: Power cycle; Redfish; boot

Reported in version: 4.2.1

36
02
04
4

Description: When the public key is deleted while Redfish is enabled, UEFI secure
boot is disabled and UEFI reverts to Setup Mode (i.e., the SecureBootEnable Redfish
property is reset to false). If later, the public key is re-enrolled, the platform does not
implement UEFI secure boot until the SecureBootEnable Redfish property is explicitly
changed to true.

Workaround: Set SecureBootEnable to true using the Redfish API.

Keyword: Redfish; UEFI secure boot

Reported in version: 4.2.1

35
92
08
0

Description: When using UEK8 on the host in DPU mode, creating a VF on the host
consumes about 100MB memory on the DPU.

Workaround: N/A

Keyword: UEK; VF

Reported in version: 4.2.1

35
68
34
1

Description: Downgrading BSP software from 4.2.0 fails if UEFI secure boot is
enabled.

Workaround: Disable UEFI secure boot before downgrading.

Keyword: Software; downgrade

Reported in version: 4.2.0

NVIDIA BlueField DPU BSP v4.7.0 98

R
ef
#

Issue

35
66
04
2

Description: Virtio hotplug is not supported in GPU-HOST mode on the NVIDIA
Converged Accelerator.

Workaround: N/A

Keyword: Virtio; Converged Accelerator

Reported in version: 4.2.0

35
46
47
4

Description: PXE boot over ConnectX interface might not work due to an invalid
MAC address in the UEFI boot entry.

Workaround: On the DPU, create /etc/bf.cfg file with the relevant PXE boot entries,
then run the command bfcfg.

Keyword: PXE; boot; MAC

Reported in version: 4.2.0

35
46
20
2

Description: After rebooting a BlueField-3 DPU running Rocky Linux 8.6 BFB, the
kernel log shows the following error:

This message indicates that the Ethernet driver will function normally in all aspects,
except that PHY polling is enabled.

Workaround: N/A

Keyword: Linux; PHY; kernel

Reported in version: 4.2.0

33
06
48
9

Description: When performing longevity tests (e.g., mlxfwreset, DPU reboot, burning
of new BFBs), a host running an Intel CPU may observer errors related to "CPU 0:
Machine Check Exception".

Workaround: Add intel_idle.max_cstate=1 entry to the kernel command line.

Keyword: Longevity; mlxfwreset; DPU reboot

Reported in version: 4.2.0

35
38

Description: When removing LAG configuration from the DPU, a kernel warning for

[3.787135] mlxbf_gige MLNXBF17:00: Error getting PHY irq. Use polling
instead

NVIDIA BlueField DPU BSP v4.7.0 99

R
ef
#

Issue

48
6

uverbs_destroy_ufile_hw is observed if virtio-net-controller is still running.

Workaround: Stop virtio-net-controller service before cleaning up bond
configuration.

Keyword: Virtio-net; LAG

Reported in version: 4.2.0

34
62
63
0

Description: When trying to perform a PXE installation when UEFI Secure Boot is
enabled, the following error messages may be observed:

Workaround: Download a Grub EFI binary from the Ubuntu website. For further
information on Ubuntu UEFI Secure Boot PXE Boot, please visit Ubuntu's official
website.

Keyword: PXE; UEFI Secure Boot

Reported in version: 4.0.2

34
12
84
7

Description: Socket-Direct is currently not supported on BlueField-3 devices.

Workaround: N/A

Keyword: Socket-Direct; support

Reported in version: 4.0.2

34
48
84
1

Description: While running CentOS 8.2, switchdev Ethernet DPU runs in "shared"
RDMA net namespace mode instead of "exclusive".

Workaround: Use ib_core module parameter netns_mode=0. For example:

Keywords: RDMA; isolation; Net NS

Reported in version: 4.0.2

34
13

Description: Using mlnx-sf script, creating and deleting an SF with same ID number in
a stressful manner may cause the setup to hang due to a race between create and
delete commands.

error: shim_lock protocol not found.
error: you need to load the kernel first.

echo "options ib_core netns_mode=0" >> /etc/modprobe.d/mlnx-bf.conf

https://docs.nvidia.com/http://ports.ubuntu.com/ubuntu-ports/dists/focal/main/uefi/grub2-arm64/current/grubnetaa64.efi.signed

NVIDIA BlueField DPU BSP v4.7.0 100

R
ef
#

Issue

93
8

Workaround: N/A

Keywords: Hang; mlnx-sf

Reported in version: 4.0.2

34
52
74
0

Description: Ovs-pki is not working due to two versions of OpenSSL being installed,
causing the PKA engine to not load properly.

Workaround: N/A

Keywords: PKA; OpenSSL

Reported in version: 4.0.2

32
73
43
5

Description: Changing the mode of operation between NIC and DPU modes results
in different capabilities for the host driver which might cause unexpected behavior.

Workaround: Reload the host driver or reboot the host.

Keywords: Modes of operation; driver

Reported in version: 4.0.2

27
06
80
3

Description: When an NVMe controller, SoC management controller, and DMA
controller are configured, the maximum number of VFs is limited to 124.

Workaround: N/A

Keywords: VF; limitation

Reported in version: 4.0.2

32
64
22
4

Description: When trying to change boot order using efibootmgr, BlueField fails to
attempt PXE boot from p0 even though efibootmgr returns a successful result.

Workaround: Drop into the UEFI menu and regenerate all the EFI entries.

Keywords: PXE; efibootmgr

Reported in version: 3.9.3.1

31
88
41
5

Description: An Arm firmware update to the same version that is installed will fail
and is not supported.

Workaround: N/A

NVIDIA BlueField DPU BSP v4.7.0 101

R
ef
#

Issue

Keywords: Arm; firmware; update

Reported in version: 3.9.2

N/
A

Description: The BootOptionEnabled attribute changes back to true after DPU-force
reset.

Workaround: N/A

Keywords: Redfish; BootOptionEnabled

Reported in version: 3.9.2

30
12
18
2

Description: The command ethtool -I --show-fec is not supported by the DPU with
kernel 5.4.

Workaround: N/A

Keywords: Kernel; show-fec

Reported in version: 3.9.0

28
55
98
6

Description: After disabling SR-IOV VF on a virtio device, removing virtio-net/PCIe
driver from guest OS may render the virtio controller unusable .

Workaround: Restart the virtio-net controller to recover it. To avoid this issue, m
onitor the log from controller and make sure VF resources are destroyed before
unloading virtio-net/PCIe drivers.

Keywords: Virtio-net; VF

Reported in version: 3.9.0

28
63
45
6

Description: SA limit by packet count (hard and soft) are supported only on traffic
originated from the ECPF. Trying to configure them on VF traffic removes the SA
when hard limit is hit. However, traffic could still pass as plain text due to the tunnel
offload used in such configuration.

Workaround: N/A

Keywords: ASAP2; IPsec Full Offload

Reported in version: 3.9.0

29
82

Description: When multiple BlueField resets are issued within 10 seconds of each
other, EEPROM error messages are displayed on the console and, as a result, the

NVIDIA BlueField DPU BSP v4.7.0 102

R
ef
#

Issue

18
4

BlueField may not boot from the eMMC and may halt at the UEFI menu.

Workaround: Power-cycle the BlueField to fix the EEPROM issue. Manual recovery of
the boot options and/or SW installation may be needed.

Keywords: Reset; EEPROM

Reported in version: 3.9.0

28
53
40
8

Description: Some pre-OS environments may fail when sensing a hot plug operation
during their boot stage.

Workaround: Run "mlxconfig -d <mst dev> set PF_LOG_BAR_SIZE=0".

Keywords: BIOS; hot-plug; Virtio-net

Reported in version: 3.9.0

29
34
83
3

Description: Running I/O traffic and toggling both physical ports status in a stressful
manner on the receiving-end machine may cause traffic loss.

Workaround: N/A

Keywords: MLNX_OFED; RDMA; port toggle

Reported in version: 3.8.5

29
11
42
5

Description: ProLiant DL385 Gen10 Plus server with BIOS version 1.3 hangs when
large number of SFs (PF_TOTAL_SF=252) are configured.

Workaround: Update the BIOS version to 2.4 which should correctly detect the PCIe
device with the bigger BAR size.

Keywords: Scalable functions; BIOS

Reported in version: 3.8.5

N/
A

Description: Only QP queues are supported for GGA accelerators from this version
onward.

Workaround: N/A

Keywords: Firmware; SQ; QP

Reported in version: 3.8.0

NVIDIA BlueField DPU BSP v4.7.0 103

R
ef
#

Issue

28
46
10
8

Description: Setting VHCA_TRUST_LEVEL does not work when there are active SFs or
VFs.

Workaround: N/A

Keywords: Firmware; SF; VF

Reported in version: 3.8.0

27
50
49
9

Description: Some devlink commands are only supported by mlnx devlink
(/opt/mellanox/iproute2/sbin/devlink). The default devlink from the OS may produce
failure (e.g., devlink port show -j).

Workaround: N/A

Keywords: Devlink

Reported in version: 3.7.1

27
30
15
7

Description: Kernel upgrade is not currently supported on BlueField as there are
out of tree kernel modules (e.g., ConnectX drivers that will stop working after kernel
upgrade).

Workaround: Kernel can be upgraded if there is a matching DOCA repository that
includes all the drivers compiled with the new kernel or as a part of the new BFB
package.

Keywords: Kernel; upgrade

Reported in version: 3.7.0

27
06
71
0

Description: Call traces are seen on the host when recreating VFs before the
controller side finishes the deletion procedure.

Workaround: N/A

Keywords: Virtio-net controller

Reported in version: 3.7.0

26
85
47
8

Description: 3rd party (netkvm.sys) Virtio-net drivers for Windows do not support
SR-IOV.

Workaround: N/A

Keywords: Virtio-net; SR-IOV; WinOF-2

NVIDIA BlueField DPU BSP v4.7.0 104

R
ef
#

Issue

Reported in version: 3.7.0

26
84
50
1

Description: Once the contiguous memory pool, a limited resource, is exhausted,
fallback allocation to other methods occurs. This process triggers cma_alloc failures in
the dmesg log.

Workaround: N/A

Keywords: Log; cma_alloc; memory

Reported in version: 3.7.0

25
90
01
6

Description: ibdev2netdev tool is not supported for PCIe PF operating in switchdev
mode or on SFs.

Workaround: N/A

Keywords: ibdev2netdev

Reported in version: 3.6.0.11699

25
90
01
6

Description: A "double free" error is seen when using the "curl" utility. This error is
from libcrypto.so library which is part of the OpenSSL package. This happens only
when OpenSSL is configured to use a dynamic engine (e.g. Bluefield PKA engine).

Workaround: Set OPENSSL_CONF=/etc/ssl/openssl.cnf.orig before using the curl utility.
For example:

Keywords: OpenSSL; curl

OPENSSL_CONF=/etc/ssl/openssl.cnf.orig curl -O
https://tpo.pe/pathogen.vim

Note
OPENSSL_CONF is aimed at using a custom config file for
applications. In this case, it is used to point to a config file
where dynamic engine (PKA engine) is not enabled.

NVIDIA BlueField DPU BSP v4.7.0 105

R
ef
#

Issue

Reported in version: 3.6.0.11699

24
07
89
7

Description: The host may crash when the number of PCIe devices overflows the
PCIe device address. According to the PCIe spec, the device address space is 8 bits
in total—device (5 bits) and function (3 bits)—which means that the total number of
devices cannot be more than 256.
The second PF maximum number of VFs is limited by the total number of additional
PCIe devices that precedes it. By default, the preceding PCIe devices are 2 PFs +
RShim DMA + 127 VFs of the first PF. This means that the maximum valid number of
VFs for the second port will be 126.

Workaround: Use the maximum allowed VFs on the 2nd PCIe PF of BlueField
instead of the maximum of 127 VFs.

Keywords: Emulated devices; VirtIO-net; VirtIO-blk; VFs; RShim

Reported in version: 3.6.0.11699

24
45
28
9

Description: If secure boot is enabled, MFT cannot be installed on the BlueField DPU
independently from BlueField drivers (MLNX_OFED).

Workaround: N/A

Keywords: MFT; secure boot

Reported in version: 3.5.1.11601

23
77
02
1

Description: Executing sudo poweroff on the Arm side causes the system to hang.

Workaround: P erform graceful shutdown, then r eboot your BlueField device or
power cycle the server.

Keywords: Hang; reboot

Reported in version: 3.5.0.11563

23
50
13
2

Description: Boot process hangs at BIOS (version 1.2.11) stage when power cycling a
server (model Dell PowerEdge R7525) after configuring
"PCI_SWITCH_EMULATION_NUM_PORT" > 27​​​​​​​.

Workaround: N/A

Keywords: Server; hang; power cycle

Reported in version: 3.5.0.11563

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-Howtoperformgracefulshutdown

NVIDIA BlueField DPU BSP v4.7.0 106

R
ef
#

Issue

25
81
40
8

Description: On a BlueField device operating in Embedded CPU mode, PXE driver
will fail to boot if the Arm side is not fully loaded and the OVS bridge is not
configured.

Workaround: Run warm reboot on the host side and boot again via the device when
Arm is up and the OVS bridge is configured.

Keywords: Embedded CPU; PXE; UEFI; Arm

Reported in version: 2.5.0.11176

18
59
32
2

Description: On some setups, DPU does not power on following server cold boot
when UART cable is attached to the same server.

Workaround: As long as the RShim driver is loaded on the server and the RShim
interface is visible, the RShim driver will detect this and auto-reset the card into
normal state.

Keywords: DPU; Arm; Cold Boot

Reported in version: 2.4.0.11082

18
99
92
1

Description: Driver restart fails when SNAP service is running.

Workaround: Stop the SNAP services nvme_sf and nvme_snap@nvme0, then restart
the driver. After the driver loads restart the services.

Keywords: SNAP

Reported in version: 2.2.0.11000

19
11
61
8

Description: Defining namespaces with certain Micron disks
(Micron_9300_MTFDHAL3T8TDP) using consecutive attach-ns commands can cause
errors.

Workaround: Add delay between attach-ns commands.

Keywords: Micron; disk; namespace; attach-ns

Reported in version: 2.2.0.11000

NVIDIA BlueField DPU BSP v4.7.0 107

Validated and Supported Cables and
Modules
Cables Lifecycle Legend

Lifecycle Phase Definition

EOL End of Life

LTB Last Time Buy

HVM GA level

MP GA level

P-Rel GA level

Preliminary Engineering Sample

Prototype Engineering Sample

Supported Cables and Modules for BlueField-3

Cables Lifecycle Legend

Lifecycle Phase Definition

EOL End of Life

LTB Last Time Buy

HVM GA level

MP GA level

P-Rel GA level

Preliminary Engineering Sample

Prototype Engineering Sample

NVIDIA BlueField DPU BSP v4.7.0 108

NDR / 400GbE Cables

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCyc
le
Phase

N/A 400GE
980-
9I08L-
00W003

C-
DQ8FNM
003-NML

NVIDIA Select 400GbE QSFP-DD AOC 3m
Prelimi
nary

N/A 400GE
980-
9I08N-
00W005

C-
DQ8FNM
005-NML

NVIDIA Select 400GbE QSFP-DD AOC 5m
Prelimi
nary

N/A 400GE
980-
9I08P-
00W010

C-
DQ8FNM
010-NML

NVIDIA Select 400GbE QSFP-DD AOC 10m
Prelimi
nary

N/A 400GE
980-
9I08R-
00W020

C-
DQ8FNM
020-NML

NVIDIA Select 400GbE QSFP-DD AOC 20m
Prelimi
nary

N/A 400GE
980-
9I08T-
00W050

C-
DQ8FNM
050-NML

NVIDIA Select 400GbE QSFP-DD AOC 50m
Prelimi
nary

NDR N/A
980-
9I81B-
00N004

MCA7J65
-N004

NVIDIA Active copper splitter cable, IB
twin port NDR 800Gb/s to 2x400Gb/s,
OSFP to 2xQSFP112, 4m

Prototy
pe

NDR N/A
980-
9I81C-
00N005

MCA7J65
-N005

NVIDIA Active copper splitter cable, IB
twin port NDR 800Gb/s to 2x400Gb/s,
OSFP to 2xQSFP112, 5m

Prototy
pe

NDR N/A
980-
9I76G-
00N004

MCA7J75
-N004

NVIDIA Active copper splitter cable, IB
twin port NDR 800Gb/s to 4x200Gb/s,
OSFP to 4xQSFP112, 4m

Prototy
pe

NDR N/A
980-
9I76H-
00N005

MCA7J75
-N005

NVIDIA Active copper splitter cable, IB
twin port NDR 800Gb/s to 4x200Gb/s,
OSFP to 4xQSFP112, 5m

Prototy
pe

NDR N/A
980-
9I928-
00N001

MCP7Y1
0-N001

NVIDIA passive copper splitter cable, IB
twin port NDR 800Gb/s to 2x400Gb/s,
OSFP to 2xQSFP112,1m

P-Rel

NVIDIA BlueField DPU BSP v4.7.0 109

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCyc
le
Phase

NDR N/A
980-
9I929-
00N002

MCP7Y1
0-N002

NVIDIA passive copper splitter cable, IB
twin port NDR 800Gb/s to 2x400Gb/s,
OSFP to 2xQSFP112,2m

P-Rel

NDR N/A
980-
9I80P-
00N003

MCP7Y1
0-N003

NVIDIA passive copper splitter cable, IB
twin port NDR 800Gb/s to 2x400Gb/s,
OSFP to 2xQSFP112,3m

P-Rel

NDR N/A
980-
9I80A-
00N01A

MCP7Y1
0-N01A

NVIDIA passive copper splitter cable, IB
twin port NDR 800Gb/s to 2x400Gb/s,
OSFP to 2xQSFP112,1.5m

P-Rel

NDR N/A
980-
9I80Q-
00N02A

MCP7Y1
0-N02A

NVIDIA passive copper splitter cable, IB
twin port NDR 800Gb/s to 2x400Gb/s,
OSFP to 2xQSFP112,2.5m

P-Rel

NDR N/A
980-
9I80B-
00N001

MCP7Y4
0-N001

NVIDIA passive copper splitter cable, IB
twin port NDR 800Gb/s to 4x200Gb/s,
OSFP to 4xQSFP112, 1m

P-Rel

NDR N/A
980-
9I80C-
00N002

MCP7Y4
0-N002

NVIDIA passive copper splitter cable, IB
twin port NDR 800Gb/s to 4x200Gb/s,
OSFP to 4xQSFP112, 2m

P-Rel

NDR N/A
980-
9I75R-
00N003

MCP7Y4
0-N003

NVIDIA passive copper splitter cable, IB
twin port NDR 800Gb/s to 4x200Gb/s,
OSFP to 4xQSFP112, 3m

P-Rel

NDR N/A
980-
9I75D-
00N01A

MCP7Y4
0-N01A

NVIDIA passive copper splitter cable, IB
twin port NDR 800Gb/s to 4x200Gb/s,
OSFP to 4xQSFP112, 1.5m

P-Rel

NDR N/A
980-
9I75S-
00N02A

MCP7Y4
0-N02A

NVIDIA passive copper splitter cable, IB
twin port NDR 800Gb/s to 4x200Gb/s,
OSFP to 4xQSFP112, 2.5m

P-Rel

NDR N/A
980-
9I73U-
000003

MFP7E1
0-N003

NVIDIA passive fiber cable, MMF , MPO12
APC to MPO12 APC, 3m

MP

NDR N/A 980-
9I73V-

MFP7E1
0-N005

NVIDIA passive fiber cable, MMF, MPO12
APC to MPO12 APC, 5m

MP

NVIDIA BlueField DPU BSP v4.7.0 110

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCyc
le
Phase

000005

NDR N/A
980-
9I57W-
000007

MFP7E1
0-N007

NVIDIA passive fiber cable, MMF, MPO12
APC to MPO12 APC, 7m

MP

NDR N/A
980-
9I57X-
00N010

MFP7E1
0-N010

NVIDIA passive fiber cable, MMF, MPO12
APC to MPO12 APC, 10m

MP

NDR N/A
980-
9I57Y-
000015

MFP7E1
0-N015

NVIDIA passive fiber cable, MMF , MPO12
APC to MPO12 APC, 15m

MP

NDR N/A
980-
9I57Z-
000020

MFP7E1
0-N020

NVIDIA passive fiber cable, MMF, MPO12
APC to MPO12 APC, 20m

MP

NDR N/A
980-
9I573-
00N025

MFP7E1
0-N025

NVIDIA passive fiber cable, MMF, MPO12
APC to MPO12 APC, 25m

MP

NDR N/A
980-
9I570-
00N030

MFP7E1
0-N030

NVIDIA passive fiber cable, MMF, MPO12
APC to MPO12 APC, 30m

MP

NDR N/A
980-
9I570-
00N035

MFP7E1
0-N035

NVIDIA passive fiber cable, MMF, MPO12
APC to MPO12 APC, 35m

MP

NDR N/A
980-
9I570-
00N040

MFP7E1
0-N040

NVIDIA passive fiber cable, MMF, MPO12
APC to MPO12 APC, 40m

MP

NDR N/A
980-
9I57Y-
00N050

MFP7E1
0-N050

NVIDIA passive fiber cable, MMF, MPO12
APC to MPO12 APC, 50m

MP

NDR N/A
980-
9I571-
00N003

MFP7E2
0-N003

NVIDIA passive fiber cable, MMF, MPO12
APC to 2xMPO12 APC, 3m

MP

NVIDIA BlueField DPU BSP v4.7.0 111

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCyc
le
Phase

NDR N/A
980-
9I572-
00N005

MFP7E2
0-N005

NVIDIA passive fiber cable, MMF, MPO12
APC to 2xMPO12 APC, 5m

MP

NDR N/A
980-
9I573-
00N007

MFP7E2
0-N007

NVIDIA passive fiber cable, MMF, MPO12
APC to 2xMPO12 APC, 7m

MP

NDR N/A
980-
9I554-
00N010

MFP7E2
0-N010

NVIDIA passive fiber cable, MMF, MPO12
APC to 2xMPO12 APC, 10m

MP

NDR N/A
980-
9I555-
00N015

MFP7E2
0-N015

NVIDIA passive fiber cable, MMF, MPO12
APC to 2xMPO12 APC, 15m

MP

NDR N/A
980-
9I556-
00N020

MFP7E2
0-N020

NVIDIA passive fiber cable, MMF, MPO12
APC to 2xMPO12 APC, 20m

MP

NDR N/A
980-
9I557-
00N030

MFP7E2
0-N030

NVIDIA passive fiber cable, MMF, MPO12
APC to 2xMPO12 APC, 30m

MP

NDR N/A
980-
9I55Z-
00N050

MFP7E2
0-N050

NVIDIA passive fiber cable, MMF, MPO12
APC to 2xMPO12 APC, 50m

MP

NDR N/A
980-
9I558-
00N001

MFP7E3
0-N001

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 1m

MP

NDR N/A
980-
9I559-
00N002

MFP7E3
0-N002

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 2m

MP

NDR N/A
980-
9I55A-
00N003

MFP7E3
0-N003

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 3m

MP

NDR N/A 980-
9I55B-

MFP7E3
0-N005

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 5m

MP

NVIDIA BlueField DPU BSP v4.7.0 112

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCyc
le
Phase

00N005

NDR N/A
980-
9I58C-
00N007

MFP7E3
0-N007

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 7m

MP

NDR N/A
980-
9I58D-
00N010

MFP7E3
0-N010

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 10m

MP

NDR N/A
980-
9I58E-
00N015

MFP7E3
0-N015

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 15m

MP

NDR N/A
980-
9I58F-
00N020

MFP7E3
0-N020

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 20m

MP

NDR N/A
980-
9I58G-
00N030

MFP7E3
0-N030

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 30m

MP

NDR N/A
980-
9I580-
00N030

MFP7E3
0-N040

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 40m

MP

NDR N/A
980-
9I58H-
00N050

MFP7E3
0-N050

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 50m

MP

NDR N/A
980-
9I581-
00N050

MFP7E3
0-N060

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 60m

MP

NDR N/A
980-
9I582-
00N050

MFP7E3
0-N070

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 70m

MP

NDR N/A
980-
9I58I-
00N100

MFP7E3
0-N100

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 100m

MP

NVIDIA BlueField DPU BSP v4.7.0 113

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCyc
le
Phase

NDR N/A
980-
9I58J-
00N150

MFP7E3
0-N150

NVIDIA passive fiber cable, SMF, MPO12
APC to MPO12 APC, 150m

MP

NDR N/A
980-
9I58K-
00N003

MFP7E4
0-N003

NVIDIA passive fiber cable, SMF, MPO12
APC to 2xMPO12 APC, 3m

MP

NDR N/A
980-
9I58L-
00N005

MFP7E4
0-N005

NVIDIA passive fiber cable, SMF, MPO12
APC to 2xMPO12 APC, 5m

MP

NDR N/A
980-
9I58M-
00N007

MFP7E4
0-N007

NVIDIA passive fiber cable, SMF, MPO12
APC to 2xMPO12 APC, 7m

MP

NDR N/A
980-
9I58N-
00N010

MFP7E4
0-N010

NVIDIA passive fiber cable, SMF, MPO12
APC to 2xMPO12 APC, 10m

MP

NDR N/A
980-
9I56O-
00N015

MFP7E4
0-N015

NVIDIA passive fiber cable, SMF, MPO12
APC to 2xMPO12 APC, 15m

MP

NDR N/A
980-
9I56P-
00N020

MFP7E4
0-N020

NVIDIA passive fiber cable, SMF, MPO12
APC to 2xMPO12 APC, 20m

MP

NDR N/A
980-
9I56Q-
00N030

MFP7E4
0-N030

NVIDIA passive fiber cable, SMF, MPO12
APC to 2xMPO12 APC, 30m

MP

NDR N/A
980-
9I56R-
000050

MFP7E4
0-N050

NVIDIA passive fiber cable, SMF, MPO12
APC to 2xMPO12 APC, 50m

MP

NDR N/A
980-
9I693-
00NS00

MMA1Z0
0-NS400

NVIDIA single port transceiver,
400Gbps,NDR, QSFP112, MPO12 APC,
850nm MMF, up to 50m, flat top

P-Rel

NVIDIA BlueField DPU BSP v4.7.0 114

HDR / 200GbE Cables

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

HDR
200G
E

980-
9I548-
00H001

MCP165
0-
H001E3
0

Nvidia Passive Copper cable, up to
200Gbps, QSFP56 to QSFP56, 1m

HVM

HDR
200G
E

980-
9I549-
00H002

MCP165
0-
H002E2
6

Nvidia Passive Copper cable,up to
200Gbps, QSFP56 to QSFP56, 2m

HVM

HDR
200G
E

980-
9I54A-
00H00A

MCP165
0-
H00AE3
0

Nvidia Passive Copper cable, up to
200Gbps, QSFP56 to QSFP56, 0.5m

HVM

HDR
200G
E

980-
9I54B-
00H01A

MCP165
0-
H01AE3
0

Nvidia Passive Copper cable, up to
200Gbps, QSFP56 to QSFP56, 1.5 m

HVM

N/A
200G
E

980-
9I54C-
00V001

MCP165
0-
V001E3
0

NVIDIA Passive Copper cable, 200GbE,
200Gb/s, QSFP56, LSZH, 1m, black pulltab,
30AWG

LTB
[HVM]

N/A
200G
E

980-
9I54D-
00V002

MCP165
0-
V002E2
6

NVIDIA Passive Copper cable, 200GbE,
200Gb/s, QSFP56, LSZH, 2m, black pulltab,
26AWG

LTB
[HVM]

N/A
200G
E

980-
9I54G-
00V003

MCP165
0-
V003E2
6

NVIDIA Passive Copper cable, 200GbE,
200Gb/s, QSFP56, LSZH, 3m, black pulltab,
26AWG

EOL
[HVM]

N/A 200G
E

980-
9I54H-
00V00A

MCP165
0-

NVIDIA Passive Copper cable, 200GbE,
200Gb/s, QSFP56, LSZH, 0.5m, black
pulltab, 30AWG

LTB
[HVM]

NVIDIA BlueField DPU BSP v4.7.0 115

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

V00AE3
0

N/A
200G
E

980-
9I54I-
00V01A

MCP165
0-
V01AE3
0

NVIDIA Passive Copper cable, 200GbE,
200Gb/s, QSFP56, LSZH, 1.5m, black
pulltab, 30AWG

LTB
[HVM]

N/A
200G
E

980-
9I54L-
00V02A

MCP165
0-
V02AE2
6

NVIDIA Passive Copper cable, 200GbE,
200Gb/s, QSFP56, LSZH, 2.5m, black
pulltab, 26AWG

LTB
[HVM]

HDR
200G
E

980-
9I39E-
00H001

MCP7H
50-
H001R3
0

Nvidia Passive copper splitter cable,
200Gbps to 2x100Gbps, QSFP56 to
2xQSFP56, 1m

HVM

HDR
200G
E

980-
9I99F-
00H002

MCP7H
50-
H002R2
6

Nvidia Passive copper splitter cable,
200Gbps to 2x100Gbps, QSFP56 to
2xQSFP56, 2m

HVM

HDR
200G
E

980-
9I98G-
00H01A

MCP7H
50-
H01AR3
0

Nvidia Passive copper splitter cable,
200Gbps to 2x100Gbps, QSFP56 to
2xQSFP56, 1.5m

HVM

N/A
200G
E

980-
9I98H-
00V001

MCP7H
50-
V001R3
0

NVIDIA passive copper hybrid cable,
200GbE 200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56, colored, 1m, 30AWG

LTB
[HVM]

N/A
200G
E

980-
9I98I-
00V002

MCP7H
50-
V002R2
6

NVIDIA passive copper hybrid cable,
200GbE 200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56, colored, 2m, 26AWG

LTB
[HVM]

N/A 200G
E

980-
9I98J-
00V003

MCP7H
50-

NVIDIA passive copper hybrid cable,
200GbE 200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56, colored, 3m, 26AWG

EOL
[HVM]

NVIDIA BlueField DPU BSP v4.7.0 116

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

V003R2
6

N/A
200G
E

980-
9I98K-
00V01A

MCP7H
50-
V01AR3
0

NVIDIA passive copper hybrid cable,
200GbE 200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56, colored, 1.5m, 30AWG

EOL
[HVM]

N/A
200G
E

980-
9I98M-
00V02A

MCP7H
50-
V02AR2
6

NVIDIA passive copper hybrid cable,
200GbE 200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56, colored, 2.5m, 26AWG

LTB
[HVM]

N/A
200G
E

980-
9IA3X-
00V001

MCP7H
70-
V001R3
0

NVIDIA passive copper hybrid cable,
200GbE 200Gb/s to 4x50Gb/s, QSFP56 to
4xSFP56, colored, 1m, 30AWG

EOL [P-
Rel]

N/A
200G
E

980-
9IA3Y-
00V002

MCP7H
70-
V002R2
6

NVIDIA passive copper hybrid cable,
200GbE 200Gb/s to 4x50Gb/s, QSFP56 to
4xSFP56, colored, 2m, 26AWG

EOL [P-
Rel]

N/A
200G
E

980-
9I43Z-
00V003

MCP7H
70-
V003R2
6

NVIDIA passive copper hybrid cable,
200GbE 200Gb/s to 4x50Gb/s, QSFP56 to
4x4SFP56, colored, 3m, 26AWG

EOL [P-
Rel]

N/A
200G
E

980-
9I430-
00V01A

MCP7H
70-
V01AR3
0

NVIDIA passive copper hybrid cable,
200GbE 200Gb/s to 4x50Gb/s, QSFP56 to
4xSFP56, colored, 1.5m, 30AWG

EOL [P-
Rel]

N/A
200G
E

980-
9I431-
00V02A

MCP7H
70-
V02AR2
6

NVIDIA passive copper hybrid cable,
200GbE 200Gb/s to4x50Gb/s, QSFP56 to
4xSFP56, colored, 2.5m, 26AWG

EOL [P-
Rel]

HDR
200G
E

980-
9I46K-
00H001

MCP7Y6
0-H001

NVIDIA passive copper splitter cable,
400(2x200)Gbps to 2x200Gbps, OSFP to
2xQSFP56, 1m, fin to flat

MP

NVIDIA BlueField DPU BSP v4.7.0 117

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

HDR
200G
E

980-
9I46L-
00H002

MCP7Y6
0-H002

NVIDIA passive copper splitter cable,
400(2x200)Gbps to 2x200Gbps, OSFP to
2xQSFP56, 2m, fin to flat

MP

HDR
200G
E

980-
9I93M-
00H01A

MCP7Y6
0-H01A

NVIDIA passive copper splitter cable,
400(2x200)Gbps to 2x200Gbps, OSFP to
2xQSFP56, 1.5m, fin to flat

MP

HDR
200G
E

980-
9I93N-
00H001

MCP7Y7
0-H001

NVIDIA passive copper splitter cable,
400(2x200)Gbps to 4x100Gbps, OSFP to
4xQSFP56, 1m, fin to flat

MP

HDR
200G
E

980-
9I93O-
00H002

MCP7Y7
0-H002

NVIDIA passive copper splitter cable,
400(2x200)Gbps to 4x100Gbps, OSFP to
4xQSFP56, 2m, fin to flat

MP

HDR
200G
E

980-
9I47P-
00H01A

MCP7Y7
0-H01A

NVIDIA passive copper splitter cable,
400(2x200)Gbps to 4x100Gbps, OSFP to
4xQSFP56, 1.5m, fin to flat

MP

HDR N/A
980-
9I124-
00H003

MFS1S0
0-H003E

NVIDIA active fiber cable, IB HDR, up to
200Gb/s, QSFP56, LSZH, black pulltab, 3m

EOL
[HVM]

HDR
200G
E

980-
9I457-
00H003

MFS1S0
0-
H003V

Nvidia active optical cable, up to 200Gbps
, QSFP56 to QSFP56, 3m

MP

HDR N/A
980-
9I45A-
00H005

MFS1S0
0-H005E

NVIDIA active fiber cable, IB HDR, up to
200Gb/s, QSFP56, LSZH, black pulltab, 5m

EOL
[HVM]

HDR
200G
E

980-
9I45D-
00H005

MFS1S0
0-
H005V

Nvidia active optical cable, up to 200Gbps
, QSFP56 to QSFP56, 5m

MP

HDR N/A
980-
9I45G-
00H010

MFS1S0
0-H010E

NVIDIA active fiber cable, IB HDR, up to
200Gb/s, QSFP56, LSZH, black pulltab,
10m

EOL
[HVM]

HDR 200G
E

980-
9I45J-

MFS1S0
0-

Nvidia active optical cable, up to 200Gbps
, QSFP56 to QSFP56, 10m

MP

NVIDIA BlueField DPU BSP v4.7.0 118

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

00H010 H010V

HDR N/A
980-
9I45M-
00H015

MFS1S0
0-H015E

NVIDIA active fiber cable, IB HDR, up to
200Gb/s, QSFP56, LSZH, black pulltab,
15m

EOL
[HVM]

HDR
200G
E

980-
9I45O-
00H015

MFS1S0
0-
H015V

Nvidia active optical cable, up to 200Gbps
, QSFP56 to QSFP56, 15m

MP

HDR N/A
980-
9I45R-
00H020

MFS1S0
0-H020E

NVIDIA active fiber cable, IB HDR, up to
200Gb/s, QSFP56, LSZH, black pulltab,
20m

EOL
[HVM]

HDR
200G
E

980-
9I45T-
00H020

MFS1S0
0-
H020V

Nvidia active optical cable, up to 200Gbps
, QSFP56 to QSFP56, 20m

MP

HDR N/A
980-
9I45Y-
00H030

MFS1S0
0-H030E

NVIDIA active fiber cable, IB HDR, up to
200Gb/s, QSFP56, LSZH, black pulltab,
30m

EOL
[HVM]

HDR
200G
E

980-
9I440-
00H030

MFS1S0
0-
H030V

Nvidia active optical cable, up to 200Gbps
, QSFP56 to QSFP56, 30m

MP

HDR N/A
980-
9I455-
00H050

MFS1S0
0-H050E

NVIDIA active fiber cable, IB HDR, up to
200Gb/s, QSFP56, LSZH, black pulltab,
50m

EOL
[HVM]

HDR
200G
E

980-
9I447-
00H050

MFS1S0
0-
H050V

Nvidia active optical cable, up to 200Gbps
, QSFP56 to QSFP56, 50m

MP

HDR N/A
980-
9I44G-
00H100

MFS1S0
0-H100E

NVIDIA active fiber cable, IB HDR, up to
200Gb/s, QSFP56, LSZH, black pulltab,
100m

EOL
[HVM]

HDR
200G
E

980-
9I44H-
00H100

MFS1S0
0-
H100V

Nvidia active optical cable, up to 200Gbps
, QSFP56 to QSFP56, 100m

MP

NVIDIA BlueField DPU BSP v4.7.0 119

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

HDR N/A
980-
9I44I-
00H130

MFS1S0
0-H130E

NVIDIA active fiber cable, IB HDR, up to
200Gb/s, QSFP56, LSZH, black pulltab,
130m

EOL
[HVM]

HDR
200G
E

980-
9I44K-
00H130

MFS1S0
0-
H130V

Nvidia active optical cable, up to 200Gbps
, QSFP56 to QSFP56, 130m

MP

HDR
200G
E

980-
9I44N-
00H150

MFS1S0
0-
H150V

Nvidia active optical cable, up to 200Gbps
, QSFP56 to QSFP56, 150m

MP

N/A
200G
E

980-
9I44P-
00V003

MFS1S0
0-V003E

NVIDIA active fiber cable, 200GbE,
200Gb/s, QSFP56, LSZH, black pulltab, 3m

LTB
[HVM]

N/A
200G
E

980-
9I45Q-
00V005

MFS1S0
0-V005E

NVIDIA active fiber cable, 200GbE,
200Gb/s, QSFP56, LSZH, black pulltab, 5m

LTB
[HVM]

N/A
200G
E

980-
9I45R-
00V010

MFS1S0
0-V010E

NVIDIA active fiber cable, 200GbE,
200Gb/s, QSFP56, LSZH, black pulltab,
10m

LTB
[HVM]

N/A
200G
E

980-
9I44S-
00V015

MFS1S0
0-V015E

NVIDIA active fiber cable, 200GbE,
200Gb/s, QSFP56, LSZH, black pulltab,
15m

LTB
[HVM]

N/A
200G
E

980-
9I44T-
00V020

MFS1S0
0-V020E

NVIDIA active fiber cable, 200GbE,
200Gb/s, QSFP56, LSZH, black pulltab,
20m

LTB
[HVM]

N/A
200G
E

980-
9I44U-
00V030

MFS1S0
0-V030E

NVIDIA active fiber cable, 200GbE,
200Gb/s, QSFP56, LSZH, black pulltab,
30m

LTB
[HVM]

N/A
200G
E

980-
9I44V-
00V050

MFS1S0
0-V050E

NVIDIA active fiber cable, 200GbE,
200Gb/s, QSFP56, LSZH, black pulltab,
50m

LTB
[HVM]

N/A 200G
E

980-
9I44W-

MFS1S0
0-V100E

NVIDIA active fiber cable, 200GbE,
200Gb/s, QSFP56, LSZH, black pulltab,

EOL
[HVM]

NVIDIA BlueField DPU BSP v4.7.0 120

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

00V100 100m [HIBERN/
ATE]

HDR N/A
980-
9I452-
00H003

MFS1S5
0-H003E

NVIDIA active fiber splitter cable, IB HDR,
200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56 , LSZH, 3m

EOL
[HVM]

HDR
200G
E

980-
9I445-
00H003

MFS1S5
0-
H003V

Nvidia active optical splitter cable,
200Gbps to 2x100Gbps , QSFP56 to 2x
QSFP56, 3m

HVM

HDR N/A
980-
9I956-
00H005

MFS1S5
0-H005E

NVIDIA active fiber splitter cable, IB HDR,
200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56 , LSZH, 5m

EOL
[HVM]

HDR
200G
E

980-
9I969-
00H005

MFS1S5
0-
H005V

Nvidia active optical splitter cable,
200Gbps to 2x100Gbps , QSFP56 to 2x
QSFP56, 5m

HVM

HDR N/A
980-
9I95A-
00H010

MFS1S5
0-H010E

NVIDIA active fiber splitter cable, IB HDR,
200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56 , LSZH, 10m

EOL
[HVM]

HDR
200G
E

980-
9I96D-
00H010

MFS1S5
0-
H010V

Nvidia active optical splitter cable,
200Gbps to 2x100Gbps , QSFP56 to 2x
QSFP56, 10m

HVM

HDR N/A
980-
9I95E-
00H015

MFS1S5
0-H015E

NVIDIA active fiber splitter cable, IB HDR,
200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56 , LSZH, 15m

EOL
[HVM]

HDR
200G
E

980-
9I96H-
00H015

MFS1S5
0-
H015V

Nvidia active optical splitter cable,
200Gbps to 2x100Gbps , QSFP56 to 2x
QSFP56, 15m

HVM

HDR N/A
980-
9I95I-
00H020

MFS1S5
0-H020E

NVIDIA active fiber splitter cable, IB HDR,
200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56 , LSZH, 20m

EOL
[HVM]

HDR
200G
E

980-
9I96L-
00H020

MFS1S5
0-
H020V

Nvidia active optical splitter cable,
200Gbps to 2x100Gbps , QSFP56 to 2x
QSFP56, 20m

HVM

NVIDIA BlueField DPU BSP v4.7.0 121

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

HDR N/A
980-
9I95M-
00H030

MFS1S5
0-H030E

NVIDIA active fiber splitter cable, IB HDR,
200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56 , LSZH, 30m

EOL
[HVM]

HDR
200G
E

980-
9I96P-
00H030

MFS1S5
0-
H030V

Nvidia active optical splitter cable,
200Gbps to 2x100Gbps , QSFP56 to 2x
QSFP56, 30m

HVM

HDR
200G
E

980-
9I95S-
00H040

MFS1S5
0-
H040V

Nvidia active optical splitter cable,
200Gbps to 2x100Gbps , QSFP56 to 2x
QSFP56, 40m

Prototype

HDR
200G
E

980-
9I95T-
00H050

MFS1S5
0-
H050V

Nvidia active optical splitter cable,
200Gbps to 2x100Gbps , QSFP56 to 2x
QSFP56, 50m

Prototype

N/A
200G
E

980-
9I95Q-
00V003

MFS1S5
0-V003E

NVIDIA active fiber splitter cable, 200GbE,
200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56, LSZH, black pulltab, 3m

EOL
[HVM]

N/A
200G
E

980-
9I96R-
00V005

MFS1S5
0-V005E

NVIDIA active fiber splitter cable, 200GbE,
200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56, LSZH, black pulltab, 5m

EOL
[HVM]

N/A
200G
E

980-
9I96S-
00V010

MFS1S5
0-V010E

NVIDIA active fiber splitter cable, 200GbE,
200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56, LSZH, black pulltab, 10m

EOL
[HVM]

N/A
200G
E

980-
9I96T-
00V015

MFS1S5
0-V015E

NVIDIA active fiber splitter cable, 200GbE,
200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56, LSZH, black pulltab, 15m

EOL
[HVM]

N/A
200G
E

980-
9I95U-
00V020

MFS1S5
0-V020E

NVIDIA active fiber splitter cable, 200GbE,
200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56, LSZH, black pulltab, 20m

EOL
[HVM]

N/A
200G
E

980-
9I95V-
00V030

MFS1S5
0-V030E

NVIDIA active fiber splitter cable, 200GbE,
200Gb/s to 2x100Gb/s, QSFP56 to
2xQSFP56, LSZH, black pulltab, 30m

EOL
[HVM]

HDR N/A 980-
9I961-

MFS1S9
0-H010E

NVIDIA active fiber splitter cable, IB HDR,
2x200Gb/s to 2x200Gb/s, 2xQSFP56 to

LTB
[HVM]

NVIDIA BlueField DPU BSP v4.7.0 122

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

00H010 2xQSFP56 , LSZH, 10m

HDR N/A
980-
9I423-
00H020

MFS1S9
0-H020E

NVIDIA active fiber splitter cable, IB HDR,
2x200Gb/s to 2x200Gb/s, 2xQSFP56 to
2xQSFP56 , LSZH, 20m

LTB
[HVM]

HDR N/A
980-
9I424-
00H030

MFS1S9
0-H030E

NVIDIA active fiber splitter cable, IB HDR,
2x200Gb/s to 2x200Gb/s, 2xQSFP56 to
2xQSFP56 , LSZH, 30m

EOL
[HVM]

HDR N/A
980-
9I17S-
00HS00

MMA1T
00-HS

NVIDIA transceiver, HDR, QSFP56, MPO,
850nm, SR4, up to 100m

HVM

N/A
200G
E

980-
9I20T-
00V000

MMA1T
00-VS

NVIDIA transceiver, 200GbE, up to
200Gb/s, QSFP56, MPO, 850nm, SR4, up
to 100m

HVM

EDR / 100GbE Cables

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

N/A
100G
E

980-
9I62O-
00C001

MCP160
0-C001

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP, PVC, 1m 30AWG

EOL
[HVM]

N/A
100G
E

980-
9I620-
00C001

MCP160
0-
C001E30
N

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP28, 1m, Black,
30AWG, CA-N

HVM

N/A
100G
E

980-
9I62S-
00C001

MCP160
0-
C001LZ

NVIDIA Passive Copper Cable, ETH
100GbE, 100Gb/s, QSFP, 1m, LSZH,
30AWG

EOL [MP]

NVIDIA BlueField DPU BSP v4.7.0 123

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

N/A
100G
E

980-
9I621-
00C002

MCP160
0-C002

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP, PVC, 2m 30AWG

EOL
[HVM]

N/A
100G
E

980-
9I622-
00C002

MCP160
0-
C002E26
N

NVIDIA® Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP28, 2m, Black,
26AWG, CA-N

Prelimina
ry

N/A
100G
E

980-
9I62V-
00C002

MCP160
0-
C002E30
N

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP28, 2m, Black,
30AWG, CA-N

HVM

N/A
100G
E

980-
9I62X-
00C003

MCP160
0-C003

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP, PVC, 3m 28AWG

EOL
[HVM]

N/A
100G
E

980-
9I62Z-
00C003

MCP160
0-
C003E26
N

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP28, 3m, Black,
26AWG, CA-N

EOL
[HVM]

N/A
100G
E

980-
9I620-
00C003

MCP160
0-
C003E30
L

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP28, 3m, Black,
30AWG, CA-L

HVM

N/A
100G
E

980-
9I622-
00C003

MCP160
0-
C003LZ

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP, 3m, LSZH,
26AWG

EOL [MP]

N/A
100G
E

980-
9I625-
00C005

MCP160
0-
C005E26
L

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP28, 5m, Black,
26AWG, CA-L

HVM

N/A
100G
E

980-
9I626-
00C00A

MCP160
0-C00A

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP, PVC, 0.5m
30AWG

EOL
[HVM]

NVIDIA BlueField DPU BSP v4.7.0 124

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

N/A
100G
E

980-
9I627-
00C00A

MCP160
0-
C00AE3
0N

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP28, 0.5m, Black,
30AWG, CA-N

EOL
[HVM]

N/A
100G
E

980-
9I629-
00C00B

MCP160
0-
C00BE3
0N

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP28, 0.75m, Black,
30AWG, CA-N

EOL
[HVM]

N/A
100G
E

980-
9I62B-
00C01A

MCP160
0-C01A

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP, PVC, 1.5m
30AWG

EOL
[HVM]

N/A
100G
E

980-
9I62C-
00C01A

MCP160
0-
C01AE3
0N

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP28, 1.5m, Black,
30AWG, CA-N

HVM

N/A
100G
E

980-
9I62G-
00C02A

MCP160
0-C02A

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP, PVC, 2.5m
30AWG

EOL
[HVM]

N/A
100G
E

980-
9I62H-
00C02A

MCP160
0-
C02AE2
6N

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP28, 2.5m, Black,
26AWG, CA-N

EOL
[HVM]

N/A
100G
E

980-
9I62I-
00C02A

MCP160
0-
C02AE3
0L

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP28,2.5m, Black,
30AWG, CA-L

HVM

N/A
100G
E

980-
9I62M-
00C03A

MCP160
0-C03A

NVIDIA Passive Copper cable, ETH
100GbE, 100Gb/s, QSFP, PVC, 3.5m
26AWG

EOL [P-
Rel]

EDR
100G
E

980-
9I62P-
00C001

MCP160
0-E001

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP, LSZH, 1m 30AWG

EOL
[HVM]

NVIDIA BlueField DPU BSP v4.7.0 125

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

EDR N/A
980-
9I62Q-
00E001

MCP160
0-
E001E30

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP28, 1m, Black, 30AWG

HVM

EDR
100G
E

980-
9I62S-
00C002

MCP160
0-E002

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP, LSZH, 2m 28AWG

EOL
[HVM]

EDR N/A
980-
9I62T-
00E002

MCP160
0-
E002E26

NVIDIA® Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP28, 2m, Black, 26AWG

Prelimina
ry

EDR N/A
980-
9I62U-
00E002

MCP160
0-
E002E30

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP28, 2m, Black, 30AWG

HVM

EDR
100G
E

980-
9I62V-
00C003

MCP160
0-E003

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP, LSZH, 3m 26AWG

EOL
[HVM]

EDR N/A
980-
9I62W-
00E003

MCP160
0-
E003E26

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP28, 3m, Black, 26AWG

HVM

EDR N/A
980-
9I62Y-
00E004

MCP160
0-
E004E26

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP28, 4m, Black, 26AWG

EOL
[HVM]

EDR N/A
980-
9I62Z-
00E005

MCP160
0-
E005E26

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP28, 5m, Black, 26AWG

HVM

EDR N/A
980-
9I620-
00E00A

MCP160
0-E00A

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP, LSZH, 0.5m 30AWG

EOL
[HVM]

EDR N/A
980-
9I621-
00E00A

MCP160
0-
E00AE30

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP28, 0.5m, Black, 30AWG

EOL
[HVM]

EDR N/A 980-
9I622-

MCP160
0-

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP28, 0.75m, Black, 30AWG

EOL
[HVM]

NVIDIA BlueField DPU BSP v4.7.0 126

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

00E00B E00BE30 [HIBERN/
ATE]

EDR
100G
E

980-
9I623-
00C01A

MCP160
0-E01A

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP, LSZH, 1.5m 30AWG

EOL
[HVM]

EDR N/A
980-
9I624-
00E01A

MCP160
0-
E01AE30

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP28, 1.5m, Black, 30AWG

HVM

EDR N/A
980-
9I625-
00E01C

MCP160
0-
E01BE30

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP28, 1.25m, Black, 30AWG

EOL
[HVM]
[HIBERN/
ATE]

EDR
100G
E

980-
9I626-
00C02A

MCP160
0-E02A

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP, LSZH, 2.5m 26AWG

EOL
[HVM]

EDR N/A
980-
9I627-
00E02A

MCP160
0-
E02AE26

NVIDIA Passive Copper cable, IB EDR, up
to 100Gb/s, QSFP28, 2.5m, Black, 26AWG

HVM

N/A
100G
E

980-
9I645-
00C001

MCP7F0
0-A001R

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
colored pulltabs, 1m, 30AWG

EOL
[HVM]

N/A
100G
E

980-
9I486-
00C001

MCP7F0
0-
A001R3
0N

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
1m, Colored, 30AWG, CA-N

LTB
[HVM]

N/A
100G
E

980-
9I48A-
00C002

MCP7F0
0-A002R

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
colored pulltabs, 2m, 30AWG

EOL
[HVM]

N/A
100G
E

980-
9I48B-
00C002

MCP7F0
0-
A002R3
0N

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
2m, Colored, 30AWG, CA-N

LTB
[HVM]

NVIDIA BlueField DPU BSP v4.7.0 127

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

N/A
100G
E

980-
9I48G-
00C003

MCP7F0
0-
A003R2
6N

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
3m, Colored, 26AWG, CA-N

EOL
[HVM]

N/A
100G
E

980-
9I48H-
00C003

MCP7F0
0-
A003R3
0L

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
3m, Colored, 30AWG, CA-L

LTB
[HVM]

N/A
100G
E

980-
9I48J-
00C005

MCP7F0
0-
A005R2
6L

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
5m, Colored, 26AWG, CA-L

LTB
[HVM]

N/A
100G
E

980-
9I48M-
00C01A

MCP7F0
0-A01AR

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
colored pulltabs,1.5m, 30AWG

EOL
[HVM]

N/A
100G
E

980-
9I48N-
00C01A

MCP7F0
0-
A01AR3
0N

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
1.5m, Colored, 30AWG, CA-N

LTB
[HVM]

N/A
100G
E

980-
9I48S-
00C02A

MCP7F0
0-
A02AR2
6N

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
2.5m, Colored, 26AWG, CA-N

EOL
[HVM]

N/A
100G
E

980-
9I48T-
00C02A

MCP7F0
0-
A02AR3
0L

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
2.5m, Colored, 30AWG, CA-L

LTB
[HVM]

N/A
100G
E

980-
9I48U-
00C02A

MCP7F0
0-
A02ARL
Z

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
2.5m, LSZH, Colored, 28AWG

EOL [P-
Rel]

N/A 100G
E

980-
9I48X-

MCP7F0
0-

NVIDIA passive copper hybrid cable, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,

EOL
[HVM]

NVIDIA BlueField DPU BSP v4.7.0 128

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

00C03A A03AR2
6L

3.5m, Colored, 26AWG, CA-L

N/A
100G
E

980-
9I61C-
00C005

MCP7H0
0-
G00000

NVIDIA® passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, 5m, Colored, 26AWG, CA-L

Prelimina
ry

N/A
100G
E

980-
9I61D-
00C001

MCP7H0
0-G001

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, 1m, 30AWG

EOL
[HVM]

N/A
100G
E

980-
9I99F-
00C001

MCP7H0
0-G001R

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, colored pulltabs, 1m, 30AWG

EOL
[HVM]

N/A
100G
E

980-
9I99G-
00C001

MCP7H0
0-
G001R3
0N

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, 1m, Colored, 30AWG, CA-N

LTB
[HVM]

N/A
100G
E

980-
9I99J-
00C002

MCP7H0
0-G002R

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, colored pulltabs, 2m, 30AWG

EOL
[HVM]

N/A
100G
E

980-
9I99K-
00C002

MCP7H0
0-
G002R2
6N

NVIDIA® passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, 2m, Colored, 26AWG, CA-N

Prelimina
ry

N/A
100G
E

980-
9I99L-
00C002

MCP7H0
0-
G002R3
0N

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, 2m, Colored, 30AWG, CA-N

LTB
[HVM]

N/A
100G
E

980-
9I99O-
00C003

MCP7H0
0-G003R

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, colored pulltabs, 3m, 28AWG

EOL
[HVM]

N/A 100G
E

980-
9I99Q-
00C003

MCP7H0
0-

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, 3m, Colored, 26AWG, CA-N

EOL
[HVM]

NVIDIA BlueField DPU BSP v4.7.0 129

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

G003R2
6N

N/A
100G
E

980-
9I39R-
00C003

MCP7H0
0-
G003R3
0L

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, 3m, Colored, 30AWG, CA-L

LTB
[HVM]

N/A
100G
E

980-
9I99S-
00C004

MCP7H0
0-
G004R2
6L

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, 4m, Colored, 26AWG, CA-L

EOL
[HVM]

N/A
100G
E

980-
9I99W-
00C01A

MCP7H0
0-G01AR

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, colored pulltabs, 1.5m, 30AWG

EOL
[HVM]

N/A
100G
E

980-
9I99X-
00C01A

MCP7H0
0-
G01AR3
0N

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, 1.5m, Colored, 30AWG, CA-N

LTB
[HVM]

N/A
100G
E

980-
9I992-
00C02A

MCP7H0
0-G02AR

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, colored pulltabs, 2.5m, 30AWG

EOL
[HVM]

N/A
100G
E

980-
9I994-
00C02A

MCP7H0
0-
G02AR2
6N

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, 2.5m, Colored, 26AWG, CA-N

EOL
[HVM]

N/A
100G
E

980-
9I395-
00C02A

MCP7H0
0-
G02AR3
0L

NVIDIA passive copper hybrid cable, ETH
100Gb/s to 2x50Gb/s, QSFP28 to
2xQSFP28, 2.5m, Colored, 30AWG, CA-L

LTB
[HVM]

N/A
100G
E

980-
9I13S-
00C003

MFA1A0
0-C003

NVIDIA active fiber cable, ETH 100GbE,
100Gb/s, QSFP, LSZH, 3m

HVM

NVIDIA BlueField DPU BSP v4.7.0 130

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

N/A
100G
E

980-
9I13X-
00C005

MFA1A0
0-C005

NVIDIA active fiber cable, ETH 100GbE,
100Gb/s, QSFP, LSZH, 5m

HVM

N/A
100G
E

980-
9I134-
00C010

MFA1A0
0-C010

NVIDIA active fiber cable, ETH 100GbE,
100Gb/s, QSFP, LSZH, 10m

HVM

N/A
100G
E

980-
9I13A-
00C015

MFA1A0
0-C015

NVIDIA active fiber cable, ETH 100GbE,
100Gb/s, QSFP, LSZH, 15m

HVM

N/A
100G
E

980-
9I13F-
00C020

MFA1A0
0-C020

NVIDIA active fiber cable, ETH 100GbE,
100Gb/s, QSFP, LSZH, 20m

HVM

N/A
100G
E

980-
9I13N-
00C030

MFA1A0
0-C030

NVIDIA active fiber cable, ETH 100GbE,
100Gb/s, QSFP, LSZH, 30m

HVM

N/A
100G
E

980-
9I130-
00C050

MFA1A0
0-C050

NVIDIA active fiber cable, ETH 100GbE,
100Gb/s, QSFP, LSZH, 50m

HVM

N/A
100G
E

980-
9I13B-
00C100

MFA1A0
0-C100

NVIDIA active fiber cable, ETH 100GbE,
100Gb/s, QSFP, LSZH, 100m

LTB
[HVM]

EDR N/A
980-
9I13D-
00E001

MFA1A0
0-E001

NVIDIA active fiber cable, IB EDR, up to
100Gb/s, QSFP, LSZH, 1m

HVM

EDR N/A
980-
9I13F-
00E003

MFA1A0
0-E003

NVIDIA active fiber cable, IB EDR, up to
100Gb/s, QSFP, LSZH, 3m

HVM

EDR N/A
980-
9I13J-
00E005

MFA1A0
0-E005

NVIDIA active fiber cable, IB EDR, up to
100Gb/s, QSFP, LSZH, 5m

HVM

EDR N/A 980-
9I13M-

MFA1A0
0-E007

NVIDIA active fiber cable, IB EDR, up to
100Gb/s, QSFP, LSZH, 7m

LTB
[HVM]

NVIDIA BlueField DPU BSP v4.7.0 131

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

00E007

EDR N/A
980-
9I13O-
00E010

MFA1A0
0-E010

NVIDIA active fiber cable, IB EDR, up to
100Gb/s, QSFP, LSZH, 10m

HVM

EDR N/A
980-
9I13S-
00E015

MFA1A0
0-E015

NVIDIA active fiber cable, IB EDR, up to
100Gb/s, QSFP, LSZH, 15m

HVM

EDR N/A
980-
9I13V-
00E020

MFA1A0
0-E020

NVIDIA active fiber cable, IB EDR, up to
100Gb/s, QSFP, LSZH, 20m

HVM

EDR N/A
980-
9I13Y-
00E030

MFA1A0
0-E030

NVIDIA active fiber cable, IB EDR, up to
100Gb/s, QSFP, LSZH, 30m

HVM

EDR N/A
980-
9I133-
00E050

MFA1A0
0-E050

NVIDIA active fiber cable, IB EDR, up to
100Gb/s, QSFP, LSZH, 50m

HVM

EDR N/A
980-
9I135-
00E100

MFA1A0
0-E100

NVIDIA active fiber cable, IB EDR, up to
100Gb/s, QSFP, LSZH, 100m

LTB
[HVM]

N/A
100G
E

980-
9I37H-
00C003

MFA7A2
0-C003

NVIDIA active fiber hybrid solution, ETH
100GbE to 2x50GbE, QSFP28 to 2xQSFP28,
3m

EOL
[HVM]

N/A
100G
E

980-
9I37I-
00C005

MFA7A2
0-C005

NVIDIA active fiber hybrid solution, ETH
100GbE to 2x50GbE, QSFP28 to 2xQSFP28,
5m

EOL
[HVM]

N/A
100G
E

980-
9I40J-
00C010

MFA7A2
0-C010

NVIDIA active fiber hybrid solution, ETH
100GbE to 2x50GbE, QSFP28 to 2xQSFP28,
10m

EOL
[HVM]

N/A
100G
E

980-
9I40K-
00C020

MFA7A2
0-C020

NVIDIA active fiber hybrid solution, ETH
100GbE to 2x50GbE, QSFP28 to 2xQSFP28,
20m

EOL
[HVM]

NVIDIA BlueField DPU BSP v4.7.0 132

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

N/A
100G
E

980-
9I40L-
00C002

MFA7A2
0-C02A

NVIDIA® active fiber hybrid solution, ETH
100GbE to 2x50GbE, QSFP28 to 2xQSFP28,
2.5m

Prelimina
ry

N/A
100G
E

980-
9I40M-
00C003

MFA7A2
0-C03A

NVIDIA® active fiber hybrid solution, ETH
100GbE to 2x50GbE, QSFP28 to 2xQSFP28,
3.5m

Prelimina
ry

N/A
100G
E

980-
9I40N-
00C003

MFA7A5
0-C003

NVIDIA active fiber hybrid solution, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
3m

EOL
[HVM]

N/A
100G
E

980-
9I40O-
00C005

MFA7A5
0-C005

NVIDIA active fiber hybrid solution, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
5m

EOL
[HVM]

N/A
100G
E

980-
9I49P-
00C010

MFA7A5
0-C010

NVIDIA active fiber hybrid solution, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
10m

EOL
[HVM]

N/A
100G
E

980-
9I49Q-
00C015

MFA7A5
0-C015

NVIDIA active fiber hybrid solution, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
15m

EOL
[HVM]

N/A
100G
E

980-
9I49R-
00C020

MFA7A5
0-C020

NVIDIA active fiber hybrid solution, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
20m

EOL
[HVM]

N/A
100G
E

980-
9I49S-
00C030

MFA7A5
0-C030

NVIDIA active fiber hybrid solution, ETH
100GbE to 4x25GbE, QSFP28 to 4xSFP28,
30m

EOL
[HVM]

N/A
100G
E

980-
9I149-
00CS00

MMA1B
00-
C100D

NVIDIA transceiver, 100GbE, QSFP28,
MPO, 850nm, SR4, up to 100m, DDMI

HVM

N/A
100G
E

980-
9I17D-
00CS00

MMA1B
00-
C100T

NVIDIA® transceiver, 100GbE, QSFP28,
MPO, 850nm, up to 100m, OTU4

Prelimina
ry

EDR N/A 980-
9I17L-

MMA1B
00-E100

NVIDIA transceiver, IB EDR, up to 100Gb/s,
QSFP28, MPO, 850nm, SR4, up to 100m

HVM

NVIDIA BlueField DPU BSP v4.7.0 133

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

00E000

N/A
100G
E

980-
9I17P-
00CR00

MMA1L1
0-CR

NVIDIA optical transceiver, 100GbE,
100Gb/s, QSFP28, LC-LC, 1310nm, LR4 up
to 10km

HVM

N/A
100G
E

980-
9I17Q-
00CM0
0

MMA1L3
0-CM

NVIDIA optical module, 100GbE, 100Gb/s,
QSFP28, LC-LC, 1310nm, CWDM4, up to
2km

MP

N/A
100G
E

980-
9I16X-
00C000

MMS1C
10-CM

NVIDIA active optical module, 100Gb/s,
QSFP, MPO, 1310nm, PSM4, up to 500m

EOL [MP]

N/A
100G
E

980-
9I53X-
00C000

SPQ-CE-
ER-
CDFL-M

40km 100G QSFP28 ER Optical Transceiver P-Rel

N/A
100G
E

980-
9I63F-
00CM0
0

X65406
NVIDIA® optical module, 100GbE,
100Gb/s, QSFP28, LC-LC, 1310nm,
CWDM4, up to 2km

Prelimina
ry

FDR / 56GbE Cables

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

FDR 56GE
980-
9I679-
00L004

MC2207
126-004

NVIDIA passive copper cable, VPI,
up to 56Gb/s, QSFP, 4m

EOL [HVM]

FDR 56GE
980-
9I67A-
00L003

MC2207
128-003

NVIDIA passive copper cable, VPI,
up to 56Gb/s, QSFP, 3m

EOL [HVM]

NVIDIA BlueField DPU BSP v4.7.0 134

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

FDR 56GE
980-
9I67C-
00L02A

MC2207
128-0A2

NVIDIA passive copper cable, VPI,
up to 56Gb/s, QSFP, 2.5m

EOL [MP]

FDR 56GE
980-
9I67D-
00L001

MC2207
130-001

NVIDIA passive copper cable, VPI,
up to 56Gb/s, QSFP, 1m

EOL [HVM]

FDR 56GE
980-
9I67E-
00L002

MC2207
130-002

NVIDIA passive copper cable, VPI,
up to 56Gb/s, QSFP, 2m

EOL [HVM]

FDR 56GE
980-
9I67F-
00L00A

MC2207
130-00A

NVIDIA passive copper cable, VPI,
up to 56Gb/s, QSFP, 0.5m

EOL [HVM]

FDR 56GE
980-
9I67G-
00L01A

MC2207
130-0A1

NVIDIA passive copper cable, VPI,
up to 56Gb/s, QSFP, 1.5m

EOL [HVM]

FDR 56GE
980-
9I15U-
00L003

MC2207
31V-003

NVIDIA active fiber cable, VPI, up
to 56Gb/s, QSFP, 3m

EOL [HVM]

FDR 56GE
980-
9I15V-
00L005

MC2207
31V-005

NVIDIA active fiber cable, VPI, up
to 56Gb/s, QSFP, 5m

EOL [HVM]

FDR 56GE
980-
9I15W-
00L010

MC2207
31V-010

NVIDIA active fiber cable, VPI, up
to 56Gb/s, QSFP, 10m

EOL [HVM]

FDR 56GE
980-
9I15X-
00L015

MC2207
31V-015

NVIDIA active fiber cable, VPI, up
to 56Gb/s, QSFP, 15m

EOL [HVM]

FDR 56GE
980-
9I15Y-
00L020

MC2207
31V-020

NVIDIA active fiber cable, VPI, up
to 56Gb/s, QSFP, 20m

EOL [HVM]

FDR 56GE 980-
9I15Z-

MC2207
31V-025

NVIDIA active fiber cable, VPI, up
to 56Gb/s, QSFP, 25m

EOL [HVM]

NVIDIA BlueField DPU BSP v4.7.0 135

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

00L025

FDR 56GE
980-
9I150-
00L030

MC2207
31V-030

NVIDIA active fiber cable, VPI, up
to 56Gb/s, QSFP, 30m

EOL [HVM]

FDR 56GE
980-
9I151-
00L040

MC2207
31V-040

NVIDIA active fiber cable, VPI, up
to 56Gb/s, QSFP, 40m

EOL [HVM]
[HIBERN/AT
E]

FDR 56GE
980-
9I152-
00L050

MC2207
31V-050

NVIDIA active fiber cable, VPI, up
to 56Gb/s, QSFP, 50m

EOL [HVM]

FDR 56GE
980-
9I153-
00L075

MC2207
31V-075

NVIDIA active fiber cable, VPI, up
to 56Gb/s, QSFP, 75m

EOL [HVM]

FDR 56GE
980-
9I154-
00L100

MC2207
31V-100

NVIDIA active fiber cable, VPI, up
to 56Gb/s, QSFP, 100m

EOL [HVM]

FDR 56GE
980-
9I675-
00L001

MCP170
L-F001

NVIDIA passive copper cable, VPI,
up to 56Gb/s, QSFP, LSZH, 1m

EOL [P-Rel]

FDR 56GE
980-
9I676-
00L002

MCP170
L-F002

NVIDIA passive copper cable, VPI,
up to 56Gb/s, QSFP, LSZH, 2m

EOL [P-Rel]

FDR 56GE
980-
9I677-
00L003

MCP170
L-F003

NVIDIA passive copper cable, VPI,
up to 56Gb/s, QSFP, LSZH, 3m

EOL [P-Rel]
[HIBERN/AT
E]

FDR 56GE
980-
9I678-
00L00A

MCP170
L-F00A

NVIDIA passive copper cable, VPI,
up to 56Gb/s, QSFP, LSZH, 0.5m

EOL [P-Rel]

FDR 56GE
980-
9I679-
00L01A

MCP170
L-F01A

NVIDIA passive copper cable, VPI,
up to 56Gb/s, QSFP, LSZH, 1.5m

EOL [P-Rel]
[HIBERN/AT
E]

NVIDIA BlueField DPU BSP v4.7.0 136

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

FDR N/A
980-
9I17M-
00FS00

MMA1B0
0-F030D

NVIDIA transceiver, FDR, QSFP+,
MPO, 850nm, SR4, up to 30m,
DDMI

LTB [HVM]

25GbE Cables

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

N/A 10GE
980-
9I71G-
00J000

MAM1
Q00A-
QSA

NVIDIA cable module, ETH 10GbE,
40Gb/s to 10Gb/s, QSFP to SFP+

HVM

N/A 10GE
980-
9I65P-
00J005

MC230
9124-
005

NVIDIA passive copper hybrid cable,
ETH 10GbE, 10Gb/s, QSFP to SFP+, 5m

EOL [P-Rel]

N/A 10GE
980-
9I65Q-
00J007

MC230
9124-
007

NVIDIA passive copper hybrid cable,
ETH 10GbE, 10Gb/s, QSFP to SFP+, 7m

EOL [P-Rel]

N/A 10GE
980-
9I65R-
00J001

MC230
9130-
001

NVIDIA passive copper hybrid cable,
ETH 10GbE, 10Gb/s, QSFP to SFP+, 1m

EOL [HVM]

N/A 10GE
980-
9I65S-
00J002

MC230
9130-
002

NVIDIA passive copper hybrid cable,
ETH 10GbE, 10Gb/s, QSFP to SFP+, 2m

EOL [HVM]

N/A 10GE
980-
9I65T-
00J003

MC230
9130-
003

NVIDIA passive copper hybrid cable,
ETH 10GbE, 10Gb/s, QSFP to SFP+, 3m

EOL [HVM]

N/A 10GE
980-
9I65U-
00J00A

MC230
9130-
00A

NVIDIA passive copper hybrid cable,
ETH 10GbE, 10Gb/s, QSFP to SFP+,
0.5m

EOL [HVM]
[HIBERN/A
TE]

NVIDIA BlueField DPU BSP v4.7.0 137

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

N/A 10GE
980-
9I682-
00J004

MC330
9124-
004

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 4m

EOL [HVM]

N/A 10GE
980-
9I683-
00J005

MC330
9124-
005

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 5m

EOL [HVM]

N/A 10GE
980-
9I684-
00J006

MC330
9124-
006

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 6m

EOL [HVM]

N/A 10GE
980-
9I685-
00J007

MC330
9124-
007

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 7m

EOL [HVM]

N/A 10GE
980-
9I686-
00J001

MC330
9130-
001

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 1m

EOL [HVM]

N/A 10GE
980-
9I688-
00J002

MC330
9130-
002

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 2m

EOL [HVM]

N/A 10GE
980-
9I68B-
00J003

MC330
9130-
003

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 3m

EOL [HVM]

N/A 10GE
980-
9I68F-
00J00A

MC330
9130-
00A

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 0.5m

EOL [HVM]

N/A 10GE
980-
9I68G-
00J01A

MC330
9130-
0A1

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 1.5m

EOL [HVM]

N/A 10GE
980-
9I68H-
00J02A

MC330
9130-
0A2

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 2.5m

EOL [HVM]

N/A 10GE 980-
9I68A-

MCP21
00-

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 1m, Blue Pulltab,

EOL [HVM]
[HIBERN/A

NVIDIA BlueField DPU BSP v4.7.0 138

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

00J001 X001B Connector Label TE]

N/A 10GE
980-
9I68B-
00J002

MCP21
00-
X002B

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 2m, Blue Pulltab,
Connector Label

EOL [HVM]
[HIBERN/A
TE]

N/A 10GE
980-
9I68C-
00J003

MCP21
00-
X003B

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 3m, Blue Pulltab,
Connector Label

EOL [HVM]

N/A 10GE
980-
9I68E-
00J001

MCP21
04-
X001B

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 1m, Black
Pulltab, Connector Label

EOL [HVM]
[HIBERN/A
TE]

N/A 10GE
980-
9I68F-
00J002

MCP21
04-
X002B

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 2m, Black
Pulltab, Connector Label

EOL [HVM]

N/A 10GE
980-
9I68G-
00J003

MCP21
04-
X003B

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 3m, Black
Pulltab, Connector Label

EOL [HVM]

N/A 10GE
980-
9I68H-
00J01A

MCP21
04-
X01AB

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 1.5m, Black
Pulltab, Connector Label

EOL [HVM]

N/A 10GE
980-
9I68I-
00J02A

MCP21
04-
X02AB

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 2.5m, Black
Pulltab, Connector Label

EOL [HVM]

N/A 10GE
930-
9O000-
0000-343

MFM1T
02A-LR

NVIDIA SFP+ optical module for
10GBASE-LR

HVM

N/A 10GE
MFM1T0
2A-LR-F

MFM1T
02A-LR-
F

NVIDIA optical module, ETH 10GbE,
10Gb/s, SFP+, LC-LC, 1310nm, LR up to
10km

HVM

N/A 10GE
930-
9O000-
0000-409

MFM1T
02A-SR

NVIDIA SFP+ optical module for
10GBASE-SR

HVM

NVIDIA BlueField DPU BSP v4.7.0 139

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

N/A 10GE
MFM1T0
2A-SR-F

MFM1T
02A-SR-
F

NVIDIA optical module, ETH 10GbE,
10Gb/s, SFP+, LC-LC, 850nm, SR up to
300m

HVM

N/A 10GE
MFM1T0
2A-SR-P

MFM1T
02A-SR-
P

NVIDIA optical module, ETH 10GbE,
10Gb/s, SFP+, LC-LC, 850nm, SR up to
300m

HVM

10GbE Cables

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

N/A 10GE
980-
9I71G-
00J000

MAM1
Q00A-
QSA

NVIDIA cable module, ETH 10GbE,
40Gb/s to 10Gb/s, QSFP to SFP+

HVM

N/A 10GE
980-
9I65P-
00J005

MC230
9124-
005

NVIDIA passive copper hybrid cable,
ETH 10GbE, 10Gb/s, QSFP to SFP+, 5m

EOL [P-Rel]

N/A 10GE
980-
9I65Q-
00J007

MC230
9124-
007

NVIDIA passive copper hybrid cable,
ETH 10GbE, 10Gb/s, QSFP to SFP+, 7m

EOL [P-Rel]

N/A 10GE
980-
9I65R-
00J001

MC230
9130-
001

NVIDIA passive copper hybrid cable,
ETH 10GbE, 10Gb/s, QSFP to SFP+, 1m

EOL [HVM]

N/A 10GE
980-
9I65S-
00J002

MC230
9130-
002

NVIDIA passive copper hybrid cable,
ETH 10GbE, 10Gb/s, QSFP to SFP+, 2m

EOL [HVM]

N/A 10GE
980-
9I65T-
00J003

MC230
9130-
003

NVIDIA passive copper hybrid cable,
ETH 10GbE, 10Gb/s, QSFP to SFP+, 3m

EOL [HVM]

NVIDIA BlueField DPU BSP v4.7.0 140

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

N/A 10GE
980-
9I65U-
00J00A

MC230
9130-
00A

NVIDIA passive copper hybrid cable,
ETH 10GbE, 10Gb/s, QSFP to SFP+,
0.5m

EOL [HVM]
[HIBERN/A
TE]

N/A 10GE
980-
9I682-
00J004

MC330
9124-
004

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 4m

EOL [HVM]

N/A 10GE
980-
9I683-
00J005

MC330
9124-
005

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 5m

EOL [HVM]

N/A 10GE
980-
9I684-
00J006

MC330
9124-
006

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 6m

EOL [HVM]

N/A 10GE
980-
9I685-
00J007

MC330
9124-
007

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 7m

EOL [HVM]

N/A 10GE
980-
9I686-
00J001

MC330
9130-
001

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 1m

EOL [HVM]

N/A 10GE
980-
9I688-
00J002

MC330
9130-
002

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 2m

EOL [HVM]

N/A 10GE
980-
9I68B-
00J003

MC330
9130-
003

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 3m

EOL [HVM]

N/A 10GE
980-
9I68F-
00J00A

MC330
9130-
00A

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 0.5m

EOL [HVM]

N/A 10GE
980-
9I68G-
00J01A

MC330
9130-
0A1

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 1.5m

EOL [HVM]

N/A 10GE 980-
9I68H-

MC330
9130-

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 2.5m

EOL [HVM]

NVIDIA BlueField DPU BSP v4.7.0 141

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

00J02A 0A2

N/A 10GE
980-
9I68A-
00J001

MCP21
00-
X001B

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 1m, Blue Pulltab,
Connector Label

EOL [HVM]
[HIBERN/A
TE]

N/A 10GE
980-
9I68B-
00J002

MCP21
00-
X002B

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 2m, Blue Pulltab,
Connector Label

EOL [HVM]
[HIBERN/A
TE]

N/A 10GE
980-
9I68C-
00J003

MCP21
00-
X003B

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 3m, Blue Pulltab,
Connector Label

EOL [HVM]

N/A 10GE
980-
9I68E-
00J001

MCP21
04-
X001B

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 1m, Black
Pulltab, Connector Label

EOL [HVM]
[HIBERN/A
TE]

N/A 10GE
980-
9I68F-
00J002

MCP21
04-
X002B

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 2m, Black
Pulltab, Connector Label

EOL [HVM]

N/A 10GE
980-
9I68G-
00J003

MCP21
04-
X003B

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 3m, Black
Pulltab, Connector Label

EOL [HVM]

N/A 10GE
980-
9I68H-
00J01A

MCP21
04-
X01AB

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 1.5m, Black
Pulltab, Connector Label

EOL [HVM]

N/A 10GE
980-
9I68I-
00J02A

MCP21
04-
X02AB

NVIDIA passive copper cable, ETH
10GbE, 10Gb/s, SFP+, 2.5m, Black
Pulltab, Connector Label

EOL [HVM]

N/A 10GE
930-
9O000-
0000-343

MFM1T
02A-LR

NVIDIA SFP+ optical module for
10GBASE-LR

HVM

N/A 10GE
MFM1T0
2A-LR-F

MFM1T
02A-LR-
F

NVIDIA optical module, ETH 10GbE,
10Gb/s, SFP+, LC-LC, 1310nm, LR up to
10km

HVM

NVIDIA BlueField DPU BSP v4.7.0 142

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycle
Phase

N/A 10GE
930-
9O000-
0000-409

MFM1T
02A-SR

NVIDIA SFP+ optical module for
10GBASE-SR

HVM

N/A 10GE
MFM1T0
2A-SR-F

MFM1T
02A-SR-
F

NVIDIA optical module, ETH 10GbE,
10Gb/s, SFP+, LC-LC, 850nm, SR up to
300m

HVM

N/A 10GE
MFM1T0
2A-SR-P

MFM1T
02A-SR-
P

NVIDIA optical module, ETH 10GbE,
10Gb/s, SFP+, LC-LC, 850nm, SR up to
300m

HVM

1GbE Cables

IB
Data
Rate

Eth
Data
Rate

NVIDIA
P/N

Legacy
P/N

Description
LifeCycl
e Phase

N/A 1GE
980-
9I270-
00IM00

MC3208
011-SX

NVIDIA Optical module, ETH 1GbE,
1Gb/s, SFP, LC-LC, SX 850nm, up to
500m

EOL [P-
Rel]

N/A 1GE
980-
9I251-
00IS00

MC3208
411-T

NVIDIA module, ETH 1GbE, 1Gb/s, SFP,
Base-T, up to 100m

HVM

Supported 3rd Party Cables and Modules

Spee
d

Cable OPN Description

800
GbE

RTXM600-
710

800G OSFP to 2x400G QSFP112 AOC (OSFP rev 113.5.0, QSFP rev
6.0.0)

NVIDIA BlueField DPU BSP v4.7.0 143

Spee
d

Cable OPN Description

800
GbE

DME8821-
EC30

OSFP to 2×QSFP112 AOC 800Gb/s to 2×400Gb/s Active Optical
Cable (OSFP rev 0.1.0, QSFP rev 32.1.0)

800
GbE

C-
OSG8CNSxxx
-N00

800G OSFP DR8 to 2x400G QSFP112 DR4 AOC

400
GbE

FCBN950QE1
C05

400G-2x200G split 5M AOC cables (400G QSFP-DD breaking out to
2x 200G QSFP56) (Rev A0)

400
GbE

RTXM600-
610

400G QSFP-DDtoQSFP112AOC (Rev 01)

400
GbE

C-
GD4CNS010-
N00

InnoLight 400G QSFP112 to 400G QSFP-DD active optical cable
with full real-time digital diagnostic monitoring (Rev 1A)

400
GbE

DME8811-
EC07

400G-2x200G split 7M AOC cables (400G QSFP-DD breaking out to
2x 200G QSFP56) (Rev 12)

400
GbE

RTXM500-
910

400G-2x200G split 10M AOC cables (400G QSFP-DD breaking out
to 2x 200G QSFP56) (Rev 10)

200
GbE

RTXM500-
905

400G-2x200G split 5M AOC cables (400G QSFP-DD breaking out to
2x 200G QSFP56) (Rev C0)

100
GbE

1AT-
3Q4M01XX-
12A

O-NET QSFP28 100G Active cable/module

100
GbE

AQPMANQ4E
DMA0784

QSFP28 100G SMF 500m Transceiver

100
GbE

CAB-Q-Q-
100G-3M

Passive 3 meter, QSFP+ to QSFP+ QSFP100 TWINAX 103.125Gbps-
CR4

100
GbE

CAB-Q-Q-
100GbE-3M

Passive 3 meter , QSFP+ to QSFP+ QSFP100 TWINAX 103.125Gbps-
CR4

100
GbE

FCBN425QE1
C30-C1

100GbE Quadwire® QSFP28 Active Optical Cable 30M

100
GbE

FTLC1151RD
PL

TRANSCIEVER 100GBE QSFP LR4

NVIDIA BlueField DPU BSP v4.7.0 144

Spee
d

Cable OPN Description

100
GbE

FTLC9152RG
PL

100G 100M QSFP28 SWDM4 OPT TRANS

100
GbE

FTLC9555REP
M3-E6

100m Parallel MMF 100GQSFP28Optical Transceiver

100
GbE

NDAAFJ-C102 SF-NDAAFJ100G-005M

100
GbE

QSFP-100G-
AOC30M

30m (98ft) Cisco QSFP-100G-AOC30M Compatible 100G QSFP28
Active Optical Cable

100
GbE

QSFP28-LR4-
AJ

CISCO-PRE 100GbE LR4 QSFP28 Transceiver Module

100
GbE

SFBR-
89BDDZ-CS2

CISCO-PRE 100G AOM BiDi

100
GbE

SQF1002L4L
NC101P

Cisco-SUMITOMO 100GbE AOM

40G
bE

2231254-2 Cisco 3m 40GbE copper

40G
bE

AFBR-
7QER15Z-CS1

Cisco 40GbE 15m AOC

40G
bE

BN-QS-SP-
CBL-5M

PASSIVE COPPER SPLITTER CABLE ETH 40GBE TO 4X10GBE 5M

40G
bE

NDCCGJ-
C402

15m (49ft) Avago AFBR-7QER15Z Compatible 40G QSFP+ Active
Optical Cable

40G
bE

QSFP-40G-
SR-BD

Cisco 40GBASE-SR-BiDi, duplex MMF

Supported Cables and Modules for BlueField-2

Cables Lifecycle Legend

NVIDIA BlueField DPU BSP v4.7.0 145

Lifecycle Phase Definition

EOL End of Life

LTB Last Time Buy

HVM GA level

MP GA level

P-Rel GA level

Preliminary Engineering Sample

Prototype Engineering Sample

NDR / 400GbE Cables

Spe
ed

Part Number Marketing Description

400
GE

MCP1660-
W001E30

NVIDIA Direct Attach Copper cable, 400GbE, 400Gb/s, QSFP-DD,
1m, 30AWG

400
GE

MCP1660-
W002E26

NVIDIA Direct Attach Copper cable, 400GbE, 400Gb/s, QSFP-DD,
2m, 26AWG

400
GE

MCP1660-
W003E26

NVIDIA Direct Attach Copper cable, 400GbE, 400Gb/s, QSFP-DD,
3m, 26AWG

400
GE

MCP1660-
W00AE30

NVIDIA Direct Attach Copper cable, 400GbE, 400Gb/s, QSFP-DD,
0.5m, 30AWG

400
GE

MCP1660-
W01AE30

NVIDIA Direct Attach Copper cable, 400GbE, 400Gb/s, QSFP-DD,
1.5m, 30AWG

400
GE

MCP1660-
W02AE26

NVIDIA Direct Attach Copper cable, 400GbE, 400Gb/s, QSFP-DD,
2.5m, 26AWG

400
GE

MCP7F60-
W001R30

NVIDIA DAC splitter cable, 400GbE, 400Gb/s to 4x100Gb/s, QSFP-
DD to 4xQSFP56, 1m, 30AWG

400
GE

MCP7F60-
W002R26

NVIDIA DAC splitter cable, 400GbE, 400Gb/s to 4x100Gb/s, QSFP-
DD to 4xQSFP56, 2m, 26AWG

NVIDIA BlueField DPU BSP v4.7.0 146

Spe
ed

Part Number Marketing Description

400
GE

MCP7F60-
W02AR26

NVIDIA DAC splitter cable, 400GbE, 400Gb/s to 4x100Gb/s, QSFP-
DD to 4xQSFP56, 2.5m, 26AWG

400
GE

MCP7H60-
W001R30

NVIDIA DAC splitter cable, 400GbE, 400Gb/s to 2x200Gb/s, QSFP-
DD to 2xQSFP56, 1m, 30AWG

400
GE

MCP7H60-
W002R26

NVIDIA DAC splitter cable, 400GbE, 400Gb/s to 2x200Gb/s, QSFP-
DD to 2xQSFP56, 2m, 26AWG

400
GE

MCP7H60-
W01AR30

NVIDIA DAC splitter cable, 400GbE, 400Gb/s to 2x200Gb/s, QSFP-
DD to 2xQSFP56, 1.5m, 30AWG

400
GE

MCP7H60-
W02AR26

NVIDIA DAC splitter cable, 400GbE, 400Gb/s to 2x200Gb/s, QSFP-
DD to 2xQSFP56, 2.5m, 26AWG

HDR / 200GbE Cables

Spe
ed

Part
Number

Marketing Description

200
GE

MFS1S00-
V003E

NVIDIA active fiber cable, 200GbE, 200Gb/s, QSFP56, LSZH, black
pulltab, 3m

200
GE

MFS1S00-
V005E

NVIDIA active fiber cable, 200GbE, 200Gb/s, QSFP56, LSZH, black
pulltab, 5m

200
GE

MFS1S00-
V010E

NVIDIA active fiber cable, 200GbE, 200Gb/s, QSFP56, LSZH, black
pulltab, 10m

200
GE

MFS1S00-
V015E

NVIDIA active fiber cable, 200GbE, 200Gb/s, QSFP56, LSZH, black
pulltab, 15m

200
GE

MFS1S00-
V020E

NVIDIA active fiber cable, 200GbE, 200Gb/s, QSFP56, LSZH, black
pulltab, 20m

200
GE

MFS1S00-
V030E

NVIDIA active fiber cable, 200GbE, 200Gb/s, QSFP56, LSZH, black
pulltab, 30m

200
GE

MFS1S00-
V050E

NVIDIA active fiber cable, 200GbE, 200Gb/s, QSFP56, LSZH, black
pulltab, 50m

NVIDIA BlueField DPU BSP v4.7.0 147

Spe
ed

Part
Number

Marketing Description

200
GE

MFS1S00-
V100E

NVIDIA active fiber cable, 200GbE, 200Gb/s, QSFP56, LSZH, black
pulltab, 100m

200
GE

MCP1650-
V001E30

NVIDIA Passive Copper cable, 200GbE, 200Gb/s, QSFP56, LSZH, 1m,
black pulltab, 30AWG

200
GE

MCP1650-
V002E26

NVIDIA Passive Copper cable, 200GbE, 200Gb/s, QSFP56, LSZH, 2m,
black pulltab, 26AWG

200
GE

MCP1650-
V00AE30

NVIDIA Passive Copper cable, 200GbE, 200Gb/s, QSFP56, LSZH,
0.5m, black pulltab, 30AWG

200
GE

MCP1650-
V01AE30

NVIDIA Passive Copper cable, 200GbE, 200Gb/s, QSFP56, LSZH,
1.5m, black pulltab, 30AWG

200
GE

MCP1650-
V02AE26

NVIDIA Passive Copper cable, 200GbE, 200Gb/s, QSFP56, LSZH,
2.5m, black pulltab, 26AWG

200
GE

MCP7H50-
V001R30

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 2x100Gb/s,
QSFP56 to 2xQSFP56, colored, 1m, 30AWG

200
GE

MCP7H50-
V002R26

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 2x100Gb/s,
QSFP56 to 2xQSFP56, colored, 2m, 26AWG

200
GE

MCP7H50-
V01AR30

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 2x100Gb/s,
QSFP56 to 2xQSFP56, colored, 1.5m, 30AWG

200
GE

MCP7H50-
V02AR26

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 2x100Gb/s,
QSFP56 to 2xQSFP56, colored, 2.5m, 26AWG

200
GE

MMA1T00-
VS

NVIDIA transceiver, 200GbE, up to 200Gb/s, QSFP56, MPO, 850nm,
SR4, up to 100m

200
GE

MCP1650-
V001E30

NVIDIA Passive Copper cable, 200GbE, 200Gb/s, QSFP56, LSZH, 1m,
black pulltab, 30AWG

200
GE

MCP1650-
V002E26

NVIDIA Passive Copper cable, 200GbE, 200Gb/s, QSFP56, LSZH, 2m,
black pulltab, 26AWG

200
GE

MCP1650-
V003E26

NVIDIA Passive Copper cable, 200GbE, 200Gb/s, QSFP56, LSZH, 3m,
black pulltab, 26AWG

200
GE

MCP1650-
V00AE30

NVIDIA Passive Copper cable, 200GbE, 200Gb/s, QSFP56, LSZH,
0.5m, black pulltab, 30AWG

NVIDIA BlueField DPU BSP v4.7.0 148

Spe
ed

Part
Number

Marketing Description

200
GE

MCP1650-
V01AE30

NVIDIA Passive Copper cable, 200GbE, 200Gb/s, QSFP56, LSZH,
1.5m, black pulltab, 30AWG

200
GE

MCP1650-
V02AE26

NVIDIA Passive Copper cable, 200GbE, 200Gb/s, QSFP56, LSZH,
2.5m, black pulltab, 26AWG

200
GE

MCP7H50-
V001R30

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 2x100Gb/s,
QSFP56 to 2xQSFP56, colored, 1m, 30AWG

200
GE

MCP7H50-
V002R26

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 2x100Gb/s,
QSFP56 to 2xQSFP56, colored, 2m, 26AWG

200
GE

MCP7H50-
V003R26

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 2x100Gb/s,
QSFP56 to 2xQSFP56, colored, 3m, 26AWG

200
GE

MCP7H50-
V01AR30

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 2x100Gb/s,
QSFP56 to 2xQSFP56, colored, 1.5m, 30AWG

200
GE

MCP7H50-
V02AR26

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 2x100Gb/s,
QSFP56 to 2xQSFP56, colored, 2.5m, 26AWG

200
GE

MCP7H70-
V001R30

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 4x50Gb/s,
QSFP56 to 4xSFP56, colored, 1m, 30AWG

200
GE

MCP7H70-
V002R26

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 4x50Gb/s,
QSFP56 to 4xSFP56, colored, 2m, 26AWG

200
GE

MCP7H70-
V003R26

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 4x50Gb/s,
QSFP56 to 4x4SFP56, colored, 3m, 26AWG

200
GE

MCP7H70-
V01AR30

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to 4x50Gb/s,
QSFP56 to 4xSFP56, colored, 1.5m, 30AWG

200
GE

MCP7H70-
V02AR26

NVIDIA passive copper hybrid cable, 200GbE 200Gb/s to4x50Gb/s,
QSFP56 to 4xSFP56, colored, 2.5m, 26AWG

EDR / 100GbE Cables

NVIDIA BlueField DPU BSP v4.7.0 149

Spee
d

Part
Number

Marketing Description

100
GbE

MCP1600-
C001

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP, PVC,
1m 30AWG

100
GbE

MCP1600-
C001E30N

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP28, 1m,
black, 30AWG, CA-N

100
GbE

MCP1600-
C001LZ

NVIDIA passive copper Cable, ETH 100GbE, 100Gb/s, QSFP, 1m,
LSZH, 30AWG

100
GbE

MCP1600-
C002

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP, PVC,
2m 30AWG

100
GbE

MCP1600-
C002E30N

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP28, 2m,
black, 30AWG, CA-N

100
GbE

MCP1600-
C003

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP, PVC,
3m 28AWG

100
GbE

MCP1600-
C003E26N

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP28, 3m,
black, 26AWG, CA-N

100
GbE

MCP1600-
C003E30L

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP28, 3m,
black, 30AWG, CA-L

100
GbE

MCP1600-
C003LZ

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP, 3m,
LSZH, 26AWG

100
GbE

MCP1600-
C005AM

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP, 5m,
26AWG

100
GbE

MCP1600-
C005E26L

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP28, 5m,
black, 26AWG, CA-L

100
GbE

MCP1600-
C00A

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP, PVC,
0.5m 30AWG

100
GbE

MCP1600-
C00AE30N

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP28, 0.5m,
black, 30AWG, CA-N

100
GbE

MCP1600-
C00BE30N

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP28,
0.75m, black, 30AWG, CA-N

100
GbE

MCP1600-
C01A

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP, PVC,
1.5m 30AWG

NVIDIA BlueField DPU BSP v4.7.0 150

Spee
d

Part
Number

Marketing Description

100
GbE

MCP1600-
C01AE30N

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP28, 1.5m,
black, 30AWG, CA-N

100
GbE

MCP1600-
C02A

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP, PVC,
2.5m 30AWG

100
GbE

MCP1600-
C02AE26N

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP28, 2.5m,
black, 26AWG, CA-N

100
GbE

MCP1600-
C02AE30L

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP28,2.5m,
black, 30AWG, CA-L

100
GbE

MCP1600-
C03A

NVIDIA passive copper cable, ETH 100GbE, 100Gb/s, QSFP, PVC,
3.5m 26AWG

100
GbE

MCP1600-
E001

NVIDIA passive copper cable, IB EDR, up to 100Gb/s, QSFP, LSZH,
1m 30AWG

100
GbE

MCP1600-
E002

NVIDIA passive copper cable, IB EDR, up to 100Gb/s, QSFP, LSZH,
2m 28AWG

100
GbE

MCP1600-
E003

NVIDIA passive copper cable, IB EDR, up to 100Gb/s, QSFP, LSZH,
3m 26AWG

100
GbE

MCP1600-
E01A

NVIDIA passive copper cable, IB EDR, up to 100Gb/s, QSFP, LSZH,
1.5m 30AWG

100
GbE

MCP1600-
E02A

NVIDIA passive copper cable, IB EDR, up to 100Gb/s, QSFP, LSZH,
2.5m 26AWG

100
GbE

MCP7F00-
A001R

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, colored pull-tabs, 1m, 30AWG

100
GbE

MCP7F00-
A001R30N

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 1m, colored, 30AWG, CA-N

100
GbE

MCP7F00-
A002R

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, colored pull-tabs, 2m, 30AWG

100
GbE

MCP7F00-
A002R30N

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 2m, colored, 30AWG, CA-N

100
GbE

MCP7F00-
A003R26N

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 3m, colored, 26AWG, CA-N

NVIDIA BlueField DPU BSP v4.7.0 151

Spee
d

Part
Number

Marketing Description

100
GbE

MCP7F00-
A003R30L

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 3m, colored, 30AWG, CA-L

100
GbE

MCP7F00-
A005R26L

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 5m, colored, 26AWG, CA-L

100
GbE

MCP7F00-
A01AR

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, colored pull-tabs,1.5m, 30AWG

100
GbE

MCP7F00-
A01AR30N

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 1.5m, colored, 30AWG, CA-N

100
GbE

MCP7F00-
A02AR26N

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 2.5m, colored, 26AWG, CA-N

100
GbE

MCP7F00-
A02AR30L

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 2.5m, colored, 30AWG, CA-L

100
GbE

MCP7F00-
A02ARLZ

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 2.5m, LSZH, colored, 28AWG

100
GbE

MCP7F00-
A03AR26L

NVIDIA passive copper hybrid cable, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 3.5m, colored, 26AWG, CA-L

100
GbE

MCP7H00-
G001

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, 1m, 30AWG

100
GbE

MCP7H00-
G001R

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, colored pull-tabs, 1m, 30AWG

100
GbE

MCP7H00-
G001R30N

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, 1m, colored, 30AWG, CA-N

100
GbE

MCP7H00-
G002R

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, colored pull-tabs, 2m, 30AWG

100
GbE

MCP7H00-
G002R30N

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, 2m, colored, 30AWG, CA-N

100
GbE

MCP7H00-
G003R

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, colored pull-tabs, 3m, 28AWG

100
GbE

MCP7H00-
G003R26N

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, 3m, colored, 26AWG, CA-N

NVIDIA BlueField DPU BSP v4.7.0 152

Spee
d

Part
Number

Marketing Description

100
GbE

MCP7H00-
G003R30L

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, 3m, colored, 30AWG, CA-L

100
GbE

MCP7H00-
G004R26L

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, 4m, colored, 26AWG, CA-L

100
GbE

MCP7H00-
G01AR

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, colored pull-tabs, 1.5m, 30AWG

100
GbE

MCP7H00-
G01AR30N

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, 1.5m, colored, 30AWG, CA-N

100
GbE

MCP7H00-
G02AR

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, colored pull-tabs, 2.5m, 30AWG

100
GbE

MCP7H00-
G02AR26N

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, 2.5m, colored, 26AWG, CA-N

100
GbE

MCP7H00-
G02AR30L

NVIDIA passive copper hybrid cable, ETH 100Gb/s to 2x50Gb/s,
QSFP28 to 2xQSFP28, 2.5m, colored, 30AWG, CA-L

100
GbE

MFA1A00-
C003

NVIDIA active fiber cable, ETH 100GbE, 100Gb/s, QSFP, LSZH, 3m

100
GbE

MFA1A00-
C005

NVIDIA active fiber cable, ETH 100GbE, 100Gb/s, QSFP, LSZH, 5m

100
GbE

MFA1A00-
C010

NVIDIA active fiber cable, ETH 100GbE, 100Gb/s, QSFP, LSZH, 10m

100
GbE

MFA1A00-
C015

NVIDIA active fiber cable, ETH 100GbE, 100Gb/s, QSFP, LSZH, 15m

100
GbE

MFA1A00-
C020

NVIDIA active fiber cable, ETH 100GbE, 100Gb/s, QSFP, LSZH, 20m

100
GbE

MFA1A00-
C030

NVIDIA active fiber cable, ETH 100GbE, 100Gb/s, QSFP, LSZH, 30m

100
GbE

MFA1A00-
C050

NVIDIA active fiber cable, ETH 100GbE, 100Gb/s, QSFP, LSZH, 50m

100
GbE

MFA1A00-
C100

NVIDIA active fiber cable, ETH 100GbE, 100Gb/s, QSFP, LSZH, 100m

NVIDIA BlueField DPU BSP v4.7.0 153

Spee
d

Part
Number

Marketing Description

100
GbE

MFA7A20-
C003

NVIDIA active fiber hybrid solution, ETH 100GbE to 2x50GbE,
QSFP28 to 2xQSFP28, 3m

100
GbE

MFA7A20-
C005

NVIDIA active fiber hybrid solution, ETH 100GbE to 2x50GbE,
QSFP28 to 2xQSFP28, 5m

100
GbE

MFA7A20-
C010

NVIDIA active fiber hybrid solution, ETH 100GbE to 2x50GbE,
QSFP28 to 2xQSFP28, 10m

100
GbE

MFA7A20-
C020

NVIDIA active fiber hybrid solution, ETH 100GbE to 2x50GbE,
QSFP28 to 2xQSFP28, 20m

100
GbE

MFA7A50-
C003

NVIDIA active fiber hybrid solution, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 3m

100
GbE

MFA7A50-
C005

NVIDIA active fiber hybrid solution, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 5m

100
GbE

MFA7A50-
C010

NVIDIA active fiber hybrid solution, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 10m

100
GbE

MFA7A50-
C015

NVIDIA active fiber hybrid solution, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 15m

100
GbE

MFA7A50-
C020

NVIDIA active fiber hybrid solution, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 20m

100
GbE

MFA7A50-
C030

NVIDIA active fiber hybrid solution, ETH 100GbE to 4x25GbE,
QSFP28 to 4xSFP28, 30m

100
GbE

MMA1B00-
C100D

NVIDIA transceiver, 100GbE, QSFP28, MPO, 850nm, SR4, up to
100m, DDMI

100
GbE

MMA1B00-
C100D_FF

NVIDIA transceiver, 100GbE, QSFP28, MPO, 850nm, SR4, up to
100m, DDMI

100
GbE

MMA1L10-
CR

NVIDIA optical transceiver, 100GbE, 100Gb/s, QSFP28, LC-LC,
1310nm, LR4 up to 10km

100
GbE

MMA1L30-
CM

NVIDIA optical module, 100GbE, 100Gb/s, QSFP28, LC-LC, 1310nm,
CWDM4, up to 2km

100
GbE

MMS1C10-
CM

NVIDIA active optical module, 100Gb/s, QSFP, MPO, 1310nm,
PSM4, up to 500m

NVIDIA BlueField DPU BSP v4.7.0 154

FDR / 56GbE Cables

Spee
d

Part Number Marketing Description

56Gb
E

MC2207126-
004

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 4m

56Gb
E

MC2207128-
003

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 3m

56Gb
E

MC2207128-
0A2

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 2.5m

56Gb
E

MC2207130-
001

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 1m

56Gb
E

MC2207130-
002

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 2m

56Gb
E

MC2207130-
00A

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 0.5m

56Gb
E

MC2207130-
0A1

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 1.5m

56Gb
E

MC220731V-
003

NVIDIA active fiber cable, VPI, up to 56Gb/s, QSFP, 3m

56Gb
E

MC220731V-
005

NVIDIA active fiber cable, VPI, up to 56Gb/s, QSFP, 5m

56Gb
E

MC220731V-
010

NVIDIA active fiber cable, VPI, up to 56Gb/s, QSFP, 10m

56Gb
E

MC220731V-
015

NVIDIA active fiber cable, VPI, up to 56Gb/s, QSFP, 15m

56Gb
E

MC220731V-
020

NVIDIA active fiber cable, VPI, up to 56Gb/s, QSFP, 20m

56Gb
E

MC220731V-
025

NVIDIA active fiber cable, VPI, up to 56Gb/s, QSFP, 25m

NVIDIA BlueField DPU BSP v4.7.0 155

Spee
d

Part Number Marketing Description

56Gb
E

MC220731V-
030

NVIDIA active fiber cable, VPI, up to 56Gb/s, QSFP, 30m

56Gb
E

MC220731V-
040

NVIDIA active fiber cable, VPI, up to 56Gb/s, QSFP, 40m

56Gb
E

MC220731V-
050

NVIDIA active fiber cable, VPI, up to 56Gb/s, QSFP, 50m

56Gb
E

MC220731V-
075

NVIDIA active fiber cable, VPI, up to 56Gb/s, QSFP, 75m

56Gb
E

MC220731V-
100

NVIDIA active fiber cable, VPI, up to 56Gb/s, QSFP, 100m

56Gb
E

MCP1700-
F001C

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 1m, Red
pull-tab

56Gb
E

MCP1700-
F001D

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 1m,
Yellow pull-tab

56Gb
E

MCP1700-
F002C

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 2m, Red
pull-tab

56Gb
E

MCP1700-
F002D

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 2m,
Yellow pull-tab

56Gb
E

MCP1700-
F003C

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 3m, Red
pull-tab

56Gb
E

MCP1700-
F003D

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, 3m,
Yellow pull-tab

56Gb
E

MCP170L-
F001

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, LSZH, 1m

56Gb
E

MCP170L-
F002

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, LSZH, 2m

56Gb
E

MCP170L-
F003

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, LSZH, 3m

56Gb
E

MCP170L-
F00A

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, LSZH,
0.5m

NVIDIA BlueField DPU BSP v4.7.0 156

Spee
d

Part Number Marketing Description

56Gb
E

MCP170L-
F01A

NVIDIA passive copper cable, VPI, up to 56Gb/s, QSFP, LSZH,
1.5m

50GbE Cables

Spee
d

Part Number Marketing Description

50G
E

MAM1Q00A-
QSA56

NVIDIA cable module, ETH 50GbE, 200Gb/s to 50Gb/s, QSFP56 to
SFP56

50G
E

MCP2M50-
G001E30

NVIDIA Passive Copper cable, 50GbE, 50Gb/s, SFP56, LSZH, 1m,
black pulltab, 30AWG

50G
E

MCP2M50-
G002E26

NVIDIA Passive Copper cable, 50GbE, 50Gb/s, SFP56, LSZH, 2m,
black pulltab, 26AWG

50G
E

MCP2M50-
G003E26

NVIDIA Passive Copper cable, 50GbE, 50Gb/s, SFP56, LSZH, 3m,
black pulltab, 26AWG

50G
E

MCP2M50-
G00AE30

NVIDIA Passive Copper cable, 50GbE, 50Gb/s, SFP56, LSZH, 0.5m,
black pulltab, 30AWG

50G
E

MCP2M50-
G01AE30

NVIDIA Passive Copper cable, 50GbE, 50Gb/s, SFP56, LSZH, 1.5m,
black pulltab, 30AWG

50G
E

MCP2M50-
G02AE26

NVIDIA Passive Copper cable, 50GbE, 50Gb/s, SFP56, LSZH, 2.5m,
black pulltab, 26AWG

FDR10 / 40GbE Cables

Spe
ed

Part
Number

Marketing Description

40G
bE

MC220612
8-004

NVIDIA passive copper cable, VPI, up to 40Gb/s, QSFP, 4m

NVIDIA BlueField DPU BSP v4.7.0 157

Spe
ed

Part
Number

Marketing Description

40G
bE

MC220612
8-005

NVIDIA passive copper cable, VPI, up to 40Gb/s, QSFP, 5m

40G
bE

MC220613
0-001

NVIDIA passive copper cable, VPI, up to 40Gb/s, QSFP, 1m

40G
bE

MC220613
0-002

NVIDIA passive copper cable, VPI, up to 40Gb/s, QSFP, 2m

40G
bE

MC220613
0-003

NVIDIA passive copper cable, VPI, up to 40Gb/s, QSFP, 3m

40G
bE

MC220613
0-00A

NVIDIA passive copper cable, VPI, up to 40Gb/s, QSFP, 0.5m

40G
bE

MC221012
6-004

NVIDIA passive copper cable, ETH 40GbE, 40Gb/s, QSFP, 4m

40G
bE

MC221012
6-005

NVIDIA passive copper cable, ETH 40GbE, 40Gb/s, QSFP, 5m

40G
bE

MC221012
8-003

NVIDIA passive copper cable, ETH 40GbE, 40Gb/s, QSFP, 3m

40G
bE

MC221013
0-001

NVIDIA passive copper cable, ETH 40GbE, 40Gb/s, QSFP, 1m

40G
bE

MC221031
0-003

NVIDIA active fiber cable, ETH 40GbE, 40Gb/s, QSFP, 3m

40G
bE

MC221031
0-005

NVIDIA active fiber cable, ETH 40GbE, 40Gb/s, QSFP, 5m

40G
bE

MC221031
0-010

NVIDIA active fiber cable, ETH 40GbE, 40Gb/s, QSFP, 10m

40G
bE

MC221031
0-015

NVIDIA active fiber cable, ETH 40GbE, 40Gb/s, QSFP, 15m

40G
bE

MC221031
0-020

NVIDIA active fiber cable, ETH 40GbE, 40Gb/s, QSFP, 20m

40G
bE

MC221031
0-030

NVIDIA active fiber cable, ETH 40GbE, 40Gb/s, QSFP, 30m

NVIDIA BlueField DPU BSP v4.7.0 158

Spe
ed

Part
Number

Marketing Description

40G
bE

MC221031
0-050

NVIDIA active fiber cable, ETH 40GbE, 40Gb/s, QSFP, 50m

40G
bE

MC221031
0-100

NVIDIA active fiber cable, ETH 40GbE, 40Gb/s, QSFP, 100m

40G
bE

MC221041
1-SR4E

NVIDIA optical module, 40Gb/s, QSFP, MPO, 850nm, up to 300m

40G
bE

MC260912
5-005

NVIDIA passive copper hybrid cable, ETH 40GbE to 4x10GbE, QSFP to
4xSFP+, 5m

40G
bE

MC260913
0-001

NVIDIA passive copper hybrid cable, ETH 40GbE to 4x10GbE, QSFP to
4xSFP+, 1m

40G
bE

MC260913
0-003

NVIDIA passive copper hybrid cable, ETH 40GbE to 4x10GbE, QSFP to
4xSFP+, 3m

40G
bE

MCP1700-
B001E

NVIDIA passive copper cable, ETH 40GbE, 40Gb/s, QSFP, 1m, black
pull-tab

40G
bE

MCP1700-
B002E

NVIDIA passive copper cable, ETH 40GbE, 40Gb/s, QSFP, 2m, black
pull-tab

40G
bE

MCP1700-
B003E

NVIDIA passive copper cable, ETH 40GbE, 40Gb/s, QSFP, 3m, black
pull-tab

40G
bE

MCP1700-
B01AE

NVIDIA passive copper cable, ETH 40GbE, 40Gb/s, QSFP, 1.5m, black
pull-tab

40G
bE

MCP1700-
B02AE

NVIDIA passive copper cable, ETH 40GbE, 40Gb/s, QSFP, 2.5m, black
pull-tab

40G
bE

MCP7900-
X01AA

NVIDIA passive copper hybrid cable, ETH 40GbE to 4x10GbE, QSFP to
4xSFP+, 1.5m, blue pull-tab, customized label

40G
bE

MCP7904-
X002A

NVIDIA passive copper hybrid cable, ETH 40GbE to 4x10GbE, QSFP to
4xSFP+, 2m, black pull-tab, customized label

40G
bE

MCP7904-
X003A

NVIDIA passive copper hybrid cable, ETH 40GbE to 4x10GbE, QSFP to
4xSFP+, 3m, black pull-tab, customized label

40G
bE

MCP7904-
X01AA

NVIDIA passive copper hybrid cable, ETH 40GbE to 4x10GbE, QSFP to
4xSFP+, 1.5m, black pull-tab, customized label

NVIDIA BlueField DPU BSP v4.7.0 159

Spe
ed

Part
Number

Marketing Description

40G
bE

MCP7904-
X02AA

NVIDIA passive copper hybrid cable, ETH 40GbE to 4x10GbE, QSFP to
4xSFP+, 2.5m, black pull-tab, customized label

40G
bE

MMA1B00-
B150D

NVIDIA transceiver, 40GbE, QSFP+, MPO, 850nm, SR4, up to 150m,
DDMI

25GbE Cables

Spee
d

Part Number Marketing Description

25Gb
E

MAM1Q00A-
QSA28

NVIDIA cable module, ETH 25GbE, 100Gb/s to 25Gb/s, QSFP28
to SFP28

25Gb
E

MCP2M00-A001
NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 1m,
30AWG

25Gb
E

MCP2M00-
A001E30N

NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 1m,
black, 30AWG, CA-N

25Gb
E

MCP2M00-A002
NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 2m,
30AWG

25Gb
E

MCP2M00-
A002E30N

NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 2m,
black, 30AWG, CA-N

25Gb
E

MCP2M00-
A003E26N

NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 3m,
black, 26AWG, CA-N

25Gb
E

MCP2M00-
A003E30L

NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 3m,
black, 30AWG, CA-L

25Gb
E

MCP2M00-
A004E26L

NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 4m,
black, 26AWG, CA-L

25Gb
E

MCP2M00-
A005E26L

NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 5m,
black, 26AWG, CA-L

25Gb
E

MCP2M00-A00A
NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 0.5m,
30AWG

NVIDIA BlueField DPU BSP v4.7.0 160

Spee
d

Part Number Marketing Description

25Gb
E

MCP2M00-
A00AE30N

NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 0.5m,
black, 30AWG, CA-N

25Gb
E

MCP2M00-
A01AE30N

NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 1.5m,
black, 30AWG, CA-N

25Gb
E

MCP2M00-
A02AE26N

NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 2.5m,
black, 26AWG, CA-N

25Gb
E

MCP2M00-
A02AE30L

NVIDIA passive copper cable, ETH, up to 25Gb/s, SFP28, 2.5m,
black, 30AWG, CA-L

25Gb
E

MFA2P10-A003 NVIDIA active optical cable 25GbE, SFP28, 3m

25Gb
E

MFA2P10-A005 NVIDIA active optical cable 25GbE, SFP28, 5m

25Gb
E

MFA2P10-A007 NVIDIA active optical cable 25GbE, SFP28, 7m

25Gb
E

MFA2P10-A010 NVIDIA active optical cable 25GbE, SFP28, 10m

25Gb
E

MFA2P10-A015 NVIDIA active optical cable 25GbE, SFP28, 15m

25Gb
E

MFA2P10-A020 NVIDIA active optical cable 25GbE, SFP28, 20m

25Gb
E

MFA2P10-A030 NVIDIA active optical cable 25GbE, SFP28, 30m

25Gb
E

MFA2P10-A050 NVIDIA active optical cable 25GbE, SFP28, 50m

25Gb
E

MMA2P00-AS
NVIDIA transceiver, 25GbE, SFP28, LC-LC, 850nm, SR, up to
150m

10GbE Cables

NVIDIA BlueField DPU BSP v4.7.0 161

Spee
d

Part
Number

Marketing Description

10G
bE

MAM1Q00A-
QSA

NVIDIA cable module, ETH 10GbE, 40Gb/s to 10Gb/s, QSFP to SFP+

10G
bE

MC2309124-
005

NVIDIA passive copper hybrid cable, ETH 10GbE, 10Gb/s, QSFP to
SFP+, 5m

10G
bE

MC2309124-
007

NVIDIA passive copper hybrid cable, ETH 10GbE, 10Gb/s, QSFP to
SFP+, 7m

10G
bE

MC2309130-
001

NVIDIA passive copper hybrid cable, ETH 10GbE, 10Gb/s, QSFP to
SFP+, 1m

10G
bE

MC2309130-
002

NVIDIA passive copper hybrid cable, ETH 10GbE, 10Gb/s, QSFP to
SFP+, 2m

10G
bE

MC2309130-
003

NVIDIA passive copper hybrid cable, ETH 10GbE, 10Gb/s, QSFP to
SFP+, 3m

10G
bE

MC2309130-
00A

NVIDIA passive copper hybrid cable, ETH 10GbE, 10Gb/s, QSFP to
SFP+, 0.5m

10G
bE

MC3309124-
004

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 4m

10G
bE

MC3309124-
005

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 5m

10G
bE

MC3309124-
006

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 6m

10G
bE

MC3309124-
007

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 7m

10G
bE

MC3309130-
001

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 1m

10G
bE

MC3309130-
002

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 2m

10G
bE

MC3309130-
003

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 3m

10G
bE

MC3309130-
00A

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 0.5m

NVIDIA BlueField DPU BSP v4.7.0 162

Spee
d

Part
Number

Marketing Description

10G
bE

MC3309130-
0A1

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 1.5m

10G
bE

MC3309130-
0A2

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 2.5m

10G
bE

MCP2100-
X001B

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 1m, blue
pull-tab, connector label

10G
bE

MCP2100-
X002B

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 2m, blue
pull-tab, connector label

10G
bE

MCP2100-
X003B

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 3m, blue
pull-tab, connector label

10G
bE

MCP2101-
X001B

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 1m, Green
pull-tab, connector label

10G
bE

MCP2104-
X001B

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 1m, black
pull-tab, connector label

10G
bE

MCP2104-
X002B

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 2m, black
pull-tab, connector label

10G
bE

MCP2104-
X003B

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 3m, black
pull-tab, connector label

10G
bE

MCP2104-
X01AB

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 1.5m,
black pull-tab, connector label

10G
bE

MCP2104-
X02AB

NVIDIA passive copper cable, ETH 10GbE, 10Gb/s, SFP+, 2.5m,
black pull-tab, connector label

N/A
MFM1T02A-
LR

NVIDIA SFP+ optical module for 10GBASE-LR

N/A
MFM1T02A-
SR

NVIDIA SFP+ optical module for 10GBASE-SR

1GbE Cables

NVIDIA BlueField DPU BSP v4.7.0 163

Spee
d

Part Number Marketing Description

1GbE
MC3208011-
SX

NVIDIA optical module, ETH 1GbE, 1Gb/s, SFP, LC-LC, SX 850nm,
up to 500m

1GbE
MC3208411-
T

NVIDIA module, ETH 1GbE, 1Gb/s, SFP, Base-T, up to 100m

Release Notes Change Log History
Changes and New Features in 4.6.0

Updated minimum UEFI password requirements

Included DPU BMC firmware as part of the BFB image

Added virtio-net support for plugging/unplugging parallel devices

Implemented virtio debug enhancements

Changes and New Features in 4.5.0

Added Redfish support for configuring all UEFI secure boot settings (disable, enable,
enroll user keys, etc.) at scale, remotely, and securely

For FHHL DPUs, added support for performing PCIe bifurcation configuration via
MFT tool

Note

Only a subset of configurations are supported.

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Default+Passwords+and+Policies#src-2821766607_DefaultPasswordsandPolicies-UEFIMenuPassword

NVIDIA BlueField DPU BSP v4.7.0 164

Updated the print of the manufacturing (MFG) setting, MFG_OOB_MAC, displayed by
the command bfcfg -d to appear in lower-case to align with standard Linux tools

Changes and New Features in 4.2.0

BFB installation chooses the on-chip NVMe (/dev/nvme0n1) by default for the EFI
system partition and Linux rootfs installation and can be overloaded with
device=/dev/mmcblk0 in bf.cfg to push together with the BFB.

Changes and New Features in 4.0.3

Note

Upgrading to this BSP version installs a new version of Ubuntu GRUB.
This version of GRUB revokes the old UEFI secure boot certificates
and install new ones. The new certificates will not validate older
images and boot will fail. Therefore, to roll back to older software
versions, users must disable UEFI secure boot.

Info

Installing on NVMe causes DPU booting to stay at the UEFI shell
when changing to Livefish mode.

Info

A previously installed OS on the eMMC device stays intact. Only
the EFI boot entry is updated to boot from the SSD device.

NVIDIA BlueField DPU BSP v4.7.0 165

BlueField-3 tuning update for power and performance

Changes and New Features in 4.0.2

BlueField-3 power-capping and thermal-throttling

Added Linux fsck to boot flow

Log PCIe errors (to RShim log)

Halt uncorrectable double-bit ECC error on DDR

Changes and New Features in 3.9.3

Added support for live migration of VirtIO-net and VirtIO-blk VFs from one VM to
another. Requires working with the new vDPA driver.

OS configuration – enabled tmpfs in /tmp

Changes and New Features in 3.9.2

Added support for Arm host

Enroll new NVIDIA certificates to DPU UEFI database

Changes and New Features in 3.9.0

Warning

Important: User action required! See known issue #3077361
for details.

Note

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-vDPAoverVirtIOFullEmulation
file:///networking/display/bluefielddpuosv470/Known+Issues#src-2821766636_KnownIssues-3077361

NVIDIA BlueField DPU BSP v4.7.0 166

Added support for NIC mode of operation

Added password protection to change boot parameters in GRUB menu

Added IB support for DOCA runtime and dev environment

Implemented RShim PF interrupts

Virtio-net-controller is split to 2 processes for fast recovery after service restart

Added support for live virtio-net controller upgrade instead of performing a full
restart

Expanded BlueField-2 PCIe bus number range to 254 (0-253)

Added a new CAP field, log_max_queue_depth (value can be set to 2K/4K), to indicate the
maximal NVMe SQ and CQ sizes supported by firmware. This can be used by NVMe
controllers or by non-NVMe drivers which do not rely on NVMe CAP field.

Added ability for the RShim driver to still work when the host is in secure boot mode

Added bfb-info command which provides the breakdown of the software
components bundled in the BFB package

Added support for rate limiting VF groups

Changes and New Features in 3.8.5

PXE boot option is enabled automatically and is available for the ConnectX and OOB
network interfaces

Added Vendor Class option "BF2Client" in DHCP request for PXE boot to identify
card

Updated the "force PXE" functionality to continue to retry PXE boot entries until
successful. A configuration called "boot override retry" has been added. With this

This is the last release to offer GA support for first-generation
NVIDIA® BlueField® DPUs.

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-NICMode
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-GRUBPasswordProtection
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-ControllerLiveUpdate
https://docs.nvidia.com//networking/display/bluefielddpuosv470/QoS+Configuration#src-2821766762_QoSConfiguration-RateLimitingVFGroup

NVIDIA BlueField DPU BSP v4.7.0 167

configured, UEFI does not rebuild the boot entries after all boot options are
attempted but loops through the PXE boot options until booting is successful. Once
successful, the boot override entry configuration is disabled and would need to be
reenabled for future boots.

Added ability to change the CPU clock dynamically according to the temperature
and other sensors of the DPU. If the power consumption reaches close to the
maximum allowed, the software module decreases the CPU clock rate to ensure
that the power consumption does not cross the system limit.

Bug fixes

Changes and New Features in 3.8.0

Added ability to perform warm reboot on BlueField-2 based devices

Added support for DPU BMC with OpenBMC​

Added support for NVIDIA Converged Accelerator (900-21004-0030-000)

Bug Fixes History
Ref
#

Issue Description

36
60
46
0

Description: Ubuntu kernel 5.15.0-88-generic backports a bug from the upstream
kernel which results in virtio-net full emulation not functioning.

Keywords: Kernel

Note

This feature is relevant only for OPNs MBF2H516C-CESOT,
MBF2M516C-EECOT, MBF2H516C-EESOT, and MBF2H516C-
CECOT.

https://developer.nvidia.com/blog/accelerating-data-center-ai-with-the-nvidia-converged-accelerator-developer-kit/

NVIDIA BlueField DPU BSP v4.7.0 168

Ref
#

Issue Description

Fixed in version: 4.6.0

36
95
36
7

Description: For BlueField-2, although an option to configure "large ICM size"
appears in the UEFI menu it is not functional as large ICM size is not supported on
it.

Keywords: UEFI

Fixed in version: 4.6.0

35
71
28
5

Description: Intermittent UEFI/grub exception after many power-cycles:

Keyword: Security

Fixed in version: 4.5.0

Call Stack: Synchronous Exception at 0xF4B72E0C

ERR[UEFI]: PC=0xF4B72E0C
ERR[UEFI]: PC=0xF4B72E70
ERR[UEFI]: PC=0xF4B73570
ERR[UEFI]: PC=0xF4B74904
ERR[UEFI]: PC=0xF4F04444
ERR[UEFI]: PC=0xF4F044F8
ERR[UEFI]: PC=0xF4F05160
ERR[UEFI]: PC=0xF4F02030
ERR[UEFI]: PC=0xFDFC3A38 (0xFDFB0000+0x13A38) [1] DxeCore.dll
ERR[UEFI]: PC=0xF56E3594 (0xF56D4000+0xF594) [2] BdsDxe.dll
ERR[UEFI]: PC=0xF56F1FFC (0xF56D4000+0x1DFFC) [2] BdsDxe.dll
ERR[UEFI]: PC=0xF56F40D4 (0xF56D4000+0x200D4) [2] BdsDxe.dll
ERR[UEFI]: PC=0xFDFC6E50 (0xFDFB0000+0x16E50) [3] DxeCore.dll
ERR[UEFI]: PC=0x880092E0
ERR[UEFI]: PC=0x8800947C
ERR[UEFI]: X0=0x0 X1=0xF4B78FC3 X2=0xE X3=0x0
ERR[UEFI]: X4=0x0 X5=0xFFFFFFFFFFFFFFF8 X6=0x0 X7=0xFFFFFFF5
ERR[UEFI]: X8=0xF4B79480 X9=0x2 X10=0xFFFFFFFFFFFFFFFF
X11=0xFFFFDC00

NVIDIA BlueField DPU BSP v4.7.0 169

Ref
#

Issue Description

35
99
83
9

Description: On a reboot following BFB install, the error message "Boot Image
update completed, Status: Volume Corrupt" is observed. The error is non-
functional and may be safely ignored.

Keyword: Software provisioning; EFI capsule update; eMMC boot partitions

Fixed in version: 4.5.0

35
56
79
5

Description: The first uplink representor interface may not be renamed to p0 from
ethX .

Keyword: Representors

Fixed in version: 4.5.0

36
29
87
5

Description: Fixed base address of static ICM .

Keyword: ICM

Fixed in version: 4.5.0

33
65
36
3

Description: On BlueField-3, when booting virtio-net emulation device using a
GRUB2 bootloader, the bootloader may attempt to close and re-open the virtio-net
device. This can result in unexpected behavior and possible system failure to boot.

Keywords: BlueField-3; virtio-net; UEFI

Fixed in version: 4.5.0

33
73
84
9

Description: Different OVS-based packages can include their own systemd services
which prevents /sbin/mlnx_bf_configure from identifying the right one.

Keywords: OVS; systemd

Fixed in version: 4.5.0

36
05
33
2

Description: A dmseg is printed due to the OVS bridge interface being configured
DOWN by default.

Keyword: OVS

Fixed in version: 4.2.1

34
79
04
0

Description: For non-LSO data, a max chain of 4 descriptors is posted onto the
send queue resulting in a partial packet going out on the wire.

Keyword: Send; LSO

NVIDIA BlueField DPU BSP v4.7.0 170

Ref
#

Issue Description

Fixed in version: 4.2.1

35
49
78
5

Description: NVMe and mlx5_core drivers fail during BFB installation. As a result,
Anolis OS cannot be installed on the SSD and the mlxfwreset command does not
work during Anolis BFB installation.

Keyword: Linux; NVMe; BFB installation

Fixed in version: 4.2.1

33
93
31
6

Description: When LSO is enabled, if the header and data appear in the same
fragment, the following warning is given from tcpdump:

Keyword: Virtio-net; large send offload

Fixed in version: 4.2.1

35
54
12
8

Description: "dmidecode" output does not match "ipmitool fru print" output.

Keywords: IPMI; print

Fixed in version: 4.2.1

35
08
01
8

Description: Failure to ssh to Arm via 1GbE OOB interface is experienced after
performing warm reboot on the DPU.

Keywords: SSH; reboot

Fixed in version: 4.2.0

34
51
53
9

Description: BSP build number (fourth digit in version number) does not appear in
UEFI menu.

Keywords: UEFI; software

Fixed in version: 4.2.0

32
59
80
5

Description: Following many power cycles on the BlueField DPU, the virtio-net
controller may fail to start with the error failed to register epoll in the log.

Keywords: Virtio-net; power cycle; epoll

Fixed in version: 4.2.0

truncated-ip - 9 bytes missing

NVIDIA BlueField DPU BSP v4.7.0 171

Ref
#

Issue Description

32
66
18
0

Description: Enabled reset on MMC to enhance recovery on error.

Keywords: MMC; reset

Fixed in version: 4.2.0

34
48
21
7

Description: The PKA engine is not working on CentOS 7.6 due to multiple OpenSSL
versions (1.0.2k 1.1.1k) being installed and the library loader not selecting the
correct version of the openssl library.

Keywords: PKA; OpenSSL

Fixed in version: 4.2.0

34
48
22
8

Description: On virtio-net devices with LSO (large send offload) enabled, bogus
packets may be captured on the SF representor when running heavy iperf traffic.

Keywords: Virtio-net; iperf

Fixed in version: 4.2.0

34
52
58
3

Description: OpenSSL is not working with PKA engine on CentOS 7.6 with 4.23 5.4
5.10 kernels due to multiple versions of OpenSSL(1.0.2k and 1.1.1k) are installed.

Keywords: OpenSSL; PKA

Fixed in version: 4.2.0

34
55
87
3

Description: 699140280000 OPN is not supported.

Keywords: SKU; support

Fixed in version: 4.2.0

35
19
34
1

Description: Populate the vGIC maintenance interrupt number in MADT to avoid
harmless.

Keywords: Error

Fixed in version: 4.2.0

35
22
65
2

Description: The timer frequency is measured using the c0 fmon feature causing
new kernels to complain if CNTFRQ_EL0 has a different value on different cores.

Keywords: Timer frequency

Fixed in version: 4.2.0

NVIDIA BlueField DPU BSP v4.7.0 172

Ref
#

Issue Description

35
31
96
5

Description: Memory info displayed via dmidecode is not correct for memory sizes
32G and above.

Keywords: Memory; dmidecode

Fixed in version: 4.2.0

33
62
18
1

Description: A customized BFB with an older kernel does not support bond speed
above 200Gb/s.

Keywords: Bond; LAG; speed

Fixed in version: 4.2.0

31
77
56
9

Description: DCBX configuration may not take effect.

Keywords: DCBX; QoS; lldpad

Fixed in version: 4.2.0

28
24
85
9

Description: Hotplug/unplug of virtio-net devices during host shutdown/bootup
may result in failure to do plug/unplug.

Keywords: Virtio-net, hotplug

Fixed in version: 4.2.0

32
52
08
3

Description: Assert errors may be observed in the RShim log after reset/reboot.
These errors are harmless and may be ignored.

Keywords: RShim; log; error

Fixed in version: 4.0.3

32
40
06
0

Description: Hotplug of a modern virtio-net device is not supported when
VIRTIO_EMULATION_HOTPLUG_TRANS is TRUE from mlxconfig.

Keywords: Virtio-net; hotplug; legacy

Fixed in version: 4.0.3

32
40
18
2

Description: Virtio-net full emulation is not supported in CentOS 8.2 with inbox-
kernel 4.18.0-193.el8.aarch64.

Keywords: Virtio-net; CentOS

Fixed in version: 4.0.3

NVIDIA BlueField DPU BSP v4.7.0 173

Ref
#

Issue Description

31
51
88
4

Description: If secure boot is enabled, the following error message is observed
while installing Ubuntu on the DPU: ERROR: need to use capsule in secure boot mode . This
message is harmless and may be safely ignored.

Keywords: Error message; installation

Fixed in version: 3.9.3

27
93
00
5

Description: When Arm reboots or crashes after sending a virtio-net unplug
request, the hotplugged devices may still be present after Arm recovers. The host,
however, will not see those devices.

Keywords:  Virtio-net; hotplug

Fixed in version: 3.9.3

31
07
22
7

Description: BlueField with secured BFB fails to boot up if the PART_SCHEME field is
set in bf.cfg during installation.

Keywords: Installation; bf.cfg

Fixed in version: 3.9.2

31
09
27
0

Description: If the RShim service is running on an external host over the PCIe
interface then, in very rare cases, a soft reset of the BlueField can cause a poisoned
completion to be returned to the host. The host may treat this as a fatal error and
crash.

Keywords: RShim; ATF

Fixed in version: 3.9.2

27
90
92
8

Description: Virtio-net-controller recovery may not work for a hot-plugged device
because the system assigns a BDF (string identifier) of 0 for the hot-plugged device,
which is an invalid value.

Keywords: Virtio-net; hotplug; recovery

Fixed in version: 3.9.0

27
80
81
9

Description: Eye-opening is not supported on 25GbE integrated-BMC BlueField-2
DPU.

Keywords: Firmware, eye-opening

Fixed in version: 3.9.0

NVIDIA BlueField DPU BSP v4.7.0 174

Ref
#

Issue Description

28
76
44
7

Description: Virtio full emulation is not supported by NVIDIA® BlueField®-2 multi-
host cards.

Keywords: Virtio full emulation; multi-host

Fixed in version: 3.9.0

28
55
48
5

Description: After BFB installation, Linux crash may occur with efi_call_rts messages
in the call trace which can be seen from the UART console.

Keywords: Linux crash; efi_call_rts

Fixed in version: 3.9.0

29
01
51
4

Description: Relaxed ordering is not working properly on virtual functions.

Keywords: MLNX_OFED; relaxed ordering; VF

Fixed in version: 3.9.0

28
52
08
6

Description: On rare occasions, the UEFI variables in UVPS EEPROM are wiped out
which hangs the boot process at the UEFI menu.

Keywords: UEFI; hang

Fixed in version: 3.9.0

29
34
82
8

Description: PCIe device address to RDMA device name mapping on x86 host may
change after the driver restarts in Arm.

Keywords: RDMA; Arm; driver

Fixed in version: 3.9.0

-

Description: RShim driver does not work when the host is in secure boot mode.

Keywords: RShim; Secure Boot

Fixed in version: 3.9.0

27
87
30
8

Description: At rare occasions d uring Arm reset o n BMC-integrated DPUs , the
DPU will send "PCIe Completion" marked as poisoned. Some servers treat that as
fatal and may hang.

Keywords: Arm reset; BMC integrated

Fixed in version: 3.9.0

NVIDIA BlueField DPU BSP v4.7.0 175

Ref
#

Issue Description

25
85
60
7

Description: Pushing the BFB image fails occasionally with a "bad magic number"
error message showing up in the console.

Keywords: BFB push; installation

Fixed in version: 3.9.0

28
02
94
3

Description: SLD detection may not function properly.

Keywords: Firmware

Fixed in version: 3.9.0

25
80
94
5

Description: External host reboot may also reboot the Arm cores if the DPU was
configured using mlxconfig.

Keywords: Non-volatile configuration; Arm; reboot

Fixed in version: 3.9.0

28
99
74
0

Description: BlueField-2 may sometimes go to PXE boot instead of Linux after
installation.

Keywords: Installation; PXE

Fixed in version: 3.8.5

28
70
14
3

Description: Some DPUs may get stuck at GRUB menu when booting due to the
GRUB configuration getting corrupted when board is powered down before the
configuration is synced to memory.

Keywords: GRUB; memory

Fixed in version: 3.8.5

28
73
70
0

Description: The available RShim logging buffer may not have enough space to
hold the whole register dump which may cause buffer wraparound.

Keywords: RShim; logging

Fixed in version: 3.8.5

28
01
89
1

Description: IPMI EMU service reports cable link as down when it is actually up.

Keywords: IPMI EMU

Fixed in version: 3.8.0

NVIDIA BlueField DPU BSP v4.7.0 176

Ref
#

Issue Description

27
79
86
1

Description: Virtio-net controller does not work with devices other than mlx5_0/1.

Keywords: Virtio-net controller

Fixed in version: 3.8.0

28
01
37
8

Description: No parameter validation is done for feature bits when performing
hotplug.

Keywords: Virtio-net; hotplug

Fixed in version: 3.8.0

28
02
91
7

Description: When secure boot is enabled, PXE boot may not work.

Keywords: Secure boot; PXE

Fixed in version: 3.8.0

28
27
41
3

Description: Updating a BFB could fail due to congestion.

Keywords: Installation; congestion

Fixed in version: 3.8.0

28
29
87
6

Description: For virtio-net device, modifying the number of queues does not
update the number of MSIX.

Keywords: Virtio-net; queues

Fixed in version: 3.8.0

25
97
79
0

Description: A "double free" error is seen when using the "curl" utility. This
happens only when OpenSSL is configured to use a dynamic engine (e.g. Bluefield
PKA engine).

Keywords: OpenSSL; curl

Fixed in version: 3.8.0

28
53
29
5

Description: UEFI secure boot enables the kernel lockdown feature which blocks
access by mstmcra.

Keywords: Secure boot

Fixed in version: 3.8.0

NVIDIA BlueField DPU BSP v4.7.0 177

Ref
#

Issue Description

28
54
47
2

Description: Virtio-net controller may fail to start after power cycle.

Keywords: Virtio-net controller

Fixed in version: 3.8.0

28
54
99
5

Description: Memory consumed for a representor exceeds what is necessary
making scaling to 504 SF's not possible.

Keywords: Memory

Fixed in version: 3.8.0

28
56
65
2

Description: Modifying VF bits yields an error.

Keywords: Virtio-net controller

Fixed in version: 3.8.0

28
59
06
6

Description: Arm hangs when user is thrown to livefish by FW (e.g. secure boot).

Keywords: Arm; livefish

Fixed in version: 3.8.0

28
66
08
2

Description: The current installation flow requires multiple resets after booting the
self-install BFB due to the watchdog being armed after capsule update.

Keywords: Reset; installation

Fixed in version: 3.8.0

28
66
53
7

Description: Power-off of BlueField shows up as a panic which is then stored in the
RShim log and carried into the BERT table in the next boot which is misleading to
the user.

Keywords: RShim; log; panic

Fixed in version: 3.8.0

28
68
94
4

Description: Various errors related to the UPVS store running out of space are
observed.

Keywords: UPVS; errors

Fixed in version: 3.8.0

NVIDIA BlueField DPU BSP v4.7.0 178

Ref
#

Issue Description

27
54
79
8

Description: oob_net0 cannot receive traffic after a network restart.

Keywords: oob_net0

Fixed in version: 3.8.0

26
91
17
5

Description: Up to 31 hot-plugged virtio-net devices are supported even if
PCI_SWITCH_EMULATION_NUM_PORT=32. Host may hang if it hot plugs 32 devices.

Keywords: Virtio-net; hotplug

Fixed in version: 3.8.0

25
97
97
3

Description: Working with CentOS 7.6, if SF network interfaces are statically
configured, the following parameters should be set.
NM_CONTROLLED="no"
DEVTIMEOUT=30
For example:

Keywords: CentOS; subfunctions; static configuration

Fixed in version: 3.7.0

25
81
53
4

Description: When shared RQ mode is enabled and offloads are disabled, running
multiple UDP connections from multiple interfaces can lead to packet drops.

Keywords: Offload; shared RQ

cat /etc/sysconfig/network-scripts/ifcfg-p0m0
NAME=p0m0
DEVICE=p0m0
NM_CONTROLLED="no"
PEERDNS="yes"
ONBOOT="yes"
BOOTPROTO="static"
IPADDR=12.212.10.29
BROADCAST=12.212.255.255
NETMASK=255.255.0.0
NETWORK=12.212.0.0
TYPE=Ethernet
DEVTIMEOUT=30

NVIDIA BlueField DPU BSP v4.7.0 179

Ref
#

Issue Description

Fixed in version: 3.7.0

25
81
62
1

Description: When OVS-DPDK and LAG are configured, the kernel driver drops the
LACP packet when working in shared RQ mode.

Keywords: OVS-DPDK; LAG; LACP; shared RQ

Fixed in version: 3.7.0

26
01
09
4

Description: The gpio-mlxbf2 and mlxbf-gige drivers are not supported on 4.14
kernel.

Keywords: Drivers; kernel

Fixed in version: 3.7.0

25
84
42
7

Description: Virtio-net-controller does not function properly after changing uplink
representor MTU.

Keywords: Virtio-net controller; MTU

Fixed in version: 3.7.0

24
38
39
2

Description: VXLAN with IPsec crypto offload does not work.

Keywords: VXLAN; IPsec crypto

Fixed in version: 3.7.0

24
06
40
1

Description: Address Translation Services is not supported in BlueField-2 step A1
devices. Enabling ATS can cause server hang.

Keywords: ATS

Fixed in version: 3.7.0

24
02
53
1

Description: PHYless reset on BlueField-2 devices may cause the device to
disappear.

Keywords: PHY; firmware reset

Fixed in version: 3.7.0

24
00
38
1

Description: When working with strongSwan 5.9.0bf, running ip xfrm state show

returns partial information as to the offload parameters, not showing "mode full".

Keywords: strongSwan; ip xfrm; IPsec

NVIDIA BlueField DPU BSP v4.7.0 180

Ref
#

Issue Description

Fixed in version: 3.7.0

23
92
60
4

Description: Server crashes after configuring PCI_SWITCH_EMULATION_NUM_PORT
to a value higher than the number of PCIe lanes the server supports.

Keywords: Server; hang

Fixed in version: 3.7.0

22
93
79
1

Description: Loading/reloading NVMe after enabling VirtIO fails with a PCI bar
memory mapping error.

Keywords: VirtIO; NVMe

Fixed in version: 3.7.0

22
45
98
3

Description: When working with OVS in the kernel and using Connection Tracking,
up to 500,000 flows may be offloaded.

Keywords: DPU; Connection Tracking

Fixed in version: 3.7.0

19
45
51
3

Description: If the Linux OS running on the host connected to the BlueField DPU
has a kernel version lower then 4.14, MLNX_OFED package should be installed on
the host.

Keywords: Host OS

Fixed in version: 3.7.0

19
00
20
3

Description: During heavy traffic, ARP reply from the other tunnel endpoint may be
dropped. If no ARP entry exists when flows are offloaded, they remain stuck on the
slow path.

Workaround: Set a static ARP entry at the BlueField Arm to VXLAN tunnel
endpoints.

Keywords: ARP; Static; VXLAN; Tunnel; Endpoint

Fixed in version: 3.7.0

20
82
98
5

Description: During boot, the system enters systemctl emergency mode due a
corrupt root file system.

Keywords: Boot

NVIDIA BlueField DPU BSP v4.7.0 181

Ref
#

Issue Description

Fixed in version: 3.6.0.11699

22
78
83
3

Description: Creating a bond via NetworkManager and restarting the driver
(openibd restart) results in no pf0hpf and bond creation failure.

Keywords: Bond; LAG; network manager; driver reload

Fixed in version: 3.6.0.11699

22
86
59
6

Description: Only up to 62 host virtual functions are currently supported.

Keywords: DPU; SR-IOV

Fixed in version: 3.6.0.11699

23
97
93
2

Description: Before changing SR-IOV mode or reloading the mlx5 drivers on IPsec-
enabled systems, make sure all IPsec configurations are cleared by issuing the
command ip x s f && ip x p f.

Keywords: IPsec; SR-IOV; driver

Fixed in version: 3.6.0.11699

24
05
03
9

Description: In Ubuntu, during or after a reboot of the Arm, manually, or as part of
a firmware reset, the network devices may not transition to switchdev mode. No
device representors would be created (pf0hpf, pf1hpf, etc). Driver loading on the
host will timeout after 120 seconds.

Keywords: Ubuntu; reboot; representors; switchdev

Fixed in version: 3.6.0.11699

24
03
01
9

Description: EEPROM storage for UEFI variables may run out of space and cause
various issues such as an inability to push new BFB (due to timeout) or exception
when trying to enter UEFI boot menu.

Keywords: BFB install; timeout; EEPROM UEFI Variable; UVPS

Fixed in version: 3.6.0.11699

24
58
04
0

Description: When using OpenSSL on BlueField platforms where Crypto support is
disabled, the following errors may be encountered:
PKA_ENGINE: PKA instance is invalid
PKA_ENGINE: failed to retrieve valid instanceThis happens due to OpenSSL configuration
being linked to use PKA hardware, but that hardware is not available since crypto
support is disabled on these platforms.

NVIDIA BlueField DPU BSP v4.7.0 182

Ref
#

Issue Description

Keywords: PKA; Crypto

Fixed in version: 3.6.0.11699

24
56
94
7

Description: All NVMe emulation counters (Ctrl, SQ, Namespace) return "0" when
queried.

Keywords: Emulated devices; NVMe

Fixed in version: 3.6.0.11699

24
11
54
2

Description: Multi-APP QoS is not supported when LAG is configured.

Keywords: Multi-APP QoS; LAG

Fixed in version: 3.6.0.11699

23
94
13
0

Description: When creating a large number of VirtIO VFs, hung task call traces may
be seen in the dmesg.

Keywords: VirtIO; call traces; hang

Fixed in version: 3.5.1.11601

23
98
05
0

Description: Only up to 60 virtio-net emulated virtual functions are supported if
LAG is enabled.

Keywords: Virtio-net; LAG

Fixed in version: 3.5.1.11601

22
56
13
4

Description: On rare occasions, rebooting the BlueField DPU may result in traffic
failure from the x86 host.

Keywords: Host; Arm

Fixed in version: 3.5.1.11601

24
00
12
1

Description: When emulated PCIe switch is enabled, and more than 8 PFs are
enabled, the BIOS boot process might halt.

Keywords: Emulated PCIe switch

Fixed in version: 3.5.0.11563

20
82

Description: During boot, the system enters systemctl emergency mode due a
corrupt root file system.

NVIDIA BlueField DPU BSP v4.7.0 183

Ref
#

Issue Description

98
5

Keywords: Boot

Fixed in version: 3.5.0.11563

22
49
18
7

Description: With the OCP card connecting to multiple hosts, one of the hosts
could have the RShim PF exposed and probed by the RShim driver.

Keywords: RShim; multi-host

Fixed in version: 3.5.0.11563

23
63
65
0

Description: When moving to separate mode on the DPU, the OVS bridge remains
and no ping is transmitted between the Arm cores and the remote server.

Keywords: SmartNIC; operation modes

Fixed in version: 3.5.0.11563

23
94
22
6

Description: Pushing the BFB image v3.5 with a WinOF-2 version older than 2.60
can cause a crash on the host side.

Keywords: Windows; RShim

Fixed in version: 3.5.0.11563

NVIDIA BlueField DPU BSP v4.7.0 184

BlueField Software
Overview
NVIDIA provides software which enables users to fully utilize the NVIDIA® BlueField®
DPU and enjoy the rich feature-set it provides. Using the BlueField software packages,
users can:

Quickly and easily boot an initial Linux image on your development board

Port existing applications to and develop new applications for BlueField

Patch, configure, rebuild, update or otherwise customize your image

Debug, profile, and tune their development system using open-source development
tools taking advantage of the diverse and vibrant Arm ecosystem

Coupled with the NVIDIA® ConnectX® interconnect, the BlueField family of DPU devices
includes an array of Arm cores according to the following :

64-bit Armv8 A72 for BlueField-2 DPUs

64-bit Armv8 A78 for BlueField-3 DPUs

Standard Linux distributions run on the Arm cores allowing common open-source
development tools to be used. Developers should find the programming environment
familiar and intuitive which in turn allows them to design, implement, and verify their
control-plane and data-plane applications quickly and efficiently.

BlueField SW ships with the NVIDIA ® BlueField ® Reference Platform. BlueField SW is a
reference Linux distribution based on the Ubuntu Server distribution extended to include
the MLNX_OFED stack for Arm and a Linux kernel which supports NVMe-oF. This software
distribution can run all customer-based Linux applications seamlessly.

The following are other software elements delivered with BlueField DPU:

Arm Trusted Firmware (ATF) for BlueField

NVIDIA BlueField DPU BSP v4.7.0 185

UEFI for BlueField

OpenBMC for BMC (ASPEED 2500) found on development board

MLNX_OFED stack

Mellanox MFT

Debug Tools

BlueField DPU includes hardware support for the Arm DS5 suite as well as CoreSight™
debug. As such, a wide range of commercial off-the-shelf Arm debug tools should work
seamlessly with BlueField. The CoreSight debugger interface can be accessed via RShim
interface (USB or PCIe if using DPU) as well which could be used for debugging with open-
source tools like OpenOCD.

The BlueField DPU also supports the ubiquitous GDB.

BlueField-based Storage Appliance

BlueField software provides the foundation for building a JBOF (Just a Bunch of Flash)
storage system including NVMe-oF target software, PCIe switch support, NVDIMM-N
support, and NVMe disk hot-swap support.

BlueField SW allows enabling ConnectX offload such as RDMA/RoCE, T10 DIF signature
offload, erasure coding offload, iSER, Storage Spaces Direct, and more.

BlueField Architecture

The BlueField architecture is a combination of two preexisting standard off-the-shelf
components, Arm AArch64 processors, and ConnectX-6 Dx (for BlueField-2), ConnectX-7
(for BlueField-3), or network controller, each with its own rich software ecosystem. As
such, almost any of the programmer-visible software interfaces in BlueField come from
existing standard interfaces for the respective components.

NVIDIA BlueField DPU BSP v4.7.0 186

The Arm related interfaces (including those related to the boot process, PCIe connectivity,
and cryptographic operation acceleration) are standard Linux on Arm interfaces. These
interfaces are enabled by drivers and low-level code provided by NVIDIA as part of the
BlueField software delivered and upstreamed to respective open-source projects, such as
Linux.

The ConnectX network controller-related interfaces (including those for Ethernet and
InfiniBand connectivity, RDMA and RoCE, and storage and network operation
acceleration) are identical to the interfaces that support ConnectX standalone network
controller cards. These interfaces take advantage of the MLNX_OFED software stack and
InfiniBand verbs-based interfaces to support software.

System Connections

The BlueField DPU has multiple connections (see diagram below). Users can connect to
the system via different consoles, network connections, and a JTAG connector.

NVIDIA BlueField DPU BSP v4.7.0 187

System Consoles

The BlueField DPU has multiple console interfaces:

Serial console 0 (/dev/ttyAMA0 on the Arm cores)

Requires cable to NC-SI connector on DPU 25G

Requires serial cable to 3-pin connector on DPU 100G

Connected to BMC serial port on BF1200 platforms

Serial console 1 (/dev/ttyAMA1 on the Arm cores but only for BF1200 reference
platform)

ttyAMA1 is the console connection on the front panel of the BF1200

Virtual RShim console (/dev/hvc0 on the Arm cores) is driven by

NVIDIA BlueField DPU BSP v4.7.0 188

The RShim PCIe driver (does not require a cable but the system cannot be in
isolation mode as isolation mode disables the PCIe device needed)

The RShim USB driver (requires USB cable)

It is not possible to use both the PCIe and USB RShim interfaces at the same
time

Network Interfaces

The DPU has multiple network interfaces.

ConnectX Ethernet/InfiniBand interfaces

RShim virtual Ethernet interface (via USB or PCIe)
The virtual Ethernet interface can be very useful for debugging, installation, or basic
management. The name of the interface on the host DPU server depends on the
host operating system. The interface name on the Arm cores is normally
"tmfifo_net0". The virtual network interface is only capable of roughly 10MB/s
operation and should not be considered for production network traffic.

OOB Ethernet interface
BlueField-2 based platforms feature an OOB 1GbE management port. This interface
provides a 1Gb/s full duplex connection to the Arm cores. The interface name is
normally "oob_net0". The interface enables TCP/IP network connectivity to the Arm
cores (e.g., for file transfer protocols, SSH, and PXE boot). The OOB port is not a
path for the BlueField-2 boot stream (i.e., any attempt to push a BFB to this port will
not work).

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-Zero-trustDPUMode

NVIDIA BlueField DPU BSP v4.7.0 189

Software Installation and
Upgrade

The NVIDIA® BlueField® DPU is shipped with the BlueField software based on Ubuntu
22.04 pre-installed. The DPU's Arm execution environment has the capability of being
functionally isolated from the host server and uses a dedicated network management
interface (separate from the host server's management interface). The Arm cores can run
the Open vSwitch Database (OVSDB) or other virtual switches to create a secure solution
for bare metal provisioning.

The software package also includes support for DPDK as well as applications for
accelerated encryption.

The BlueField DPU supports several methods for OS deployment and upgrade:

Full OS image deployment using a BlueField boot stream file (BFB) via RShim
interface

Info

It is recommended to upgrade your BlueField product to the latest
software and firmware versions available to benefit from new
features and latest bug fixes.

Info

This installation method is compatible with SuperNICs.

NVIDIA BlueField DPU BSP v4.7.0 190

Full OS deployment using PXE which can be used over different network interfaces
available on the BlueField DPU (1GbE mgmt, tmfifo or NVIDIA® ConnectX®)

Individual packages can be installed or upgraded using standard Linux package
management tools (e.g., apt, dpkg, etc.)

The DPU's BMC software (i.e., BMC firmware, ERoT firmware, DPU golden image, and NIC
firmware golden image) is included in the BFB. The BFB installation updates BMC
software components automatically if BMC credentials (i.e., BMC_USER and BMC_PASSWORD)
are provided in bf.cfg.

A reduced size BFB bf-fwbundle-<version>.prod.bfb is available for BlueField devices running a
customized OS that should not be changed by the BFB installation process. This BFB does
not include BlueField OS and can use the same set of bf.cfg parameters as a standard
BFB with the exception of BlueField OS related flags (e.g., UPDATE_DPU_OS).

Deploying BlueField Software Using
BFB from Host

Info

The minimum BMC Firmware version that supports this method of
upgrade from the BlueField is 23.07. If your BMC firmware version is
lower, follow the NVIDIA BlueField BMC Software documentation to
upgrade BMC firmware.

Info

Upgrading BlueField software using BFB Bundle now performs NIC
firmware update by default.

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-bf.cfgParameters
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-bf.cfgParameters
https://docs.nvidia.com/networking/display/bluefieldbmc

NVIDIA BlueField DPU BSP v4.7.0 191

The following table lists an overview of the steps required to install Ubuntu BFB on your
DPU:

Ste
p

Procedure Link to Section

1 Uninstall previous DOCA on host (if exists)
Uninstall Previous Software from
Host

2 Install RShim on the host Install RShim on Host

3 Verify that RShim is running on the host Ensure RShim Running on Host

4
Change the default credentials using bf.cfg file
(optional)

Changing Default Credentials
Using bf.cfg

5 Install the Ubuntu BFB image BFB Installation

6 Verify installation completed successfully Verify BFB is Installed

7 Upgrade the firmware on your DPU Firmware Upgrade

Uninstall Previous Software from Host

Info

It is recommended to upgrade your BlueField product to the latest
software and firmware versions available to benefit from new
features and latest bug fixes.

Note

This procedure assumes that a BlueField DPU has already been
installed in a server according to the instructions detailed in the
DPU's hardware user guide.

https://docs.mellanox.com/category/bluefieldsnic

NVIDIA BlueField DPU BSP v4.7.0 192

If an older DOCA software version is installed on your host, make sure to uninstall it
before proceeding with the installation of the new version:

Ubuntu

CentOS/R
HEL

Install RShim on Host

Before installing the RShim driver, verify that the RShim devices, which will be probed by
the driver, are listed under lsusb or lspci.

Output example:

RShim is compiled as part of the doca-runtimepackage in the doca-host-repo-

ubuntu<version>_amd64 file (.deb or .rpm).

To install doca-runtime:

host# for f in $(dpkg --list | grep doca | awk '{print $2}'); do echo $f ;
apt remove --purge $f -y ; done
host# sudo apt-get autoremove

host# for f in $(rpm -qa |grep -i doca) ; do yum -y remove $f; done
host# yum autoremove
host# yum makecache

lspci | grep -i nox

27:00.0 Ethernet controller: Mellanox Technologies MT42822 BlueField-2 integrated
ConnectX-6 Dx network controller
27:00.1 Ethernet controller: Mellanox Technologies MT42822 BlueField-2 integrated
ConnectX-6 Dx network controller
27:00.2 Non-Volatile memory controller: Mellanox Technologies NVMe SNAP
Controller
27:00.3 DMA controller: Mellanox Technologies MT42822 BlueField-2 SoC
Management Interface // This is the RShim PF

NVIDIA BlueField DPU BSP v4.7.0 193

OS Procedure

Ubuntu/Debian

1. Download the DOCA Runtime host package from the "Installation
Files" section in the NVIDIA DOCA Installation Guide for Linux.

2. Unpack the deb repo. Run:

3. Perform apt update. Run:

4. Run apt install for DOCA runtime package.

CentOS/RHEL
7.x

1. Download the DOCA runtime host package from the "Installation
Files" section in the NVIDIA DOCA Installation Guide for Linux.

2. Unpack the RPM repo. Run:

3. Enable new yum repos. Run:

4. Run yum install to install DOCA runtime package.

CentOS/RHEL
8.x or Rocky
8.6

1. Download the DOCA runtime host package from the "Installation
Files" section in the NVIDIA DOCA Installation Guide for Linux.

2. Unpack the RPM repo. Run:

3. Enable new dnf repos. Run:

4. Run dnf install to install DOCA runtime.

host# sudo dpkg -i doca-host-repo-
ubuntu<version>_amd64.deb

host# sudo apt-get update

host# sudo apt install doca-runtime

host# sudo rpm -Uvh doca-host-repo-
rhel<version>.x86_64.rpm

host# sudo yum makecache

host# sudo yum install doca-runtime

host# sudo rpm -Uvh doca-host-repo-
rhel<version>.x86_64.rpm

host# sudo dnf makecache

https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#installation-files
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#installation-files
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#installation-files
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#installation-files
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#installation-files
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html#installation-files

NVIDIA BlueField DPU BSP v4.7.0 194

OS Procedure

Ensure RShim Running on Host

1. Verify RShim status. Run:

Expected output:

Where <N> denotes RShim enumeration starting with 0 (then 1, 2, etc.) for every
additional DPU installed on the server.

If the text "another backend already attached" is displayed, users will not be able to use
RShim on the host. Please refer to "RShim Troubleshooting and How-Tos" to
troubleshoot RShim issues.

1. If the previous command displays inactive or another error, restart RShim
service. Run:

2. Verify RShim status again. Run:

host# sudo dnf install doca-runtime

sudo systemctl status rshim

active (running)
...
Probing pcie-0000:<BlueField's PCIe Bus address on host>
create rshim pcie-0000:<BlueField's PCIe Bus address on host>
rshim<N> attached

sudo systemctl restart rshim

sudo systemctl status rshim

https://docs.nvidia.com//networking/display/bluefielddpuosv470/RShim+Troubleshooting+and+How-Tos

NVIDIA BlueField DPU BSP v4.7.0 195

If this command does not display "active (running)", then refer to "RShim
Troubleshooting and How-Tos".

2. Display the current setting. Run:

This output indicates that the RShim service is ready to use.

Installing Ubuntu on BlueField

BFB Installation

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME pcie-0000:04:00.2

Note

Check the BFB version installed on your BlueField-2 DPU. If the
version is 1.5.0 or lower, please see Known Issue Reference
#3600716 under Known Issues section.

Info
To upgrade the BMC firmware using BFB, the user must provide the
current BMC credentials in the bf.cfg.

Note

Upgrading the BlueField networking platform using BFB Bundle
updates the NIC firmware by default. NIC firmware upgrade triggers a
NIC reset flow via mlxfwreset in the BlueField Arm.

https://docs.nvidia.com//networking/display/bluefielddpuosv470/RShim+Troubleshooting+and+How-Tos
https://docs.nvidia.com//networking/display/bluefielddpuosv470/RShim+Troubleshooting+and+How-Tos
file:///networking/display/bluefielddpuosv470/Known+Issues

NVIDIA BlueField DPU BSP v4.7.0 196

A pre-built BFB of Ubuntu 22.04 with DOCA Runtime and DOCA packages installed is
available on the NVIDIA DOCA SDK developer zone page.

If this reset flow cannot complete or is not supported on your setup,
bfb-install alerts about it at the end of the installation. In this case, p
erform a BlueField system reboot for the mlxconfig settings to take
effect.

To skip NIC firmware upgrade during BFB Bundle installation ,
provide the parameter WITH_NIC_FW_UPDATE=no in the bf.cfg text file
when running bfb-install .

Note

All new BlueField-2 devices and all BlueField-3 are secure boot
enabled, hence all the relevant SW images (ATF/UEFI, Linux Kernel
and Drivers) must be signed in order to boot. All formally published
SW images are signed.

Warning

When installing the BFB bundle in NIC mode, users must perform the
following:

1. Prior to installing the BFB bundle, users must unbind each NIC
port, using its PCIe function address. For example:

host]# lspci -d 15b3:
21:00.0 Ethernet controller: Mellanox Technologies
MT43244 BlueField-3 integrated ConnectX-7 network
controller (rev 01)

https://developer.nvidia.com/networking/doca
file:///networking/display/bluefielddpuosv470/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-2821766774_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystemReboot

NVIDIA BlueField DPU BSP v4.7.0 197

To install Ubuntu BFB, run on the host side:

The bfb-install utility is installed by the RShim package.

This utility script pushes the BFB image and optional configuration (bf.cfg file) to the
BlueField side and checks and prints the BFB installation progress. To see the BFB
installation progress, please install the pv Linux tool.

If there are multiple BlueField devices to be updated in the
server, repeat this step on all of them, before starting BFB
bundle installations.

2. After the BFB bundle installation is done, users must perform a
warm reboot on the host.

21:00.1 Ethernet controller: Mellanox Technologies
MT43244 BlueField-3 integrated ConnectX-7 network
controller (rev 01)
21:00.2 DMA controller: Mellanox Technologies MT43244
BlueField-3 SoC Management Interface (rev 01)

host]# echo 0000:21:00.0 >
/sys/bus/pci/drivers/mlx5_core/unbind
host]# echo 0000:21:00.1 >
/sys/bus/pci/drivers/mlx5_core/unbind

bfb-install -h
syntax: bfb-install --bfb|-b <BFBFILE> [--config|-c <bf.cfg>] \
[--rootfs|-f <rootfs.tar.xz>] --rshim|-r <rshimN> [--help|-h]

Warning

BFB image installation must complete before restarting the
system/BlueField. Doing so may result in the BlueField DPU not
operating as expected (e.g., it may not be accessible using SSH). If this

NVIDIA BlueField DPU BSP v4.7.0 198

The following is an output example of Ubuntu 20.04 installation with the bfb-install script
assuming pv has been installed.

happens, re-initiate the update process with bfb-install to recover the
DPU.

bfb-install --bfb <BlueField-BSP>.bfb --config bf.cfg --rshim rshim0 Pushing bfb +
cfg
1.46GiB 0:01:11 [20.9MiB/s] [<=>]
Collecting BlueField booting status. Press Ctrl+C to stop…
INFO[PSC]: PSC BL1 START
INFO[BL2]: start
INFO[BL2]: boot mode (rshim)
INFO[BL2]: VDDQ: 1120 mV
INFO[BL2]: DDR POST passed
INFO[BL2]: UEFI loaded
INFO[BL31]: start
INFO[BL31]: lifecycle Production
INFO[BL31]: MB8: VDD adjustment complete
INFO[BL31]: VDD: 743 mV
INFO[BL31]: power capping disabled
INFO[BL31]: runtime
INFO[UEFI]: eMMC init
INFO[UEFI]: eMMC probed
INFO[UEFI]: UPVS valid
INFO[UEFI]: PMI: updates started
INFO[UEFI]: PMI: total updates: 1
INFO[UEFI]: PMI: updates completed, status 0
INFO[UEFI]: PCIe enum start
INFO[UEFI]: PCIe enum end
INFO[UEFI]: UEFI Secure Boot (disabled)
INFO[UEFI]: exit Boot Service
INFO[MISC]: : Found bf.cfg
INFO[MISC]: : Ubuntu installation started
INFO[MISC]: bfb_pre_install

NVIDIA BlueField DPU BSP v4.7.0 199

Verify BFB is Installed

After installation of the Ubuntu OS is complete, the following note appears in
/dev/rshim0/misc on first boot:

"DPU is ready" indicates that all the relevant services are up and users can login the
system.

After the installation of the Ubuntu 20.04 BFB, the configuration detailed in the following
sections is generated.

BlueField OS image version is stored under /etc/mlnx-release in the BlueField:

INFO[MISC]: Installing OS image
INFO[MISC]: : Changing the default password for user ubuntu
INFO[MISC]: : Running bfb_modify_os from bf.cfg
INFO[MISC]: : Ubuntu installation finished

...
INFO[MISC]: Linux up
INFO[MISC]: DPU is ready

Note

Make sure all the services (including cloud-init) are started on
BlueField and to perform a graceful shutdown before power cycling
the host server.

cat /etc/mlnx-release
bf-bundle-2.7.0-<version>_ubuntu-22.04_prod

NVIDIA BlueField DPU BSP v4.7.0 200

Changing Default Credentials Using bf.cfg

Ubuntu users are prompted to change the default password (ubuntu) for the default user
(ubuntu) upon first login. Logging in will not be possible even if the login prompt appears
until all services are up ("DPU is ready" message appears in /dev/rshim0/misc).

Alternatively, Ubuntu users can provide a unique password that will be applied at the end
of the BFB installation. This password must be defined in a bf.cfg configuration file. To set
the password for the ubuntu user:

1. Create password hash. Run:

Info

For a comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

Note

Attempting to log in before all services are up prints the following
message: Permission denied, please try again.

openssl passwd -1
Password:
Verifying - Password:

NVIDIA BlueField DPU BSP v4.7.0 201

2. Add the password hash in quotes to the bf.cfg file:

The bf.cfg file is used with the bfb-install script in the steps that follow.

Password Policy

The following table provides the password policy parameters.

Config File Path
Param
eter

Value Description

/etc/security/pwqu
ality.conf

minlen 12 Minimum password length

/etc/pam.d/commo
n-password

rememb
er 3

The number of previous passwords which cannot
be reused

/etc/security/failloc
k.conf

silent
Uncomm
ented

Prevents printing informative messages to the
user

deny 10
The number of authentication attempts
permitted before the user is locked out

unlock_ti
me 600 The duration, in seconds, of the lockout period

$1$3B0RIrfX$TlHry93NFUJzg3Nya00rE1

vim bf.cfg
ubuntu_PASSWORD='$1$3B0RIrfX$TlHry93NFUJzg3Nya00rE1'

Info

NVIDIA BlueField DPU BSP v4.7.0 202

GRUB Password Protection

GRUB menu entries are protected by a username and password to prevent unwanted
changes to the default boot options or parameters.

The default credentials are as follows:

Username admin

Password BlueField

The password can be changed during BFB installation by providing a new
grub_admin_PASSWORD parameter in bf.cfg:

To get a new encrypted password value use the command grub-mkpasswd-pbkdf2.

Each of these parameters is configurable in its respective config file
indicated in the "Config File Path" column.

Info

Please refer to the "Default Passwords and Policies" section for more
password policy information.

vim bf.cfg
grub_admin_PASSWORD='
grub.pbkdf2.sha512.10000.5EB1FF92FDD89BDAF3395174282C77430656A6DBEC1F92

file:///networking/display/bluefielddpuosv470/Default+Passwords+and+Policies

NVIDIA BlueField DPU BSP v4.7.0 203

After the installation, the password can be updated by editing the file
/etc/grub.d/40_custom and then running the command update-grub which updates the
file /boot/grub/grub.cfg.

Firmware Upgrade

To upgrade firmware:

1. Access the BlueField using one of the available interfaces (RShim console, BMC
console, SSH via oob_net0 or tmfifo_net0 interfaces).

2. Upgrade the firmware on the DPU. Run:

Example output:

sudo /opt/mellanox/mlnx-fw-updater/mlnx_fw_updater.pl --force-fw-update

Device #1:

Device Type: BlueField-2
[...]
Versions: Current Available
FW <Old_FW> <New_FW>

Note

Important! To apply NVConfig changes, stop here and follow
the steps in section "Updating NVConfig Params". In this case,
the following step #3 is redundant.

NVIDIA BlueField DPU BSP v4.7.0 204

3. Perform a BlueField system reboot for the upgrade to take effect.

Updating NVConfig Params from Host

1. Optional. To reset the BlueField NIC firmware configuration (aka Nvconfig params)
to their factory default values, run the following from the BlueField ARM OS or from
the host OS:

sudo mlxconfig -d /dev/mst/<MST device> -y reset

Reset configuration for device /dev/mst/<MST device>? (y/n) [n] : y
Applying... Done!
-I- Please reboot machine to load new configurations.

Note

For now, please ignore tool's instruction to reboot

Note

To learn what MST device the BlueField DPU has on your setup,
run:

mst start
mst status

https://confluence.nvidia.com/display/docadev/.NVIDIA+BlueField+Reset+and+Reboot+Procedures+v2.7.0#id-.NVIDIABlueFieldResetandRebootProceduresv2.7.0-BlueFieldSystemReboot

NVIDIA BlueField DPU BSP v4.7.0 205

2. (Optional) Enable NVMe emulation. Run:

Example output taken on a multiple DPU host:

The MST device IDs for the BlueField-2 and BlueField-3 DPUs in
this example are /dev/mst/mt41686_pciconf0 and
/dev/mst/mt41692_pciconf0 respectively.

// The MST device corresponds with PCI Bus address.

MST modules:

MST PCI module is not loaded
MST PCI configuration module loaded

MST devices:

/dev/mst/mt41692_pciconf0 - PCI configuration cycles
access.
domain:bus:dev.fn=0000:03:00.0 addr.reg=88 data.reg=92
cr_bar.gw_offset=-1
Chip revision is: 01
/dev/mst/mt41692_pciconf1 - PCI configuration cycles
access.
domain:bus:dev.fn=0000:83:00.0 addr.reg=88 data.reg=92
cr_bar.gw_offset=-1
Chip revision is: 01
/dev/mst/mt41686_pciconf0 - PCI configuration cycles
access.
domain:bus:dev.fn=0000:a3:00.0 addr.reg=88 data.reg=92
cr_bar.gw_offset=-1
Chip revision is: 01

sudo mlxconfig -d <MST device> -y s NVME_EMULATION_ENABLE=1

NVIDIA BlueField DPU BSP v4.7.0 206

3. Skip this step if your BlueField DPU is Ethernet only. Please refer to section
"Supported Platforms and Interoperability" under the Release Notes to learn your
DPU type.

If you have a VPI DPU, the default link type of the ports will be configured to IB. If
you want to change the link type to Ethernet, please run the following configuration:

4. Perform a BlueField system-level reset for the new settings to take effect.

Customizations During BFB Installation

Using special purpose configuration parameters in the bf.cfg file, the BlueField's boot
options and OS can be further customized. For a full list of the supported parameters to
customize your DPU system during BFB installation, refer to section "bf.cfg Parameters".
In addition, the bf.cfg file offers further control on customization of BlueField OS
installation and software configuration through scripting.

Add any of the following functions to the bf.cfg file for them to be called by the install.sh
script embedded in the BFB:

bfb_modify_os – called after the file system is extracted on the target partitions. It
can be used to modify files or create new files on the target file system mounted
under /mnt. So the file path should look as follows:
/mnt/<expected_path_on_target_OS>. This can be used to run a specific tool from
the target OS (remember to add /mnt to the path for the tool).
bfb_pre_install – called before eMMC/SSD partitions format and OS filesystem is
extracted
bfb_post_install – called as a last step before reboot. All eMMC/SSD partitions are
unmounted at this stage.

For example, the bf.cfg script below disables OVS bridge creation upon boot:

sudo mlxconfig -d <MST device> -y s LINK_TYPE_P1=2 LINK_TYPE_P2=2

https://confluence.nvidia.com/display/docadev/.NVIDIA+BlueField+Reset+and+Reboot+Procedures+v2.7.0#id-.NVIDIABlueFieldResetandRebootProceduresv2.7.0-BlueFieldSystemLevelReset

NVIDIA BlueField DPU BSP v4.7.0 207

Default Ports and OVS Configuration

The /sbin/mlnx_bf_configure script runs automatically with ib_umad kernel module
loaded (see /etc/modprobe.d/mlnx-bf.conf) and performs the following configurations:

cat /root/bf.cfg

bfb_modify_os()
{
log ===================== bfb_modify_os =====================
log "Disable OVS bridges creation upon boot"
sed -i -r -e 's/(CREATE_OVS_BRIDGES=).*/\1"no"/' /mnt/etc/mellanox/mlnx-ovs.conf
}

bfb_pre_install()
{
log ===================== bfb_pre_install =====================
}

bfb_post_install()
{
log ===================== bfb_post_install =====================
}

Note

After modifying files on the BlueField, run the command sync to flush
file system buffers to eMMC/SSD flash memory to avoid data loss
during reboot or power cycle.

NVIDIA BlueField DPU BSP v4.7.0 208

1. Ports are configured with switchdev mode and software steering.
2. RDMA device isolation in network namespace is enabled.
3. Two scalable function (SF) interfaces are created (one per port) if BlueField is

configured with Embedded CPU mode (default):

The parameters for these SFs are defined in configuration file /etc/mellanox/mlnx-
sf.conf.

mlnx-sf -a show

SF Index: pci/0000:03:00.0/229408
Parent PCI dev: 0000:03:00.0
Representor netdev: en3f0pf0sf0
Function HWADDR: 02:a9:49:7e:34:29
Function trust: off
Function roce: true
Function eswitch: NA
Auxiliary device: mlx5_core.sf.2
netdev: enp3s0f0s0
RDMA dev: mlx5_2

SF Index: pci/0000:03:00.1/294944
Parent PCI dev: 0000:03:00.1
Representor netdev: en3f1pf1sf0
Function HWADDR: 02:53:8f:2c:8a:76
Function trust: off
Function roce: true
Function eswitch: NA
Auxiliary device: mlx5_core.sf.3
netdev: enp3s0f1s0
RDMA dev: mlx5_3

/sbin/mlnx-sf --action create --device 0000:03:00.0 --sfnum 0 --hwaddr
02:61:f6:21:32:8c
/sbin/mlnx-sf --action create --device 0000:03:00.1 --sfnum 0 --hwaddr
02:30:13:6a:2d:2c

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-SmartNICmode

NVIDIA BlueField DPU BSP v4.7.0 209

4. Two OVS bridges are created:

The parameters for these bridges are defined in configuration file
/etc/mellanox/mlnx-ovs.conf:

Note

To avoid repeating a MAC address in the your network, the SF
MAC address is set randomly upon BFB installation. You may
choose to configure a different MAC address that better suit
your network needs.

ovs-vsctl show
f08652a8-92bf-4000-ba0b-7996c772aff6
Bridge ovsbr2
Port ovsbr2
Interface ovsbr2
type: internal
Port p1
Interface p1
Port en3f1pf1sf0
Interface en3f1pf1sf0
Port pf1hpf
Interface pf1hpf
Bridge ovsbr1
Port p0
Interface p0
Port pf0hpf
Interface pf0hpf
Port ovsbr1
Interface ovsbr1
type: internal
Port en3f0pf0sf0
Interface en3f0pf0sf0
ovs_version: "2.14.1"

NVIDIA BlueField DPU BSP v4.7.0 210

5. OVS HW offload is configured.

Customization of BFB Installation Using bf.cfg

The BFB installation process as well as the content and configuration of the target OS can
be customized during BFB installation process using the bf.cfg file. The bf.cfg file is
passed to the DPU via RShim or using PXE configuration and is sourced by BFB's
installation script at the beginning of the BFB installation process.

CREATE_OVS_BRIDGES="yes"
OVS_BRIDGE1="ovsbr1"
OVS_BRIDGE1_PORTS="p0 pf0hpf en3f0pf0sf0"
OVS_BRIDGE2="ovsbr2"
OVS_BRIDGE2_PORTS="p1 pf1hpf en3f1pf1sf0"
OVS_HW_OFFLOAD="yes"
OVS_START_TIMEOUT=30

Note

If failures occur in /sbin/mlnx_bf_configure or configuration changes
happen (e.g. switching to separated host mode) OVS bridges are
not created even if CREATE_OVS_BRIDGES="yes".

Info

Information is available under " bf.cfg Parameters".

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+with+PXE

NVIDIA BlueField DPU BSP v4.7.0 211

A number of helper functions are available in the BFB's install.sh script to enable
customization.

bfb_modify_os – the shell function is called after the file system is extracted on the
target partitions. It can be used to modify files or create new files on the target file
system mounted under /mnt. So the file path should look something like the
following: /mnt/<expected_path_on_target_OS>. This can be used to run a specific
tool from the target OS (remember to add /mnt to the path for the tool).
bfb_pre_install – the shell function is called before the partitions format and OS
filesystem is extracted.
bfb_post_install – the shell function is called as a last step before reboot. All
partitions are unmounted at this stage.

The BFB installation process includes the following tasks:

1. Installing target OS if UPDATE_DPU_OS="yes" (default)

1. Creating and formatting partitions on the SSD (default) or EMMC drive.
2. Extracting target OS file system from the tarball file coming with the BFB.
3. Configuring target OS depending on the underlying hardware and provided

configuration.
4. Building initramfs for the target OS to make sure all the requirements for boot

drivers are included.
2. Updating ATF and UEFI if UPDATE_ATF_UEFI="yes" (default).

3. Updating BMC components:

Info

This is relevant for PXE installation only as ATF and UEFI are
updated automatically via RShim.

NVIDIA BlueField DPU BSP v4.7.0 212

1. Bringing up VLAN 4040 network interface on top of oob_net0. VLAN 4040 is
configured with static IP 192.168.240.2/29. The timeout for bringing up the
connection with the DPU's BMC VLAN 4040 interface (192.168.240.1) is set to
BMC_IP_TIMEOUT (default is 600 seconds).

2. Updating BMC firmware if a different version is available and
UPDATE_BMC_FW="yes" (default). The timeout for the BMC firmware update
task is BMC_TASK_TIMEOUT (default is 1800 seconds).

3. Updating CEC firmware if a different version is available and
UPDATE_CEC_FW="yes" (default).

4. Updating the DPU golden image if a different version is available and
UPDATE_DPU_GOLDEN_IMAGE="yes" (default).

5. Updating the NIC firmware golden image if a different version is available and
UPDATE_NIC_FW_GOLDEN_IMAGE="yes" (default).

6. Rebooting BMC if its firmware was updated and BMC_REBOOT="yes" (disabled
by default).

4. NIC firmware update if WITH_NIC_FW_UPDATE="yes" (default).
5. Reboot.

A complete installation log becomes available on the target file system after the
installation process is finished (e.g., /root/Ubuntu.installation.log).

Info

Requires BMC username and password to be provided.

Note

BMC reboot is required to apply the new BMC firmware
version, but BMC reboot resets the BMC console which is
used to monitor the BFB installation process. This is why
BMC reboot is disabled by default and should be done
after the BFB installation process if using the BMC console.

NVIDIA BlueField DPU BSP v4.7.0 213

bf.cfg Parameters

The following is a comprehensive list of the supported parameters to customize the bf.cfg
file for BFB installation:

##
Configuration which can also be set in
UEFI->Device Manager->System Configuration
##
Enable SMMU in ACPI.
#SYS_ENABLE_SMMU = TRUE

Enable I2C0 in ACPI.
#SYS_ENABLE_I2C0 = FALSE

Disable SPMI in ACPI.
#SYS_DISABLE_SPMI = FALSE

Enable the second eMMC card which is only available on the BlueField Reference
Platform.
#SYS_ENABLE_2ND_EMMC = FALSE

Enable eMMC boot partition protection.
#SYS_BOOT_PROTECT = FALSE

Enable SPCR table in ACPI.
#SYS_ENABLE_SPCR = FALSE

Disable PCIe in ACPI.
#SYS_DISABLE_PCIE = FALSE

Enable OP-TEE in ACPI.
#SYS_ENABLE_OPTEE = FALSE

NVIDIA BlueField DPU BSP v4.7.0 214

##
Boot Order configuration
Each entry BOOT<N> could have the following format:
PXE:
BOOT<N> = NET-<NIC_P0 | NIC_P1 | OOB | RSHIM>-<IPV4 | IPV6>
PXE over VLAN (vlan-id in decimal):
BOOT<N> = NET-<NIC_P0 | NIC_P1 | OOB | RSHIM>[.<vlan-id>]-<IPV4 | IPV6>
UEFI Shell:
BOOT<N> = UEFI_SHELL
DISK: boot entries created during OS installation.
BOOT<N> = DISK
##
This example configures PXE boot over the 2nd ConnectX port.
If fails, it continues to boot from disk with boot entries created during OS
installation.
#BOOT0 = NET-NIC_P1-IPV4
#BOOT1 = DISK

UPDATE_ATF_UEFI - Updated ATF/UEFI (Default: yes)
Relevant for PXE installation only as while using RSHIM interface ATF/UEFI
will always be updated using capsule method
UPDATE_ATF_UEFI="yes"

UPDATE_DPU_OS - Update/Install DPU Operating System (Default: yes)
UPDATE_DPU_OS="yes"

grub_admin_PASSWORD - Hashed password to be set for the "admin" user to
enter Grub menu
Relevant for Ubuntu BFB only. (Default: is not set)
E.g.:
grub_admin_PASSWORD='grub.pbkdf2.sha512.10000.5EB1FF92FDD89BDAF339517428
grub_admin_PASSWORD='grub.pbkdf2.sha512.10000.<hashed password>'

ubuntu_PASSWORD - Hashed password to be set for "ubuntu" user during BFB
installation process.

NVIDIA BlueField DPU BSP v4.7.0 215

Relevant for Ubuntu BFB only. (Default: is not set)
ubuntu_PASSWORD=<hashed password>

##
BMC Component Update
##
BMC_USER - User name to be used to access BMC (Default: root)
BMC_USER="root"

BMC_PASSWORD - Password used by the BMC user to access BMC (Default: None)
BMC_PASSWORD=""

BMC_IP_TIMEOUT - Maximum time in seconds to wait for the connection to the
BMC to be established (Default: 600)
BMC_IP_TIMEOUT=600

BMC_TASK_TIMEOUT - Maximum time in seconds to wait for BMC task (BMC/CEC
Firmware update) to complete (Default: 1800)
BMC_TASK_TIMEOUT=1800

UPDATE_BMC_FW - Update BMC firmware (Default: yes)
UPDATE_BMC_FW="yes"

BMC_REBOOT - Reboot BMC after BMC firmware update to apply the new version
(Default: no). Note that the BMC reboot will reset the BMC console.
BMC_REBOOT="no"

UPDATE_CEC_FW - Update CEC firmware (Default: yes)
UPDATE_CEC_FW="yes"

UPDATE_DPU_GOLDEN_IMAGE - Update DPU Golden Image (Default: yes)
UPDATE_DPU_GOLDEN_IMAGE="yes"

UPDATE_NIC_FW_GOLDEN_IMAGE- Update NIC firmware Golden Image (Default:
yes)
UPDATE_NIC_FW_GOLDEN_IMAGE="yes"

NVIDIA BlueField DPU BSP v4.7.0 216

pre_bmc_components_update - Shell function called by BFB's install.sh before
updating BMC components (no communication to the BMC is established at this
point)

post_bmc_components_update - Shell function called by BFB's install.sh after
updating BMC components

##
NIC Firmware update
##
WITH_NIC_FW_UPDATE - Update NIC Firmware (Default: yes)
WITH_NIC_FW_UPDATE="yes"

##
Other misc configuration
##

MAC address of the rshim network interface (tmfifo_net0).
#NET_RSHIM_MAC = 00:1a:ca:ff:ff:01

DHCP class identifier for PXE (arbitrary string up to 32 characters)
#PXE_DHCP_CLASS_ID = NVIDIA/BF/PXE

Create dual boot partition scheme (Ubuntu only)
DUAL_BOOT=yes

Upgrade NIC firmware
WITH_NIC_FW_UPDATE=yes

Target storage device for the DPU OS (Default SSD: /dev/nvme0n1)
device=/dev/nvme0n1

bfb_modify_os – SHELL function called after the file system is extracted on the
target partitions.

NVIDIA BlueField DPU BSP v4.7.0 217

Default Network Interface Configuration

Network interfaces are configured using the netplan utility:

It can be used to modify files or create new files on the target file system mounted
under
/mnt. So the file path should look as follows:
/mnt/<expected_path_on_target_OS>. This
can be used to run a specific tool from the target OS (remember to add /mnt to
the path for
the tool).

bfb_pre_install – SHELL function called before partitions format
and OS filesystem is extracted

bfb_post_install – SHELL function called as a last step before reboot.
All partitions are unmounted at this stage.

cat /etc/netplan/50-cloud-init.yaml
This file is generated from information provided by the datasource. Changes
to it will not persist across an instance reboot. To disable cloud-init's
network configuration capabilities, write a file
/etc/cloud/cloud.cfg.d/99-disable-network-config.cfg with the following:
network: {config: disabled}
network:
ethernets:
tmfifo_net0:
addresses:
- 192.168.100.2/30
dhcp4: false
nameservers:
addresses:
- 192.168.100.1

NVIDIA BlueField DPU BSP v4.7.0 218

BlueField DPUs also have a local IPv6 (LLv6) derived from the MAC address via the STD
stack mechanism. For a default MAC, 00:1A:CA:FF:FF:01, the LLv6 address would be
fe80::21a:caff:feff:ff01.

For multi-device support, the LLv6 address works with SSH for any number of DPUs in the
same host by including the interface name in the SSH command:

routes:
- metric: 1025
to: 0.0.0.0/0
via: 192.168.100.1
oob_net0:
dhcp4: true
renderer: NetworkManager
version: 2

cat /etc/netplan/60-mlnx.yaml
network:
ethernets:
enp3s0f0s0:
dhcp4: 'true'
enp3s0f1s0:
dhcp4: 'true'
renderer: networkd
version: 2

host]# systemctl restart rshim
// wait 10 seconds
host]# ssh -6 ubuntu@fe80::21a:caff:feff:ff01%tmfifo_net<n>

Note

If tmfifo_net<n> on the host does not have an LLv6 address, restart the
RShim driver:

NVIDIA BlueField DPU BSP v4.7.0 219

Ubuntu Boot Time Optimizations

To improve the boot time, the following optimizations were made to Ubuntu OS image:

This configuration may affect network interface configuration if DHCP is used. If a
network device fails to get configuration from the DHCP server, then the timeout value in
the two files above must be increased.

Grub Configuration:

Setting the Grub timeout at 2 seconds with GRUB_TIMEOUT=2 under /etc/default/grub. In
conjunction with the GRUB_TIMEOUT_STYLE=countdown parameter, Grub will show the
countdown of 2 seconds in the console before booting Ubuntu. Please note that, with this
short timeout, the standard Grub method for entering the Grub menu (i.e., SHIFT or Esc)
does not work. Function key F4 can be used to enter the Grub menu.

systemctl restart rshim

cat /etc/systemd/system/systemd-networkd-wait-online.service.d/override.conf
[Service]
ExecStart=
ExecStart=/usr/bin/nm-online -s -q --timeout=5

cat /etc/systemd/system/NetworkManager-wait-online.service.d/override.conf
[Service]
ExecStart=
ExecStart=/usr/lib/systemd/systemd-networkd-wait-online --timeout=5

cat /etc/systemd/system/networking.service.d/override.conf
[Service]
TimeoutStartSec=5
ExecStop=
ExecStop=/sbin/ifdown -a --read-environment --exclude=lo --force --ignore-errors

NVIDIA BlueField DPU BSP v4.7.0 220

System Services:

docker.service is disabled in the default Ubuntu OS image as it dramatically affects boot
time.

The kexec utility can be used to reduce the reboot time. Script /usr/sbin/kexec_reboot is
included in the default Ubuntu 20.04 OS image to run corresponding kexec commands.

DHCP Client Configuration

Ubuntu Dual Boot Support

BlueField DPU may be installed with support for dual boot. That is, two identical images
of the BlueField OS may be installed using BFB.

The following is a proposed SSD partitioning layout for 119.24 GB SSD:

Where:

/dev/nvme0n1p1 – boot EFI partition for the first OS image

kexec_reboot

/etc/dhcp/dhclient.conf:
send vendor-class-identifier "NVIDIA/BF/DP";
interface "oob_net0" {
send vendor-class-identifier "NVIDIA/BF/OOB";
}

Device Start End Sectors Size Type
/dev/nvme0n1p1 2048 104447 102400 50M EFI System
/dev/nvme0n1p2 104448 114550086 114445639 54.6G Linux filesystem
/dev/nvme0n1p3 114550087 114652486 102400 50M EFI System
/dev/nvme0n1p4 114652487 229098125 114445639 54.6G Linux filesystem
/dev/nvme0n1p5 229098126 250069645 20971520 10G Linux filesystem

NVIDIA BlueField DPU BSP v4.7.0 221

/dev/nvme0n1p2 – root FS partition for the first OS image

/dev/nvme0n1p3 – boot EFI partition for the second OS image

/dev/nvme0n1p4 – root FS partition for the second OS image

/dev/nvme0n1p5 – common partition for both OS images

For example, the following is a proposed eMMC partitioning layout for a 64GB eMMC:

Where:

/dev/mmcblk0p1 – boot EFI partition for the first OS image

/dev/mmcblk0p2 – root FS partition for the first OS image

/dev/mmcblk0p3 – boot EFI partition for the second OS image

/dev/mmcblk0p4 – root FS partition for the second OS image

/dev/mmcblk0p5 – common partition for both OS images

Installing Ubuntu OS Image Using Dual Boot

Device Start End Sectors Size Type
/dev/mmcblk0p1 2048 104447 102400 50M EFI System
/dev/mmcblk0p2 104448 50660334 50555887 24.1G Linux filesystem
/dev/mmcblk0p3 50660335 50762734 102400 50M EFI System
/dev/mmcblk0p4 50762735 101318621 50555887 24.1G Linux filesystem
/dev/mmcblk0p5 101318622 122290141 20971520 10G Linux filesystem

Note

The common partition can be used to store BFB files that will be
used for OS image update on the non-active OS partition.

NVIDIA BlueField DPU BSP v4.7.0 222

Add the values below to the bf.cfg configuration file (see section "bf.cfg Parameters" for
more information).

If EMMC size is ≤16GB, dual boot support is disabled by default, but it can be forced by
setting the following parameter in bf.cfg:

To modify the default size of the /common partition, add the following parameter:

The number of sectors is the size in bytes divided by the block size (512). For example, for
10GB, the COMMON_SIZE_SECTORS=$((10*2**30/512)).

After assigning size for the /common partition, what remains is divided equally between
the two OS images.

This will result in the Ubuntu OS image to be installed twice on the BlueField DPU.

Note

For software upgrade procedure, please refer to section "Upgrading
Ubuntu OS Image Using Dual Boot".

DUAL_BOOT=yes

FORCE_DUAL_BOOT=yes

COMMON_SIZE_SECTORS=<number-of-sectors>

bfb-install --bfb <BFB> --config bf.cfg --rshim rshim0

Note

NVIDIA BlueField DPU BSP v4.7.0 223

Upgrading Ubuntu OS Image Using Dual Boot

1. Download the new BFB to the BlueField DPU into the /common partition. Use
bfb_tool.py script to install the new BFB on the inactive BlueField DPU partition:

2. Reset BlueField DPU to load the new OS image:

BlueField DPU will now boot into the new OS image.

Use efibootmgr utility to manage the boot order if necessary.

Change the boot order with:

Remove stale boot entries with:

Where <E> is the last character of the boot entry (i.e., Boot000<E>). You can find that
by running:

For comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

/opt/mellanox/mlnx_snap/exec_files/bfb_tool.py --op fw_activate_bfb --bfb
<BFB>

/sbin/shutdown -r 0

efibootmgr -o

efibootmgr -b <E> -B

efibootmgr

NVIDIA BlueField DPU BSP v4.7.0 224

Deploying BlueField Software Using
BFB from BMC

BootCurrent: 0040
Timeout: 3 seconds
BootOrder: 0040,0000,0001,0002,0003
Boot0000* NET-NIC_P0-IPV4
Boot0001* NET-NIC_P0-IPV6
Boot0002* NET-NIC_P1-IPV4
Boot0003* NET-NIC_P1-IPV6
Boot0040* focal0
....2

Note

Modifying the boot order with efibootmgr -o does not remove unused
boot options. For example, changing a boot order from 0001,0002,
0003 to just 0001 does not actually remove 0002 and 0003. 0002 and
0003 need to be explicitly removed using efibootmgr -B .

Info

It is recommended to upgrade your BlueField product to the latest
software and firmware versions available to benefit from new
features and latest bug fixes.

NVIDIA BlueField DPU BSP v4.7.0 225

The following table lists an overview of the steps required to install Ubuntu BFB on your
DPU:

Ste
p

Procedure Direct Link

1 Verify that RShim is already running on BMC Ensure RShim is Running on BMC

2
Change the default credentials using bf.cfg file
(optional)

Changing Default Credentials
Using bf.cfg

3 Install the Ubuntu BFB image BFB Installation

4 Verify installation completed successfully Verify BFB is Installed

5 Upgrade the firmware on your DPU Firmware Upgrade

Note

This section assumes that a BlueField DPU has already been installed
in a server according to the instructions detailed in the DPU's
hardware user guide.

Note

It is important to learn your BlueField's device-id to perform some of
the software installations or upgrades in this guide.

To determine the device ID of the BlueField Platform on your setup,
run:

Example output:

host# mst start
host# mst status -v

https://docs.mellanox.com/category/bluefieldsnic
https://docs.mellanox.com/category/bluefieldsnic

NVIDIA BlueField DPU BSP v4.7.0 226

Ensure RShim is Running on BMC

Display the current setting. Run:

This output indicates that the RShim service is ready to use. If you do not receive this
output:

1. Restart RShim service:

0000018f-6041-db75-a1af-f9cb0cbb0003

MST modules:

MST PCI module is not loaded
MST PCI configuration module loaded
PCI devices:

DEVICE_TYPE MST PCI RDMA NET NUMA
BlueField2(rev:1) /dev/mst/mt41686_pciconf0.1 3b:00.1 mlx5_1
net-ens1f1 0

BlueField2(rev:1) /dev/mst/mt41686_pciconf0 3b:00.0 mlx5_0
net-ens1f0 0

BlueField3(rev:1) /dev/mst/mt41692_pciconf0.1 e2:00.1
mlx5_1 net-ens7f1np1 4

BlueField3(rev:1) /dev/mst/mt41692_pciconf0 e2:00.0
mlx5_0 net-ens7f0np0 4

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME usb-1.0

sudo systemctl restart rshim

NVIDIA BlueField DPU BSP v4.7.0 227

2. Verify the current setting again. Run:

If DEV_NAME does not appear, then proceed to "RShim driver not loading on DPU with
integrated BMC".

Changing Default Credentials Using bf.cfg

Ubuntu users are prompted to change the default password (ubuntu) for the default user
(ubuntu) upon first login. Logging in will not be possible even if the login prompt appears
until all services are up ("DPU is ready" message appears in /dev/rshim0/misc).

Alternatively, Ubuntu users can provide a unique password that will be applied at the end
of the BFB installation. This password must be defined in a bf.cfg configuration file. To set
the password for the ubuntu user:

1. Create password hash. Run:

cat /dev/rshim<N>/misc | grep DEV_NAME

Note

For comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

Note

Attempting to log in before all services are up prints the following
message: Permission denied, please try again.

openssl passwd -1
Password:

https://docs.nvidia.com//networking/display/bluefielddpuosv470/RShim+Troubleshooting+and+How-Tos#src-2821766775_RShimTroubleshootingandHowTos-RShimdrivernotloadingonDPUwithintegratedBMC
https://docs.nvidia.com//networking/display/bluefielddpuosv470/RShim+Troubleshooting+and+How-Tos#src-2821766775_RShimTroubleshootingandHowTos-RShimdrivernotloadingonDPUwithintegratedBMC
file:///networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-bf.cfgParameters

NVIDIA BlueField DPU BSP v4.7.0 228

2. Add the password hash in quotes to the bf.cfg file:

The bf.cfg file is used with the bfb-install script in the steps that follow.

Password Policy

The following table provides the password policy parameters.

Config File Path
Param
eter

Value Description

/etc/security/pwqu
ality.conf

minlen 12 Minimum password length

/etc/pam.d/commo
n-password

rememb
er 3

The number of previous passwords which cannot
be reused

/etc/security/failloc
k.conf

silent
Uncomm
ented

Prevents printing informative messages to the
user

deny 10
The number of authentication attempts
permitted before the user is locked out

unlock_ti
me 600 The duration, in seconds, of the lockout period

Verifying - Password:
$1$3B0RIrfX$TlHry93NFUJzg3Nya00rE1

vim bf.cfg
ubuntu_PASSWORD='$1$3B0RIrfX$TlHry93NFUJzg3Nya00rE1'

Info

Each of these parameters is configurable in its respective config file
indicated in the "Config File Path" column.

NVIDIA BlueField DPU BSP v4.7.0 229

BFB Installation

To update the software on the BlueField DPU, the DPU must be booted up without
mounting the eMMC flash device. This requires an external boot flow where a BFB (which
includes ATF, UEFI, Arm OS, NIC firmware, and initramfs) is pushed from an external host
via USB or PCIe. On BlueField DPUs with an integrated BMC, the USB interface is
internally connected to the BMC and is enabled by default. Therefore, you must verify
that the RShim driver is running on the BMC. This provides the ability to push a
bootstream over the USB interface to perform an external boot.

The BFB installation procedure consists of the following main stages:

1. Enabling RShim on the BMC. See section "Enable RShim on DPU BMC" for
instructions.

2. Initiating the BFB update procedure by transferring the BFB image using one of the
following options:

Direct SCP

1. Running an SCP command.
Redfish interface

1. Confirming the identity of the host and BMC—required only during first-
time setup or after BMC factory reset.

2. Sending a Simple-Update request.

Transferring BFB Image

Since the BFB is too large to store on the BMC flash or tmpfs, the image must be written
to the RShim device. This can be done by either running SCP directly or using the Redfish

Info

Please refer to the "Default Passwords and Policies" section for more
password policy information.

file:///networking/display/bluefielddpuosv470/Default+Passwords+and+Policies

NVIDIA BlueField DPU BSP v4.7.0 230

interface.

Redfish Interface

The following is a simple sequence diagram illustrating the flow of the BFB installation
process.

NVIDIA BlueField DPU BSP v4.7.0 231

The following are detailed instructions outlining each step in the diagram:

1. Confirm the identity of the remote server (i.e., host holding the BFB image) and
BMC.

NVIDIA BlueField DPU BSP v4.7.0 232

1. Run the following on the remote server:

Where:

key_type – the type of key associated with the server storing the BFB file
(e.g., ed25519)
remote_server_ip – the IP address of the server hosting the BFB file

2. Retrieve the public key of the host holding the BFB image from the response
and provide the remote server's credentials to the DPU using the following
command:

Where:

remote_server_ip – the IP address of the server hosting the BFB file
remote_server_public_key – remote server's public key from the ssh-
keyscan response, which contains both the type and the public key with a
space between the two fields (i.e., "<type> <public_key>").
bmc_ip – BMC IP address

3. Extract the BMC public key information (i.e., "<type> <bmc_public_key>
<username>@<hostname>") from the PublicKeyExchange response and
append it to the authorized_keys file on the host holding the BFB image. This
enables passwordless key-based authentication for users.

Info

Required only during first-time setup or after BMC factory reset.

ssh-keyscan -t <key_type> <remote_server_ip>

curl -k -u root:'<password>' -H "Content-Type: application/json" -X POST -
d '{"RemoteServerIP":"<remote_server_ip>", "RemoteServerKeyString":"
<remote_server_public_key>"}'
https://<bmc_ip>/redfish/v1/UpdateService/Actions/Oem/NvidiaUpdateServ

{
"@Message.ExtendedInfo": [

NVIDIA BlueField DPU BSP v4.7.0 233

4. If the remote server public key must be revoked, use the following command
before repeating the previous step:

Where:

remote_server_ip – remote server's IP address
bmc_ip – BMC IP address

2. Start BFB image transfer using the following command on the remote server:

{
"@odata.type": "#Message.v1_1_1.Message",
"Message": "Please add the following public
key info to ~/.ssh/authorized_keys on the
remote server",
"MessageArgs": [
"<type> <bmc_public_key> root@dpu-bmc"
]
},
{
"@odata.type": "#Message.v1_1_1.Message",
"Message": "The request completed
successfully.",
"MessageArgs": [],
"MessageId": "Base.1.15.0.Success",
"MessageSeverity": "OK",
"Resolution": "None"
}
]
}

curl -k -u root:'<password>' -H "Content-Type: application/json" -X POST -
d '{"RemoteServerIP":"<remote_server_ip>"}'
https://<bmc_ip>/redfish/v1/UpdateService/Actions/Oem/NvidiaUpdateServ

curl -k -u root:'<password>' -H "Content-Type: application/json" -X POST -d
'{"TransferProtocol":"SCP", "ImageURI":"<image_uri>","Targets":
["redfish/v1/UpdateService/FirmwareInventory/DPU_OS"], "Username":"

NVIDIA BlueField DPU BSP v4.7.0 234

Where:

image_uri – the image URI format should be
<remote_server_ip>/<path_to_bfb>
username – username on the remote server
bmc_ip – BMC IP address

Examples:

If RShim is disabled:

<username>"}'
https://<bmc_ip>/redfish/v1/UpdateService/Actions/UpdateService.SimpleUpdate

Info

After the BMC boots, it may take a few seconds (6-8 in NVIDIA®
BlueField®-2, and 2 in BlueField-3) until the DPU BSP (DPU_OS) is
up.

Note

This command uses SCP for the image transfer, initiates a soft
reset on the BlueField and then pushes the boot stream. For
Ubuntu BFBs, the eMMC is flashed automatically once the
bootstream is pushed. On success, a "running" message is
received with the current task ID.

{
 "error": {
 "@Message.ExtendedInfo": [
{

NVIDIA BlueField DPU BSP v4.7.0 235

If a username or any other required field is missing:

 "@odata.type": "#Message.v1_1_1.Message",
 "Message": "The requested resource of type Target named
'/dev/rshim0/boot' was not found.",
 "MessageArgs": [
 "Target",
 "/dev/rshim0/boot"
],
 "MessageId": "Base.1.15.0.ResourceNotFound",
 "MessageSeverity": "Critical",
 "Resolution": "Provide a valid resource identifier and resubmit
the request."
}
],
 "code": "Base.1.15.0.ResourceNotFound",
 "message": "The requested resource of type Target named
'/dev/rshim0/boot' was not found."
}

{
"Username@Message.ExtendedInfo": [
{
"@odata.type": "#Message.v1_1_1.Message",
"Message": "The create operation failed because the required
property Username was missing from the request.",
"MessageArgs": [
"Username"
],
"MessageId": "Base.1.15.0.CreateFailedMissingReqProperties",
"MessageSeverity": "Critical",
"Resolution": "Correct the body to include the required property
with a valid value and resubmit the request if the operation failed."
}
]
}

NVIDIA BlueField DPU BSP v4.7.0 236

If the request is valid and a task is created:

3. Wait 2 seconds and run the following on the host to track image transfer progress:

Where:

1. bmc_ip – BMC IP address
2. task_id – task ID

{
"@odata.id":
"/redfish/v1/TaskService/Tasks/<task_id>",
"@odata.type": "#Task.v1_4_3.Task",
"Id": "<task_id>",
"TaskState": "Running",
"TaskStatus": "OK"
}

curl -k -u root:'<password>' -X GET
https://<bmc_ip>/redfish/v1/TaskService/Tasks/<task_id>

Note

The transfer takes ~8 minutes for BlueField-3, and ~40 minutes
for BlueField-2. During the transfer, the PercentComplete value
remains at 0. If no errors occur, the TaskState is set to Running, and
a keep-alive message is generated every 5 minutes with the
content "Transfer is still in progress (X minutes elapsed). Please
wait". Once the transfer is completed, the PercentComplete is set
to 100, and the TaskState is updated to Completed.

Upon failure, a message is generated with the relevant
resolution.

NVIDIA BlueField DPU BSP v4.7.0 237

Troubleshooting:

If host identity is not confirmed or the provided host key is wrong:

If the BMC identity is not confirmed:

{
"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Transfer of image '<file_name>' to '/dev/rshim0/boot'
failed.",
"MessageArgs": [
"<file_name>,
"/dev/rshim0/boot"
],
"MessageId": "Update.1.0.TransferFailed",
"Resolution": " Unknown Host: Please provide server's public key
using PublicKeyExchange ",
"Severity": "Critical"
}
…
"PercentComplete": 0,
"StartTime": "<start_time>",
"TaskMonitor": "/redfish/v1/TaskService/Tasks/<task_id>/Monitor",
"TaskState": "Exception",
"TaskStatus": "Critical"

Info

In this case, revoke the remote server key (step 1.d.),
and repeat steps 1.a. to 1.c.

{

NVIDIA BlueField DPU BSP v4.7.0 238

If SCP fails:

"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Transfer of image '<file_name>' to '/dev/rshim0/boot'
failed.",
"MessageArgs": [
"<file_name>",
"/dev/rshim0/boot"
],
"MessageId": "Update.1.0.TransferFailed",
"Resolution": "Unauthorized Client: Please use the
PublicKeyExchange action to receive the system's public key and
add it as an authorized key on the remote server",
"Severity": "Critical"
}
…
"PercentComplete": 0,
"StartTime": "<start_time>",
"TaskMonitor": "/redfish/v1/TaskService/Tasks/<task_id>/Monitor",
"TaskState": "Exception",
"TaskStatus": "Critical"

Info

In this case, verify that the BMC key has been added
correctly to the authorized_key file on the remote
server.

{
"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Transfer of image '<file_name>' to '/dev/rshim0/boot'
failed.",
"MessageArgs": [
"<file_name>",

NVIDIA BlueField DPU BSP v4.7.0 239

The keep-alive message:

Upon completion of transfer of the BFB image to the DPU, the following
is received:

"/dev/rshim0/boot"
],
"MessageId": "Update.1.0.TransferFailed",
"Resolution": "Failed to launch SCP",
"Severity": "Critical"
}
…
"PercentComplete": 0,
"StartTime": "<start_time>",
"TaskMonitor": "/redfish/v1/TaskService/Tasks/<task_id>/Monitor",
"TaskState": "Exception",
"TaskStatus": "Critical"

{
"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": " <file_name>' is being transferred to
'/dev/rshim0/boot'.",
"MessageArgs": [
" <file_name>",
"/dev/rshim0/boot"
],
"MessageId": "Update.1.0.TransferringToComponent",
"Resolution": "Transfer is still in progress (5 minutes elapsed):
Please wait",
"Severity": "OK"
}
…
"PercentComplete": 0,
"StartTime": "<start_time>",
"TaskMonitor": "/redfish/v1/TaskService/Tasks/<task_id>/Monitor",
"TaskState": "Running",
"TaskStatus": "OK"

NVIDIA BlueField DPU BSP v4.7.0 240

4. When the BFB transfer is complete, dump the current RShim miscellaneous
messages to check the update status.

5. Verify that the new BFB is running by checking its version:

{
"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Device 'DPU' successfully updated with image
'<file_name>'.",
"MessageArgs": [
"DPU",
"<file_name>"
],
"MessageId": "Update.1.0.UpdateSuccessful",
"Resolution": "None",
"Severity": "OK"
},
…
"PercentComplete": 100,
"StartTime": "<start_time>",
"TaskMonitor": "/redfish/v1/TaskService/Tasks/<task_id>/Monitor",
"TaskState": "Completed",
"TaskStatus": "OK"

Info

Refer to section "BMC Dump Operations" under "BMC and
BlueField Logs" for information on dumping the rshim.log which
contains the current RShim miscellaneous messages.

curl -k -u root:'<password>' -H "Content-Type: application/json" -X GET

NVIDIA BlueField DPU BSP v4.7.0 241

Direct SCP

If bf.cfg is required as part of the boot process, run:

Verify BFB is Installed

After installation of the Ubuntu OS is complete, the following note appears in
/dev/rshim0/misc on first boot:

"DPU is ready" indicates that all the relevant services are up and users can login the
system.

After the installation of the Ubuntu 20.04 BFB, the configuration detailed in the following
sections is generated.

https://<bmc_ip>/redfish/v1/UpdateService/FirmwareInventory/DPU_OS

scp <path_to_bfb> root@<bmc_ip>:/dev/rshim0/boot

cat <path_to_bfb> bf.cfg > new.bfb
scp <path to new.bfb> root@<bmc_ip>:/dev/rshim0/boot

Note
For comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

...
INFO[MISC]: Linux up
INFO[MISC]: DPU is ready

https://docs.nvidia.com/networking/display/bluefielddpuosv470/deploying+bluefield+software+using+bfb+from+host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-bf.cfgParametersbf.cfgParameters

NVIDIA BlueField DPU BSP v4.7.0 242

BlueField OS image version is stored under /etc/mlnx-release in the BlueField:

Firmware Upgrade

To upgrade firmware:

1. Access the BlueField using one of the available interfaces (RShim console, BMC
console, SSH via oob_net0 or tmfifo_net0 interfaces).

2. Upgrade the firmware on the DPU. Run:

Example output:

Note

Make sure all the services (including cloud-init) are started on
BlueField and to perform a graceful shutdown before power cycling
the host server.

cat /etc/mlnx-release
bf-bundle-2.7.0-<version>_ubuntu-22.04_prod

sudo /opt/mellanox/mlnx-fw-updater/mlnx_fw_updater.pl --force-fw-update

Device #1:

Device Type: BlueField-2
[...]
Versions: Current Available
FW <Old_FW> <New_FW>

NVIDIA BlueField DPU BSP v4.7.0 243

3. Perform a BlueField system reboot for the upgrade to take effect.

Updating NVConfig Params

1. Optional. To reset the BlueField NIC firmware configuration (aka Nvconfig params)
to their factory default values, run the following from the BlueField ARM OS or from
the host OS:

Note

Important! To apply NVConfig changes, stop here and follow
the steps in section "Updating NVConfig Params". In this case,
the following step #3 is redundant.

sudo mlxconfig -d /dev/mst/<MST device> -y reset

Reset configuration for device /dev/mst/<MST device>? (y/n) [n] : y
Applying... Done!
-I- Please reboot machine to load new configurations.

Note

For now, please ignore tool's instruction to reboot

Note

To learn what MST device the BlueField DPU has on your setup,
run:

https://confluence.nvidia.com/display/docadev/.NVIDIA+BlueField+Reset+and+Reboot+Procedures+v2.7.0#id-.NVIDIABlueFieldResetandRebootProceduresv2.7.0-BlueFieldSystemReboot

NVIDIA BlueField DPU BSP v4.7.0 244

Example output taken on a multiple DPU host:

The MST device IDs for the BlueField-2 and BlueField-3 DPUs in
this example are /dev/mst/mt41686_pciconf0 and
/dev/mst/mt41692_pciconf0 respectively.

mst start
mst status

// The MST device corresponds with PCI Bus address.

MST modules:

MST PCI module is not loaded
MST PCI configuration module loaded

MST devices:

/dev/mst/mt41692_pciconf0 - PCI configuration cycles
access.
domain:bus:dev.fn=0000:03:00.0 addr.reg=88 data.reg=92
cr_bar.gw_offset=-1
Chip revision is: 01
/dev/mst/mt41692_pciconf1 - PCI configuration cycles
access.
domain:bus:dev.fn=0000:83:00.0 addr.reg=88 data.reg=92
cr_bar.gw_offset=-1
Chip revision is: 01
/dev/mst/mt41686_pciconf0 - PCI configuration cycles
access.
domain:bus:dev.fn=0000:a3:00.0 addr.reg=88 data.reg=92
cr_bar.gw_offset=-1
Chip revision is: 01

NVIDIA BlueField DPU BSP v4.7.0 245

2. (Optional) Enable NVMe emulation. Run:

3. Skip this step if your BlueField DPU is Ethernet only. Please refer to section
"Supported Platforms and Interoperability" under the Release Notes to learn your
DPU type.

If you have a VPI DPU, the default link type of the ports will be configured to IB. If
you want to change the link type to Ethernet, please run the following configuration:

4. Perform a BlueField system-level reset for the new settings to take effect.

Deploying BlueField Software Using
BFB with PXE

PXE Server Preparations

sudo mlxconfig -d <MST device> -y s NVME_EMULATION_ENABLE=1

sudo mlxconfig -d <MST device> -y s LINK_TYPE_P1=2 LINK_TYPE_P2=2

Info

It is recommended to upgrade your BlueField product to the latest
software and firmware versions available to benefit from new
features and latest bug fixes.

Note

PXE installation is not supported for NIC mode on NVIDIA®
BlueField®-3.

https://confluence.nvidia.com/display/docadev/.NVIDIA+BlueField+Reset+and+Reboot+Procedures+v2.7.0#id-.NVIDIABlueFieldResetandRebootProceduresv2.7.0-BlueFieldSystemLevelReset

NVIDIA BlueField DPU BSP v4.7.0 246

1. Provide the image from BFB file. Run:

For example:

2. Copy the 2 dumped files, dump-image-v0 and dump-initramfs-v0 into the PXE server tftp
path.

3. In the PXE server create a boot entry. For example:

If additional parameters must be set, use the bf.cfg configuration file, then add the
bfks parameter to the Linux command line in the grub.cfg above.

mlx-mkbfb -x <BFB>

mlx-mkbfb -x DOCA_2.6.0_BSP_4.6.0_Ubuntu_22.04-<version>.bfb

Note

mlx-mkbfb is a Python script that can be found in BlueField
release tarball under the /bin directory or in the BlueField Arm
file system /usr/bin/mlx-mkbfb.

/var/lib/tftpboot/grub.cfg

set default=0
set timeout=5
menuentry 'Bluefield_Ubuntu_22_04_From_BFB' --class red --class gnu-linux --
class gnu --class os {
linux (tftp)/ubuntu22.04/dump-image-v0 ro ip=dhcp console=hvc0
console=ttyAMA0
initrd (tftp)/ubuntu22.04/dump-initramfs-v0
}

NVIDIA BlueField DPU BSP v4.7.0 247

Where bfks is a BASH script that will run by BFB's install.sh script at the beginning of
the BFB installation process. Here is an example of bfks that creates a /etc/bf.cfg file:

4. Define DHCP.

menuentry 'Ubuntu22.04 From BFB with bf.cfg' --class red --class gnu-linux --
class gnu --class os {
linux (tftp)/ubuntu22.04/dump-image-v0 console=hvc0 console=ttyAMA0
bfnet=oob_net0:dhcp bfks=http://15.22.82.40/bfks
initrd (tftp)/ubuntu22.04/dump-initramfs-v0
}

cat > /etc/bf.cfg << 'EOF'
DEBUG=yes
ubuntu_PASSWORD='$1$3B0RIrfX$TlHry93NFUJzg3Nya00rE1'
EOF

/etc/dhcp/dhcpd.conf

allow booting;
allow bootp;

subnet 192.168.100.0 netmask 255.255.255.0 {
range 192.168.100.10 192.168.100.20;
option broadcast-address 192.168.100.255;
option routers 192.168.100.1;
option domain-name-servers <ip-address-list>
option domain-search <domain-name-list>;
next-server 192.168.100.1;
filename "/BOOTAA64.EFI";
}

Specify the IP address for this client.
host tmfifo_pxe_client {
hardware ethernet 00:1a:ca:ff:ff:01;

NVIDIA BlueField DPU BSP v4.7.0 248

PXE Sequence

1. Connect to the BlueField console via UART or RShim console.

2. Reboot Arm.

3. Interrupt the boot process into UEFI menu.

4. Access the Boot Manager menu.

5. Select the relevant port to PXE from.

fixed-address 192.168.100.2;
}
subnet 20.7.0.0 netmask 255.255.0.0 {
range 20.7.8.10 20.7.254.254;
next-server 20.7.6.6;
filename "/BOOTAA64.EFI";
}

NVIDIA BlueField DPU BSP v4.7.0 249

PXE Sequence with Redfish

ISO upgrade via Redfish to set UEFI HTTPs/PXE boot by setting UEFI first boot source. To
set the UEFI first boot source using Redfish:

1. Follow the instructions under section "PXE Server Preparations".

2. Check the current boot override settings by doing a GET on the ComputerSystem
schema over 1GbE to the DPU's BMC. Look for the "Boot" property.

curl -k -X GET -u root:<password> https://<DPU-BMC-
IP>/redfish/v1/Systems/<SystemID>/ | python3 -m json.tool
{
...
"Boot": {
"BootNext": "",
"BootOrderPropertySelection": "BootOrder",
"BootSourceOverrideEnabled": "Disabled",
"BootSourceOverrideMode": "UEFI",
"BootSourceOverrideTarget": "None",

NVIDIA BlueField DPU BSP v4.7.0 250

Boot override enables overriding the first boot source, either once or continuously.

3. The sample output above shows the BootSourceOverrideEnabled property is Disabled and
BootSourceOverrideTarget is None. The BootSourceOverrideMode property should always be
set to UEFI. Allowable values of BootSourceOverrideEnabled and BootSourceOverrideTarget

are defined in the metadata (BootSourceOverrideEnabled@Redfish.AllowableValues and
BootSourceOverrideTarget@Redfish.AllowableValues respectively).

4. If BootSourceOverrideEnabled is set to Once, after the first boot, boot override is disabled,
and any related properties are reset to their former values to avoid repetition. If it is
set to Continuous, then on every reboot the DPU keeps performing boot override
(HTTPBoot).

5. To perform boot override, perform a PATCH to pending settings URI over 1GbE to
the DPU's BMC.

"UefiTargetBootSourceOverride": "None",
.....
},
....
"BootSourceOverrideEnabled@Redfish.AllowableValues": [
"Once",
"Continuous",
"Disabled"
],
"BootSourceOverrideTarget@Redfish.AllowableValues": [
"None",
"Pxe",
"UefiHttp",
"UefiShell",
"UefiTarget",
"UefiBootNext"
],
....
}

NVIDIA BlueField DPU BSP v4.7.0 251

For example:

6. After performing the above PATCH successfully, reboot the DPU using Redfish
Manager schema over 1GbE to the DPU's BMC:

7. Once UEFI has completed, check whether the settings are applied by performing a
GET on ComputerSystem schema over 1GbE OOB to the DPU BMC.

curl -k -X PATCH -d '{"Boot": {"BootSourceOverrideEnabled":"Once",
"BootSourceOverrideMode":"UEFI", "BootSourceOverrideTarget": "UefiHttp",
"HttpBootUri":"http://<HTTP-Server-Ip>/Image.iso"}}' -u root:<password>
https://<DPU-BMC-IP>/redfish/v1/Systems/<SystemID>/Settings | python3 -m
json.tool

curl -k -X GET -u root:<password> https://<DPU-BMC-
IP>/redfish/v1/Systems/<SystemID>/ | python3 -m json.tool
{
...
"Boot": {
"BootNext": "",
"BootOrderPropertySelection": "BootOrder",
"BootSourceOverrideEnabled": "Once",
"BootSourceOverrideMode": "UEFI",
"BootSourceOverrideTarget": "UefiHttp",
"UefiTargetBootSourceOverride": "None",
.....
},
.....
}

curl -k -u root:<password> -H "Content-Type: application/json" -X POST
https://<DPU-BMC-
IP>/redfish/v1/Systems/Bluefield/Actions/ComputerSystem.Reset -d
'{"ResetType" : "GracefulRestart"}'

NVIDIA BlueField DPU BSP v4.7.0 252

Deploying NVIDIA Converged
Accelerator

This section assumes that you have installed the BlueField OS BFB on your NVIDIA®
Converged Accelerator using any of the following guides:

Deploying DPU OS Using BFB from Host

Deploying BlueField Software Using BFB from BMC

Deploying BlueField Software Using BFB with PXE

NVIDIA® CUDA® (GPU driver) must be installed in order to use the GPU. For information
on how to install CUDA on your Converged Accelerator, refer to NVIDIA CUDA Installation
Guide for Linux.

Configuring Operation Mode

Note

The HttpBootUri property is parsed by the Redfish server and the
URI is presented to the DPU as part of DHCP lease when the
DPU performs the HTTP boot.

Info

It is recommended to upgrade your BlueField product to the latest
software and firmware versions available to benefit from new
features and latest bug fixes.

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+BMC
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+with+PXE
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

NVIDIA BlueField DPU BSP v4.7.0 253

After installing the BFB, you may now select the mode you want your NVIDIA Converged
Accelerator to operate in.

Standard (default) – the NVIDIA® BlueField® DPU and the GPU operate separately
(GPU is owned by the host)

BlueField-X – the GPU is exposed to the DPU and is no longer visible on the host
(GPU is owned by the DPU)

Note

It is important to know your device name (e.g., mt41686_pciconf0).

MST tool is necessary for this purpose which is installed by default on
the DPU.

Run:

Example output:

mst status -v

MST modules:

MST PCI module is not loaded
MST PCI configuration module loaded
PCI devices:

DEVICE_TYPE MST PCI RDMA NET NUMA
BlueField2(rev:1) /dev/mst/mt41686_pciconf0.1 3b:00.1 mlx5_1
net-ens1f1 0

BlueField2(rev:1) /dev/mst/mt41686_pciconf0 3b:00.0 mlx5_0
net-ens1f0 0

NVIDIA BlueField DPU BSP v4.7.0 254

BlueField-X Mode

1. Run the following command from the host:

2. P erform a BlueField system-level reset for the mlxconfig settings to take effect.

Standard Mode

To return the DPU from BlueField-X mode to Standard mode:

1. Run the following command from the host:

2. P erform a BlueField system-level reset for the mlxconfig settings to take effect.

Verifying Configured Operational Mode

Use the following command from the host or BlueField:

Example of Standard mode output:

mlxconfig -d /dev/mst/<device-name> s
PCI_DOWNSTREAM_PORT_OWNER[4]=0xF

mlxconfig -d /dev/mst/<device-name> s
PCI_DOWNSTREAM_PORT_OWNER[4]=0x0

$ sudo mlxconfig -d /dev/mst/<device-name> q
PCI_DOWNSTREAM_PORT_OWNER[4]

Device #1:

https://docs.nvidia.com//networking/display/bluefielddpuosv470/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-2821766774_NVIDIABlueFieldResetandRebootProcedures-BlueFieldsystem-levelreset
https://docs.nvidia.com//networking/display/bluefielddpuosv470/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-2821766774_NVIDIABlueFieldResetandRebootProcedures-BlueFieldsystem-levelreset

NVIDIA BlueField DPU BSP v4.7.0 255

Example of BlueField-X mode output:

Verifying GPU Ownership

The following are example outputs for when the DPU is configured to BlueField-X mode.

The GPU is no longer visible from the host:

The GPU is now visible from the DPU:

GPU Firmware

Get GPU Firmware

[...]

Configurations: Next Boot
PCI_DOWNSTREAM_PORT_OWNER[4] DEVICE_DEFAULT(0)

Device #1:

[...]

Configurations: Next Boot
PCI_DOWNSTREAM_PORT_OWNER[4] EMBEDDED_CPU(15)

root@host:~# lspci | grep -i nv
None

ubuntu@dpu:~$ lspci | grep -i nv
06:00.0 3D controller: NVIDIA Corporation GA20B8 (rev a1)

smbpbi: (See SMBPBI spec)

NVIDIA BlueField DPU BSP v4.7.0 256

Updating GPU Firmware

root@dpu:~# i2cset -y 3 0x4f 0x5c 0x05 0x08 0x00 0x80 s
root@dpu:~# i2cget -y 3 0x4f 0x5c ip 5
5: 0x04 0x05 0x08 0x00 0x5f
root@dpu:~# i2cget -y 3 0x4f 0x5d ip 5
5: 0x04 0x39 0x32 0x2e 0x30
root@dpu:~#
root@dpu:~#
root@dpu:~# i2cset -y 3 0x4f 0x5c 0x05 0x08 0x01 0x80 s
root@dpu:~# i2cget -y 3 0x4f 0x5c ip 5
5: 0x04 0x05 0x08 0x01 0x5f
root@dpu:~# i2cget -y 3 0x4f 0x5d ip 5
5: 0x04 0x30 0x2e 0x36 0x42
root@dpu:~# i2cset -y 3 0x4f 0x5c 0x05 0x08 0x02 0x80 s
root@dpu:~# i2cget -y 3 0x4f 0x5c ip 5
5: 0x04 0x05 0x08 0x02 0x5f
root@dpu:~# i2cget -y 3 0x4f 0x5d ip 5
5: 0x04 0x2e 0x30 0x30 0x2e
root@dpu:~# i2cset -y 3 0x4f 0x5c 0x05 0x08 0x03 0x80 s
root@dpu:~# i2cget -y 3 0x4f 0x5c ip 5
5: 0x04 0x05 0x08 0x03 0x5f
root@dpu:~# i2cget -y 3 0x4f 0x5d ip 5
5: 0x04 0x30 0x31 0x00 0x00
root@dpu:~#

39 32 2e 30 30 2e 36 42 2e 30 30 2e 30 31 00 00 → 92.00.6B.00.01

root@dpu:~# scp root@10.23.201.227:/<path-to-fw-
bin>/1004_0230_891__92006B0001-dbg-ota.bin /tmp/gpu_images/
root@10.23.201.227's password:
1004_0230_891__92006B0001-dbg-ota.bin 100% 384KB 384.4KB/s 00:01

root@dpu:~# cat /tmp/gpu_images/progress.txt

NVIDIA BlueField DPU BSP v4.7.0 257

Installing Repo Package on Host Side

The following procedure instructs users on upgrading DOCA local repo package for host.

Removing Previously Installed DOCA Runtime Packages

If an older DOCA software version is installed on your host, make sure to uninstall it
before proceeding with the installation of the new version:

Ubuntu

TaskState="Running"
TaskStatus="OK"
TaskProgress="50"

root@dpu:~# cat /tmp/gpu_images/progress.txt
TaskState="Running"
TaskStatus="OK"
TaskProgress="50"

root@dpu:~# cat /tmp/gpu_images/progress.txt
TaskState=Frimware update succeeded.
TaskStatus=OK
TaskProgress=100

Note

This section assumes that a BlueField DPU has already been installed
in a server according to the instructions detailed in the DPU's
hardware user guide.

host# for f in $(dpkg --list | grep doca | awk '{print $2}'); do echo $f ;
apt remove --purge $f -y ; done

https://docs.mellanox.com/category/bluefieldsnic
https://docs.mellanox.com/category/bluefieldsnic

NVIDIA BlueField DPU BSP v4.7.0 258

CentOS/R
HEL

Downloading DOCA Runtime Packages

The following table provides links to DOCA Runtime packages depending on the OS
running on your host.

OS Arch Link

Alinux 3.2 x86 doca-host-2.7.0-204000_24.04_alinux32.x86_64.rpm

Anolis

aarch6
4

doca-host-2.7.0-204000_24.04_anolis86.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_anolis86.x86_64.rpm

BCLinux 21.10 SP2

aarch6
4

doca-host-2.7.0-
204000_24.04_bclinux2110sp2.aarch64.rpm

x86
doca-host-2.7.0-
204000_24.04_bclinux2110sp2.x86_64.rpm

CTyunOS 2.0

aarch6
4

doca-host-2.7.0-204000_24.04_ctyunos20.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_ctyunos20.x86_64.rpm

CTyunOS 23.01

aarch6
4

doca-host-2.7.0-204000_24.04_ctyunos2301.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_ctyunos2301.x86_64.rpm

Debian 10.13

aarch6
4

doca-host_2.7.0-204000-24.04-debian1013_arm64.deb

x86 doca-host_2.7.0-204000-24.04-debian1013_amd64.deb

Debian 10.8

aarch6
4

doca-host_2.7.0-204000-24.04-debian108_arm64.deb

x86 doca-host_2.7.0-204000-24.04-debian108_amd64.deb

host# sudo apt-get autoremove

host# for f in $(rpm -qa |grep -i doca) ; do yum -y remove $f; done
host# yum autoremove
host# yum makecache

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_alinux32.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_anolis86.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_anolis86.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_bclinux2110sp2.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_bclinux2110sp2.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_bclinux2110sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_bclinux2110sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos20.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos20.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos2301.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ctyunos2301.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian1013_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian1013_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian108_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian108_amd64.deb

NVIDIA BlueField DPU BSP v4.7.0 259

OS Arch Link

Debian 10.9 x86 doca-host_2.7.0-204000-24.04-debian109_amd64.deb

Debian 11.3

aarch6
4

doca-host_2.7.0-204000-24.04-debian113_arm64.deb

x86 doca-host_2.7.0-204000-24.04-debian113_amd64.deb

Debian 12.1

aarch6
4

doca-host_2.7.0-204000-24.04-debian121_arm64.deb

x86 doca-host_2.7.0-204000-24.04-debian121_amd64.deb

EulerOS 20 SP11

aarch6
4

doca-host-2.7.0-
204000_24.04_euleros20sp11.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_euleros20sp11.x86_64.rpm

EulerOS 20 SP12

aarch6
4

doca-host-2.7.0-
204000_24.04_euleros20sp12.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_euleros20sp12.x86_64.rpm

Fedora32 x86 doca-host-2.7.0-204000_24.04_fc32.x86_64.rpm

Kylin 1.0 SP2

aarch6
4

doca-host-2.7.0-204000_24.04_kylin10sp2.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_kylin10sp2.x86_64.rpm

Kylin 1.0 SP3

aarch6
4

doca-host-2.7.0-204000_24.04_kylin10sp3.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_kylin10sp3.x86_64.rpm

Mariner 2.0 x86 doca-host-2.7.0-204000_24.04_mariner20.x86_64.rpm

Oracle Linux 7.9 x86 doca-host-2.7.0-204000_24.04_ol79.x86_64.rpm

Oracle Linux 8.4 x86 doca-host-2.7.0-204000_24.04_ol84.x86_64.rpm

Oracle Linux 8.6 x86 doca-host-2.7.0-204000_24.04_ol86.x86_64.rpm

Oracle Linux 8.7 x86 doca-host-2.7.0-204000_24.04_ol87.x86_64.rpm

Oracle Linux 8.8 x86 doca-host-2.7.0-204000_24.04_ol88.x86_64.rpm

Oracle Linux 9.0 x86 doca-host-2.7.0-204000_24.04_ol90.x86_64.rpm

Oracle Linux 9.1 x86 doca-host-2.7.0-204000_24.04_ol91.x86_64.rpm

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian109_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian113_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian113_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian121_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-debian121_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp11.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp11.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp11.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp12.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp12.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_euleros20sp12.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_fc32.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp2.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp3.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_kylin10sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_mariner20.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol79.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol84.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol86.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol87.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol88.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol90.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol91.x86_64.rpm

NVIDIA BlueField DPU BSP v4.7.0 260

OS Arch Link

Oracle Linux 9.2 x86 doca-host-2.7.0-204000_24.04_ol92.x86_64.rpm

openEuler 20.03
SP3

aarch6
4

doca-host-2.7.0-
204000_24.04_openeuler2003sp3.aarch64.rpm

x86
doca-host-2.7.0-
204000_24.04_openeuler2003sp3.x86_64.rpm

openEuler 22.03

aarch6
4

doca-host-2.7.0-
204000_24.04_openeuler2203.aarch64.rpm

x86
doca-host-2.7.0-
204000_24.04_openeuler2203.x86_64.rpm

RHEL/CentOS 8.0

aarch6
4

doca-host-2.7.0-204000_24.04_rhel80.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel80.x86_64.rpm

RHEL/CentOS 8.1

aarch6
4

doca-host-2.7.0-204000_24.04_rhel81.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel81.x86_64.rpm

RHEL/CentOS 8.2

aarch6
4

doca-host-2.7.0-204000_24.04_rhel82.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel82.x86_64.rpm

RHEL/CentOS 8.3

aarch6
4

doca-host-2.7.0-204000_24.04_rhel83.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel83.x86_64.rpm

RHEL/CentOS 8.4

aarch6
4

doca-host-2.7.0-204000_24.04_rhel84.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel84.x86_64.rpm

RHEL/CentOS 8.5

aarch6
4

doca-host-2.7.0-204000_24.04_rhel85.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel85.x86_64.rpm

RHEL/Rocky 8.6

aarch6
4

doca-host-2.7.0-204000_24.04_rhel86.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel86.x86_64.rpm

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_ol92.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2003sp3.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2003sp3.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2003sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2003sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2203.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2203.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2203.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_openeuler2203.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel80.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel80.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel81.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel81.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel82.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel82.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel83.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel83.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel84.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel84.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel85.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel85.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel86.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel86.x86_64.rpm

NVIDIA BlueField DPU BSP v4.7.0 261

OS Arch Link

RHEL/Rocky 8.7

aarch6
4

doca-host-2.7.0-204000_24.04_rhel87.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel87.x86_64.rpm

RHEL/Rocky 8.8

aarch6
4

doca-host-2.7.0-204000_24.04_rhel88.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel88.x86_64.rpm

RHEL/Rocky 8.9

aarch6
4

doca-host-2.7.0-204000_24.04_rhel89.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel89.x86_64.rpm

RHEL/Rocky 8.10

aarch6
4

doca-host-2.7.0-204000_24.04_rhel810.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel810.x86_64.rpm

RHEL/Rocky 9.0

aarch6
4

doca-host-2.7.0-204000_24.04_rhel90.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel90.x86_64.rpm

RHEL/Rocky 9.1

aarch6
4

doca-host-2.7.0-204000_24.04_rhel91.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel91.x86_64.rpm

RHEL/Rocky 9.2

aarch6
4

doca-host-2.7.0-204000_24.04_rhel92.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel92.x86_64.rpm

RHEL/Rocky 9.3

aarch6
4

doca-host-2.7.0-204000_24.04_rhel93.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel93.x86_64.rpm

RHEL/Rocky 9.4

aarch6
4

doca-host-2.7.0-204000_24.04_rhel94.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_rhel94.x86_64.rpm

SLES 15 SP2 aarch6
4

doca-host-2.7.0-204000_24.04_sles15sp2.aarch64.rpm

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel87.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel87.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel88.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel88.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel89.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel89.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel810.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel810.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel90.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel90.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel91.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel91.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel92.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel92.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel93.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel93.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel94.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_rhel94.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp2.aarch64.rpm

NVIDIA BlueField DPU BSP v4.7.0 262

OS Arch Link

x86 doca-host-2.7.0-204000_24.04_sles15sp2.x86_64.rpm

SLES 15 SP3

aarch6
4

doca-host-2.7.0-204000_24.04_sles15sp3.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_sles15sp3.x86_64.rpm

SLES 15 SP4

aarch6
4

doca-host-2.7.0-204000_24.04_sles15sp4.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_sles15sp4.x86_64.rpm

SLES 15 SP5

aarch6
4

doca-host-2.7.0-204000_24.04_sles15sp5.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_sles15sp5.x86_64.rpm

SLES 15 SP6 x86 doca-host-2.7.0-204000_24.04_sles15sp6.x86_64.rpm

TencentOS 3.3

aarch6
4

doca-host-2.7.0-204000_24.04_tencentos33.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_tencentos33.x86_64.rpm

Ubuntu 20.04

aarch6
4

doca-host_2.7.0-204000-24.04-ubuntu2004_arm64.deb

x86 doca-host_2.7.0-204000-24.04-ubuntu2004_amd64.deb

Ubuntu 22.04

aarch6
4

doca-host_2.7.0-204000-24.04-ubuntu2204_arm64.deb

x86 doca-host_2.7.0-204000-24.04-ubuntu2204_amd64.deb

Ubuntu 24.04

aarch6
4

doca-host_2.7.0-204000-24.04-ubuntu2404_arm64.deb

x86 doca-host_2.7.0-204000-24.04-ubuntu2404_amd64.deb

UOS20.1060

aarch6
4

doca-host-2.7.0-204000_24.04_uos201060.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_uos201060.x86_64.rpm

UOS20.1060A

aarch6
4

doca-host-2.7.0-204000_24.04_uos201060a.aarch64.rpm

x86 doca-host-2.7.0-204000_24.04_uos201060a.x86_64.rpm

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp2.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp3.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp3.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp4.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp4.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp5.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp5.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_sles15sp6.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_tencentos33.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_tencentos33.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2004_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2004_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2204_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2204_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2404_arm64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host_2.7.0-204000-24.04-ubuntu2404_amd64.deb
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060.x86_64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060a.aarch64.rpm
https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_uos201060a.x86_64.rpm

NVIDIA BlueField DPU BSP v4.7.0 263

OS Arch Link

XenServer 8.2 x86 doca-host-2.7.0-204000_24.04_xenserver82.x86_64.rpm

Installing Local Repo Package for Host Dependencies

1. Install DOCA local repo package for host:

OS Procedure

Ubu
ntu

1. Download the DOCA SDK and DOCA Runtime packages from
Downloading DOCA Runtime Packages section for the host.

2. Unpack the deb repo. Run:

3. Perform apt update. Run:

4. Run apt install for DOCA runtime, tools, and SDK:

Cent
OS

1. Download the DOCA SDK and DOCA Runtime packages from
Downloading DOCA Runtime Packages section for the x86 host.

2. Install the following software dependencies. Run:

3. For CentOS 8.2 only, also run:

4. Unpack the RPM repo. Run:

5. Run yum install for DOCA runtime, tools, and SDK.

RHE
L

1. Open a RedHat account.
1. Log into RedHat website via the developers tab.
2. Create a developer user.

2. Run:

host# sudo dpkg -i doca-host-repo-ubuntu<version>_amd64.deb

host# sudo apt-get update

host# sudo apt install -y doca-runtime doca-sdk

host# sudo yum install -y epel-release

host# yum config-manager --set-enabled PowerTools

host# sudo rpm -Uvh doca-host-repo-rhel<version>.x86_64.rpm

host# sudo yum install -y doca-runtime doca-sdk

https://developer.nvidia.com/networking/secure/doca-sdk/doca_2.7/doca-host-2.7.0-204000_24.04_xenserver82.x86_64.rpm
https://developers.redhat.com/?percmp=7013a000002wAAqAAM&extIdCarryOver=true&sc_cid=701f2000001OH6fAAG
https://sso.redhat.com/auth/realms/redhat-external/login-actions/registration?client_id=rhd-web&tab_id=8x0-WZfx7BY

NVIDIA BlueField DPU BSP v4.7.0 264

OS Procedure

To extract pool ID:

And use the pool ID for the Subscription Name and Provides that include
Red Hat CodeReady Linux Builder for x86_64.

3. Run:

4. Install the DOCA local repo package for host. Run:

5. Sign out from your RHEL account. Run:

2. A ssign a dynamic IP to tmfifo_net0 interface (RShim host interface).

host# subscription-manager register --username=<username> --
password=PASSWORD

host# subscription-manager list --available --all
...
Subscription Name: Red Hat Developer Subscription for

Individuals
Provides: Red Hat Developer Tools (for RHEL Server for ARM)
...
Red Hat CodeReady Linux Builder for x86_64
...
Pool ID: <pool-id>
...

host# subscription-manager attach --pool=<pool-id>
host# subscription-manager repos --enable codeready-builder-
for-rhel-8-x86_64-rpms
host# yum makecache

host# rpm -Uvh doca-host-repo-rhel<version>.x86_64.rpm
host# sudo yum install -y doca-runtime doca-sdk

host# subscription-manager remove --all
host# subscription-manager unregister

host# ifconfig tmfifo_net0 192.168.100.1 netmask 255.255.255.252 up

NVIDIA BlueField DPU BSP v4.7.0 265

3. Verify that RShim is active.

This command is expected to display "active (running)". If RShim service does not
launch automatically, run:

Installing Popular Linux
Distributions on BlueField

Building Your Own BFB Installation Image

Users wishing to build their own customized NVIDIA® BlueField® OS image can use the
BFB build environment. See this GitHub webpage for more information.

Installing Linux Distributions

Contact NVIDIA Enterprise Support for information on the installation of Linux
distributions other than Ubuntu.

host# sudo systemctl status rshim

host# sudo systemctl enable rshim
host# sudo systemctl start rshim

Note

For any customized BlueField OS image to boot on the UEFI secure-
boot-enabled DPU (default DPU secure boot setting), the OS must be
either signed with an existing key in the UEFI DB (e.g., the Microsoft
key), or UEFI secure boot must be disabled. See "Secure Boot" and its
subpages for more details.

https://github.com/Mellanox/bfb-build/
https://confluence.nvidia.com/display/bluefielddpuosv470/NVIDIA+BlueField+DPU+BSP+Documentation#NVIDIABlueFieldDPUBSPDocumentation-TechnicalSupport
file:///networking/display/bluefielddpuosv470/Secure+Boot

NVIDIA BlueField DPU BSP v4.7.0 266

BlueField Linux Drivers

The following table lists the BlueField drivers which are part of the Official Ubuntu Linux
distribution for BlueField. Some of the drivers are not in the upstream Linux kernel yet.

Driv
er

Description

Blu
eFi
eld-
2

Blu
eFi
eld-
3

bluefi
eld-
edac

BlueField-specific EDAC driver ✓ ✗

dw_m
mc_bl
uefiel
d

BlueField DW Multimedia Card driver ✓ ✓

sdhci-
of-
dwcm
shc

SDHCI platform driver for Synopsys DWC MSHC ✓ ✓

gpio-
mlxbf
2

GPIO driver ✓ ✗

gpio-
mlxbf
3

GPIO driver ✗ ✓

i2c-
mlx I2C bus driver (i2c-mlxbf.c upstream) ✓ ✗

ipmb-
dev-
int

Driver needed to receive IPMB messages from a BMC and send a
response back. This driver works with the I2C driver and a user-space
program such as OpenIPMI.

✓ ✗

ipmb-
host

Driver needed on the DPU to send IPMB messages to the BMC on the
IPMB bus. This driver works with the I2C driver. It only loads
successfully if it executes a successful handshake with the BMC.

✓ ✗

mlxbf-
gige Gigabit Ethernet driver ✓ ✓

mlxbf-
livefis
h

BlueField HCA firmware burning driver. This driver supports burning
firmware for the embedded HCA in the BlueField SoC.

✓ ✗

NVIDIA BlueField DPU BSP v4.7.0 267

Driv
er

Description

Blu
eFi
eld-
2

Blu
eFi
eld-
3

mlxbf-
pka BlueField PKA kernel module ✓ ✓

mlxbf-
pmc

Performance monitoring counters. The driver provides access to
available performance modules through the sysfs interface. The
performance modules in BlueField are present in several hardware
blocks and each block has a certain set of supported events.

✓ ✗

mlxbf-
ptm

Kernel driver that provides a debufgs interface for the system
software to monitor the BlueField device's power and thermal
management parameters.

✗ ✓

mlxbf-
tmfifo TMFIFO driver for BlueField SoC ✓ ✓

mlx-
bootc
tl

Boot control driver. This driver provides a sysfs interface for systems
management software to manage reset time actions.

✓ ✓

mlx-
trio TRIO driver for BlueField SoC ✓ ✗

pwr-
mlxbf Supports reset or low-power mode handling for BlueField. ✓ ✓

pinctrl
-mlxbf

Allows multiplexing individual GPIOs to switch from the default
hardware mode to software-controlled mode.

✗ ✓

mlxbf-
pmc Mellanox PMC driver ✗ ✓

Updating DPU Software Packages
Using Standard Linux Tools
This dpu-upgrade procedure enables upgrading DOCA components using standard Linux
tools (e.g., apt update and yum update). This process utilizes native package manager
repositories to upgrade DPUs without the need for a full installation, and has the
following benefits :

NVIDIA BlueField DPU BSP v4.7.0 268

Only updates components that include modifications

Configurable – user can select specific components (e.g., UEFI-ATF, NIC-FW)

Includes upgrade of:

DOCA drivers and libraries

DOCA reference applications

BSP (UEFI/ATF) upgrade while maintaining the configuration

NIC firmware upgrade while maintaining the configuration

Does not:

Impact user binaries

Upgrade non-Ubuntu OS kernels

Upgrade DPU BMC firmware

After completion of DPU upgrade:

If NIC firmware was not updated, perform DPU Arm reset (software reset /
reboot DPU)

If NIC firmware was updated, perform firmware reset (mlxfwreset) or perform a
graceful shutdown and power cycle

OS Action Instructions

Ubun
tu/
Debi
an

Remove
mlxbf-
bootimages
package

Install the
the GPG key

Export the
desired

Export DOCA_REPO with the relevant URL. The following is an
example for Ubuntu 22.04:

<dpu> $ apt remove --purge mlxbf-bootimages* -y

<dpu> $ apt update
<dpu> $ apt install gnupg2

NVIDIA BlueField DPU BSP v4.7.0 269

OS Action Instructions

distribution

Ubuntu 22.04 –
https://linux.mellanox.com/public/repo/doca/2.7.0/ubuntu22
.04/dpu-arm64
Ubuntu 20.04 –
https://linux.mellanox.com/public/repo/doca/2.7.0/ubuntu20
.04/dpu-arm64
Debian 12 –
https://linux.mellanox.com/public/repo/doca/2.7.0/debian12
/dpu-arm64

Add GPG
key to APT
trusted
keyring

Add DOCA
online
repository

Update
index

Upgrade
UEFI/ATF
firmware

Run:

Then i nitiate upgrade for UEFI/ATF firmware:

Upgrade
BlueField
DPU NIC
firmware

Run:

<dpu> $ export
DOCA_REPO="https://linux.mellanox.com/public/repo/doca/
2.7.0/ubuntu22.04/dpu-arm64"

<dpu> $ curl $DOCA_REPO/GPG-KEY-Mellanox.pub | gpg --
dearmor > /etc/apt/trusted.gpg.d/GPG-KEY-Mellanox.pub

<dpu> $ echo "deb [signed-by=/etc/apt/trusted.gpg.d/GPG-
KEY-Mellanox.pub] $DOCA_REPO ./" >
/etc/apt/sources.list.d/doca.list

<dpu> $ apt update

<dpu> $ apt install mlxbf-bootimages-signed

<dpu> $ apt install mlxbf-scripts
<dpu> $ bfrec

<dpu> $ apt install mlnx-fw-updater-signed.aarch64

https://linux.mellanox.com/public/repo/doca/2.7.0/ubuntu22.04/dpu-arm64
https://linux.mellanox.com/public/repo/doca/2.7.0/ubuntu22.04/dpu-arm64
https://linux.mellanox.com/public/repo/doca/2.7.0/ubuntu20.04/dpu-arm64
https://linux.mellanox.com/public/repo/doca/2.7.0/ubuntu20.04/dpu-arm64
https://linux.mellanox.com/public/repo/doca/2.7.0/debian12/dpu-arm64
https://linux.mellanox.com/public/repo/doca/2.7.0/debian12/dpu-arm64

NVIDIA BlueField DPU BSP v4.7.0 270

OS Action Instructions

To prevent automatic upgrade, run:

Remove old
metapackag
es

Install new
metapackag
es

Upgrade
system

Apply the
new
changes,
NIC
firmware,
and
UEFI/ATF

For the upgrade to take effect, perform BlueField system reboot as
explained in the "NVIDIA BlueField Reset and Reboot Procedures"
troubleshooting page.

Cent
OS/R
HEL/
Anoli
s/Roc
ky

Remove
mlxbf-
bootimages
package

Export the
desired
distribution

Export DOCA_REPO with the relevant URL. The following is an
example for Rocky Linux 8.6:

Note
This immediately starts NIC firmware upgrade.

<dpu> $ export RUN_FW_UPDATER=no

<dpu> $ apt-get remove doca-tools doca-sdk doca-runtime -y

<dpu> $ apt-get install doca-runtime doca-devel -y

<dpu> $ apt upgrade

Note
This step triggers immediate reboot of the
BlueField Arm cores.

<dpu> $ yum -y remove mlxbf-bootimages*
<dpu> $ yum makecache

<dpu> $ export
DOCA_REPO="https://linux.mellanox.com/public/repo/doca/

NVIDIA BlueField DPU BSP v4.7.0 271

OS Action Instructions

AnolisOS 8.6 –
https://linux.mellanox.com/public/repo/doca/2.7.0/anolis8.6/
dpu-arm64/
OpenEuler 20.03 sp1 –
https://linux.mellanox.com/public/repo/doca/2.7.0/openeule
r20.03sp1/dpu-arm64/
CentOS 7.6 with 4.19 kernel –
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6-
4.19/dpu-arm64/
CentOS 7.6 with 5.10 kernel –
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6-
5.10/dpu-arm64/
CentOS 7.6 with 5.4 kernel –
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6/d
pu-arm64/
Rocky Linux 8.6 –
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel8.6/d
pu-arm64/

Add DOCA
online
repository

A file is created under /etc/yum.repos.d/doca.repo .

Update
index

Upgrade
UEFI/ATF
firmware

Run:

2.7.0/rhel8.6/dpu-arm64/"

echo "[doca]
name=DOCA Online Repo
baseurl=$DOCA_REPO
enabled=1
gpgcheck=0
priority=10
cost=10" > /etc/yum.repos.d/doca.repo

<dpu> $ yum makecache

<dpu> $ yum install mlxbf-bootimages-signed.aarch64
mlxbf-bfscripts

https://linux.mellanox.com/public/repo/doca/2.7.0/anolis8.6/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/anolis8.6/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/openeuler20.03sp1/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/openeuler20.03sp1/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6-4.19/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6-4.19/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6-5.10/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6-5.10/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel7.6/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel8.6/dpu-arm64/
https://linux.mellanox.com/public/repo/doca/2.7.0/rhel8.6/dpu-arm64/

NVIDIA BlueField DPU BSP v4.7.0 272

OS Action Instructions

Then i nitiate the upgrade for UEFI/ATF firmware:

Upgrade
BlueField
DPU NIC
firmware

The following command updates the firmware package and
automatically attempts to flash the firmware to the NIC:

Remove old
metapackag
es

Install new
metapackag
es

Upgrade
system

Apply the
new
changes,

For the upgrade to take effect, perform BlueField system reboot as
explained in the "NVIDIA BlueField Reset and Reboot Procedures"
troubleshooting page.

<dpu> $ bfrec

<dpu> $ yum install mlnx-fw-updater-signed.aarch64

Info
This step can be used as a standalone
firmware update. In any case, it is performed
as part of the upgrade flow.

Note
To prevent automatic flashing of the firmware
to the NIC, run the following first:

0000018f-6041-db75-a1af-f9cb40730003

<dpu> $ export RUN_FW_UPDATER=no

<dpu> $ yum -y remove doca-tools doca-sdk doca-runtime

<dpu> $ yum -y install doca-runtime doca-devel

<dpu> $ yum upgrade --nobest

NVIDIA BlueField DPU BSP v4.7.0 273

OS Action Instructions

NIC
firmware,
and
UEFI/ATF

Note
This step triggers immediate reboot of the
BlueField Arm cores.

NVIDIA BlueField DPU BSP v4.7.0 274

Management
Performance Monitoring Counters

Intelligent Platform Management Interface

Redfish

Logging

SoC Management Interface

BlueField OOB Ethernet Interface

Performance Monitoring Counters
The performance modules in NVIDIA® BlueField® are present in several hardware blocks
and each block has a certain set of supported events.

The mlx_pmc driver provides access to all of these performance modules through a sysfs
interface. The driver creates a directory under /sys/class/hwmon under which each of the
blocks explained above has a subdirectory. Please note that all directories under
/sys/class/hwmon are named as "hwmon<N>" where N is the hwmon device number
corresponding to the device. This is assigned by Linux and could change with the addition
of more devices to the hwmon class. Each hwmon directory has a "name" node which can be
used to identify the correct device. In this case, reading the "name" file should return
"bfperf".

The hardware blocks that include performance modules are:

Tile (block containing 2 cores and a shared L2 cache) has 2 sets of counters, one set
for HNF and HNF_NET events. These are present as "tile" and "tilenet" directories in
the sysfs interface of the driver.

TRIO (PCIe root complex) has 3 sets of counters, one each for TRIO, SMGEN and
PCIE TLR events. The sysfs directories for these are called "trio", "triogen" and "pcie"

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Performance+Monitoring+Counters
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Intelligent+Platform+Management+Interface
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Redfish
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Logging
https://docs.nvidia.com//networking/display/bluefielddpuosv470/SoC+Management+Interface
https://docs.nvidia.com//networking/display/bluefielddpuosv470/BlueField+OOB+Ethernet+Interface

NVIDIA BlueField DPU BSP v4.7.0 275

respectively.

MSS (memory sub-system containing the memory controller and L3 cache)

GIC and SMMU with one set of counters each for the SMGEN events. These are
simply labelled "gic" and "smmu" respectively.

The number of Tile, TRIO and MSS blocks depends on the system. There is a maximum of
8 Tile, 3 TRIO and 2 MSS blocks in BlueField, and this is added as a suffix to the sysfs
directory names. For example, this is a list of directories present in a BlueField-2 system:

The PCIe TLR statistics for each TRIO are under the "pcie" block.

Performance Data Collection Mechanisms

The performance data of the BlueField hardware is collected using two mechanisms:

1. Programming hardware counters to monitor specific events

2. Reading registers that hold performance/event statistics

All blocks except "ecc" and "pcie" use the mechanism 1.

Using Hardware Counters

For blocks that use hardware counters to collect data, each counter present in the block
is represented by "event<N>" and "counter<N>" sysfs files.

For example:

ubuntu@dpu:/$ ls /sys/class/hwmon/hwmon0/
device l3cachehalf0 pcie0 smmu0 tile1 tilenet0 tilenet3 triogen0
ecc l3cachehalf1 pcie1 subsystem tile2 tilenet1 trio0 triogen1
gic0 name power tile0 tile3 tilenet2 trio1 uevent

ubuntu@dpu:/$ ls /sys/class/hwmon/hwmon0/tile0/
counter0 counter1 counter2 counter3 event0 event1 event2 event3 event_list

NVIDIA BlueField DPU BSP v4.7.0 276

An event<N> and counter<N> pair can be used to program and monitor events. The "event_list"
sysfs file displays the list of events supported by that block along with the hexadecimal
value corresponding to each event.

Use the echo command to write the event number to the event<N> file, and use the cat

command to read the counter value from the corresponding counter (counter<N>).

The counters are enabled individually once the event number is written to the
corresponding event file. However, the L3 cache performance counters cannot be
enabled or disabled individually and can only be triggered or stopped all at the same
time.

So in the example provided, all 4 event files may be programmed with the necessary
event numbers and then the "enable" file may be used to start the counters. Writing 0 to
the enable file stops the counters while 1 starts them.

Reading Registers

For "ecc" and "pcie" blocks, the counters cannot be started or stopped by the user,
instead the statistics are automatically collected by HW and stored in registers. These
register names are exposed within the directory and can be read by the user at any time.

List of Supported Events

SMGEN Performance Module

Hex Value Name Description

0x0 AW_REQ Reserved for internal use

0x1 AW_BEATS Reserved for internal use

0x2 AW_TRANS Reserved for internal use

0x3 AW_RESP Reserved for internal use

0x4 AW_STL Reserved for internal use

0x5 AW_LAT Reserved for internal use

NVIDIA BlueField DPU BSP v4.7.0 277

Hex Value Name Description

0x6 AW_REQ_TBU Reserved for internal use

0x8 AR_REQ Reserved for internal use

0x9 AR_BEATS Reserved for internal use

0xa AR_TRANS Reserved for internal use

0xb AR_STL Reserved for internal use

0xc AR_LAT Reserved for internal use

0xd AR_REQ_TBU Reserved for internal use

0xe TBU_MISS The number of TBU miss

0xf TX_DAT_AF
Mesh Data channel write FIFO almost Full.
This is from the TRIO toward the Arm memory.

0x10 RX_DAT_AF
Mesh Data channel read FIFO almost Full.
This is from the Arm memory toward the TRIO.

0x11 RETRYQ_CRED Reserved for internal use

Tile HNF Performance Module

Hex
Value

Name Description

0x45
HNF_REQUEST
S

Number of REQs that were processed in HNF

0x46 HNF_REJECTS Reserved for internal use

0x47 ALL_BUSY Reserved for internal use

0x48 MAF_BUSY Reserved for internal use

0x49
MAF_REQUEST
S

Reserved for internal use

0x4a
RNF_REQUEST
S

Number of REQs sent by the RN-F selected by HNF_PERF_CTL
register RNF_SEL field

0x4b REQUEST_TYP Reserved for internal use

NVIDIA BlueField DPU BSP v4.7.0 278

Hex
Value

Name Description

E

0x4c
MEMORY_REA
DS

Number of reads to MSS

0x4d
MEMORY_WRI
TES

Number of writes to MSS

0x4e VICTIM_WRITE Number of victim lines written to memory

0x4f POC_FULL Reserved for internal use

0x50 POC_FAIL
Number of times that the POC Monitor sent RespErr Okay
status to an Exclusive WriteNoSnp or CleanUnique REQ

0x51 POC_SUCCESS
Number of times that the POC Monitor sent RespErr ExOkay
status to an Exclusive WriteNoSnp or CleanUnique REQ

0x52 POC_WRITES
Number of Exclusive WriteNoSnp or CleanUnique REQs
processed by POC Monitor

0x53 POC_READS
Number of Exclusive ReadClean/ReadShared REQs processed
by POC Monitor

0x54 FORWARD Reserved for internal use

0x55 RXREQ_HNF Reserved for internal use

0x56 RXRSP_HNF Reserved for internal use

0x57 RXDAT_HNF Reserved for internal use

0x58 TXREQ_HNF Reserved for internal use

0x59 TXRSP_HNF Reserved for internal use

0x5a TXDAT_HNF Reserved for internal use

0x5b TXSNP_HNF Reserved for internal use

0x5c INDEX_MATCH Reserved for internal use

0x5d A72_ACCESS
Access requests (Reads, Writes, CopyBack, CMO, DVM) from A72
clusters

0x5e IO_ACCESS Accesses requests (Reads, Writes) from DMA IO devices

0x5f TSO_WRITE Total Store Order write Requests from DMA IO devices

NVIDIA BlueField DPU BSP v4.7.0 279

Hex
Value

Name Description

0x60
TSO_CONFLIC
T

Reserved for internal use

0x61 DIR_HIT Requests that hit in directory

0x62 HNF_ACCEPTS Reserved for internal use

0x63
REQ_BUF_EMP
TY

Number of cycles when request buffer is empty

0x64
REQ_BUF_IDLE
_MAF

Reserved for internal use

0x65 TSO_NOARB Reserved for internal use

0x66
TSO_NOARB_C
YCLES

Reserved for internal use

0x67
MSS_NO_CRE
DIT

Number of cycles that a Request could not be sent to MSS due
to lack of credits

0x68
TXDAT_NO_LC
RD

Reserved for internal use

0x69
TXSNP_NO_LC
RD

Reserved for internal use

0x6a
TXRSP_NO_LC
RD

Reserved for internal use

0x6b
TXREQ_NO_LC
RD

Reserved for internal use

0x6c
TSO_CL_MATC
H

Reserved for internal use

0x6d
MEMORY_REA
DS_BYPASS

Number of reads to MSS that bypass Home Node

0x6e
TSO_NOARB_T
IMEOUT

Reserved for internal use

0x6f ALLOCATE Number of times that Directory entry was allocated

0x70 VICTIM
Number of times that Directory entry allocation did not find an
Invalid way in the set

NVIDIA BlueField DPU BSP v4.7.0 280

Hex
Value

Name Description

0x71 A72_WRITE Write requests from A72 clusters

0x72 A72_Read Read requests from A72 clusters

0x73 IO_WRITE Write requests from DMA IO devices

0x74 IO_Reads Read requests from DMA IO devices

0x75 TSO_Reject Reserved for internal use

0x80 TXREQ_RN Reserved for internal use

0x81 TXRSP_RN Reserved for internal use

0x82 TXDAT_RN Reserved for internal use

0x83 RXSNP_RN Reserved for internal use

0x84 RXRSP_RN Reserved for internal use

0x85 RXDAT_RN Reserved for internal use

TRIO Performance Module

Hex
Value

Name Description

0xa0 TPIO_DATA_BEAT Data beats from Arm PIO to TRIO

0xa1 TDMA_DATA_BEAT Data beats from Arm memory to PCI completion

0xa2 MAP_DATA_BEAT Reserved for internal use

0xa3 TXMSG_DATA_BEAT Reserved for internal use

0xa4 TPIO_DATA_PACKET Data packets from Arm PIO to TRIO

0xa5 TDMA_DATA_PACKET Data packets from Arm memory to PCI completion

0xa6 MAP_DATA_PACKET Reserved for internal use

0xa7 TXMSG_DATA_PACKET Reserved for internal use

0xa8 TDMA_RT_AF
The in-flight PCI DMA READ request queue is almost
full

NVIDIA BlueField DPU BSP v4.7.0 281

Hex
Value

Name Description

0xa9 TDMA_PBUF_MAC_AF
Indicator of the buffer of Arm memory reads is too full
awaiting PCIe access

0xaa
TRIO_MAP_WRQ_BUF
_EMPTY

PCIe write transaction buffer is empty

0xab
TRIO_MAP_CPL_BUF_
EMPTY

Arm PIO request completion queue is empty

0xac
TRIO_MAP_RDQ0_BUF
_EMPTY

The buffer of MAC0's read transaction is empty

0xad
TRIO_MAP_RDQ1_BUF
_EMPTY

The buffer of MAC1's read transaction is empty

0xae
TRIO_MAP_RDQ2_BUF
_EMPTY

The buffer of MAC2's read transaction is empty

0xaf
TRIO_MAP_RDQ3_BUF
_EMPTY

The buffer of MAC3's read transaction is empty

0xb0
TRIO_MAP_RDQ4_BUF
_EMPTY

The buffer of MAC4's read transaction is empty

0xb1
TRIO_MAP_RDQ5_BUF
_EMPTY

The buffer of MAC5's read transaction is empty

0xb2
TRIO_MAP_RDQ6_BUF
_EMPTY

The buffer of MAC6's read transaction is empty

0xb3
TRIO_MAP_RDQ7_BUF
_EMPTY

The buffer of MAC7's read transaction is empty

L3 Cache Performance Module

Note

NVIDIA BlueField DPU BSP v4.7.0 282

Hex
Value

Name Description

0x00 DISABLE Reserved for internal use

0x01 CYCLES Timestamp counter

0x02 TOTAL_RD_REQ_IN
Read Transaction control request from the CDN of
the SkyMesh

0x03 TOTAL_WR_REQ_IN
Write transaction control request from the CDN of
the SkyMesh

0x04 TOTAL_WR_DBID_ACK
Write transaction control responses from the NDN
of the SkyMesh

0x05 TOTAL_WR_DATA_IN
Write transaction data from the DDN of the
SkyMesh

0x06 TOTAL_WR_COMP
Write completion response from the NDN of the
SkyMesh

0x07 TOTAL_RD_DATA_OUT Read transaction data from the DDN

0x08
TOTAL_CDN_REQ_IN_BAN
K0

CHI CDN Transactions Bank 0

0x09
TOTAL_CDN_REQ_IN_BAN
K1

CHI CDN Transactions Bank 1

0x0a
TOTAL_DDN_REQ_IN_BAN
K0

CHI DDN Transactions Bank 0

0x0b
TOTAL_DDN_REQ_IN_BAN
K1

CHI DDN Transactions Bank 1

0x0c
TOTAL_EMEM_RD_RES_IN
_BANK0

Total EMEM Read Response Bank 0

0x0d
TOTAL_EMEM_RD_RES_IN
_BANK1

Total EMEM Read Response Bank 1

The L3 cache interfaces with the Arm cores via the SkyMesh. The CDN
is used for control data. The NDN is used for responses. The DDN is
for the actual data transfer.

NVIDIA BlueField DPU BSP v4.7.0 283

Hex
Value

Name Description

0x0e
TOTAL_CACHE_RD_RES_IN
_BANK0

Total Cache Read Response Bank 0

0x0f
TOTAL_CACHE_RD_RES_IN
_BANK1

Total Cache Read Response Bank 1

0x10
TOTAL_EMEM_RD_REQ_B
ANK0

Total EMEM Read Request Bank 0

0x11
TOTAL_EMEM_RD_REQ_B
ANK1

Total EMEM Read Request Bank 1

0x12
TOTAL_EMEM_WR_REQ_B
ANK0

Total EMEM Write Request Bank 0

0x13
TOTAL_EMEM_WR_REQ_B
ANK1

Total EMEM Write Request Bank 1

0x14 TOTAL_RD_REQ_OUT EMEM Read Transactions Out

0x15 TOTAL_WR_REQ_OUT EMEM Write Transactions Out

0x16 TOTAL_RD_RES_IN EMEM Read Transactions In

0x17 HITS_BANK0 Number of Hits Bank 0

0x18 HITS_BANK1 Number of Hits Bank 1

0x19 MISSES_BANK0 Number of Misses Bank 0

0x1a MISSES_BANK1 Number of Misses Bank 1

0x1b ALLOCATIONS_BANK0 Number of Allocations Bank 0

0x1c ALLOCATIONS_BANK1 Number of Allocations Bank 1

0x1d EVICTIONS_BANK0 Number of Evictions Bank 0

0x1e EVICTIONS_BANK1 Number of Evictions Bank 1

0x1f DBID_REJECT Reserved for internal use

0x20 WRDB_REJECT_BANK0 Reserved for internal use

0x21 WRDB_REJECT_BANK1 Reserved for internal use

0x22 CMDQ_REJECT_BANK0 Reserved for internal use

NVIDIA BlueField DPU BSP v4.7.0 284

Hex
Value

Name Description

0x23 CMDQ_REJECT_BANK1 Reserved for internal use

0x24 COB_REJECT_BANK0 Reserved for internal use

0x25 COB_REJECT_BANK1 Reserved for internal use

0x26 TRB_REJECT_BANK0 Reserved for internal use

0x27 TRB_REJECT_BANK1 Reserved for internal use

0x28 TAG_REJECT_BANK0 Reserved for internal use

0x29 TAG_REJECT_BANK1 Reserved for internal use

0x2a ANY_REJECT_BANK0 Reserved for internal use

0x2b ANY_REJECT_BANK1 Reserved for internal use

PCIe TLR Statistics

Hex Value Name Description

0x0 PCIE_TLR_IN_P_PKT_CNT Incoming posted packets

0x10 PCIE_TLR_IN_NP_PKT_CNT Incoming non-posted packets

0x18 PCIE_TLR_IN_C_PKT_CNT Incoming completion packets

0x20 PCIE_TLR_OUT_P_PKT_CNT Outgoing posted packets

0x28 PCIE_TLR_OUT_NP_PKT_CNT Outgoing non-posted packets

0x30 PCIE_TLR_OUT_C_PKT_CNT Outgoing completion packets

0x38 PCIE_TLR_IN_P_BYTE_CNT Incoming posted bytes

0x40 PCIE_TLR_IN_NP_BYTE_CNT Incoming non-posted bytes

0x48 PCIE_TLR_IN_C_BYTE_CNT Incoming completion bytes

0x50 PCIE_TLR_OUT_C_BYTE_CNT Outgoing posted bytes

0x58 PCIE_TLR_OUT_NP_BYTE_CNT Outgoing non-posted bytes

0x60 PCIE_TLR_OUT_C_BYTE_CNT Outgoing completion bytes

NVIDIA BlueField DPU BSP v4.7.0 285

Tile HNFNET Performance Module

Hex
Value

Name Description

0x12 CDN_REQ The number of CDN requests

0x13 DDN_REQ The number of DDN requests

0x14 NDN_REQ The number of NDN requests

0x15
CDN_DIAG_N_OUT_
OF_CRED

Number of cycles that north input port FIFO runs out of
credits in the CDN network

0x16
CDN_DIAG_S_OUT_
OF_CRED

Number of cycles that south input port FIFO runs out of
credits in the CDN network

0x17
CDN_DIAG_E_OUT_
OF_CRED

Number of cycles that east input port FIFO runs out of
credits in the CDN network

0x18
CDN_DIAG_W_OUT_
OF_CRED

Number of cycles that west input port FIFO runs out of
credits in the CDN network

0x19
CDN_DIAG_C_OUT_
OF_CRED

Number of cycles that core input port FIFO runs out of
credits in the CDN network

0x1a
CDN_DIAG_N_EGRE
SS

Packets sent out from north port in the CDN network

0x1b
CDN_DIAG_S_EGRES
S

Packets sent out from south port in the CDN network

0x1c
CDN_DIAG_E_EGRES
S

Packets sent out from east port in the CDN network

0x1d
CDN_DIAG_W_EGRE
SS

Packets sent out from west port in the CDN network

0x1e
CDN_DIAG_C_EGRES
S

Packets sent out from core port in the CDN network

0x1f
CDN_DIAG_N_INGRE
SS

Packets received by north port in the CDN network

0x20 CDN_DIAG_S_INGRE Packets received by south port in the CDN network

NVIDIA BlueField DPU BSP v4.7.0 286

Hex
Value

Name Description

SS

0x21
CDN_DIAG_E_INGRE
SS

Packets received by east port in the CDN network

0x22
CDN_DIAG_W_INGR
ESS

Packets received by west port in the CDN network

0x23
CDN_DIAG_C_INGRE
SS

Packets received by core port in the CDN network

0x24
CDN_DIAG_CORE_SE
NT

Packets completed from core port in the CDN network

0x25
DDN_DIAG_N_OUT_
OF_CRED

Number of cycles that north input port FIFO runs out of
credits in the DDN network

0x26
DDN_DIAG_S_OUT_
OF_CRED

Number of cycles that south input port FIFO runs out of
credits in the DDN network

0x27
DDN_DIAG_E_OUT_
OF_CRED

Number of cycles that east input port FIFO runs out of
credits in the DDN network

0x28
DDN_DIAG_W_OUT_
OF_CRED

Number of cycles that west input port FIFO runs out of
credits in the DDN network

0x29
DDN_DIAG_C_OUT_
OF_CRED

Number of cycles that core input port FIFO runs out of
credits in the DDN network

0x2a
DDN_DIAG_N_EGRE
SS

Packets sent out from north port in the DDN network

0x2b
DDN_DIAG_S_EGRES
S

Packets sent out from south port in the DDN network

0x2c
DDN_DIAG_E_EGRES
S

Packets sent out from east port in the DDN network

0x2d
DDN_DIAG_W_EGRE
SS

Packets sent out from west port in the DDN network

0x2e
DDN_DIAG_C_EGRES
S

Packets sent out from core port in the DDN network

0x2f DDN_DIAG_N_INGR Packets received by north port in the DDN network

NVIDIA BlueField DPU BSP v4.7.0 287

Hex
Value

Name Description

ESS

0x30
DDN_DIAG_S_INGRE
SS

Packets received by south port in the DDN network

0x31
DDN_DIAG_E_INGRE
SS

Packets received by east port in the DDN network

0x32
DDN_DIAG_W_INGR
ESS

Packets received by west port in the DDN network

0x33
DDN_DIAG_C_INGRE
SS

Packets received by core port in the DDN network

0x34
DDN_DIAG_CORE_S
ENT

Packets completed from core port in the DDN network

0x35
NDN_DIAG_N_OUT_
OF_CRED

Number of cycles that north input port FIFO runs out of
credits in the NDN network

0x36
NDN_DIAG_S_OUT_
OF_CRED

Number of cycles that south input port FIFO runs out of
credits in the NDN network

0x37
NDN_DIAG_E_OUT_
OF_CRED

Number of cycles that east input port FIFO runs out of
credits in the NDN network

0x38
NDN_DIAG_W_OUT_
OF_CRED

Number of cycles that west input port FIFO runs out of
credits in the NDN network

0x39
NDN_DIAG_C_OUT_
OF_CRED

Number of cycles that core input port FIFO runs out of
credits in the NDN network

0x3a
NDN_DIAG_N_EGRE
SS

Packets sent out from north port in the NDN network

0x3b
NDN_DIAG_S_EGRES
S

Packets sent out from south port in the NDN network

0x3c
NDN_DIAG_E_EGRES
S

Packets sent out from east port in the NDN network

0x3d
NDN_DIAG_W_EGRE
SS

Packets sent out from west port in the NDN network

0x3e NDN_DIAG_C_EGRE Packets sent out from core port in the NDN network

NVIDIA BlueField DPU BSP v4.7.0 288

Hex
Value

Name Description

SS

0x3f
NDN_DIAG_N_INGR
ESS

Packets received by north port in the NDN network

0x40
NDN_DIAG_S_INGRE
SS

Packets received by south port in the NDN network

0x41
NDN_DIAG_E_INGRE
SS

Packets received by east port in the NDN network

0x42
NDN_DIAG_W_INGR
ESS

Packets received by west port in the NDN network

0x43
NDN_DIAG_C_INGRE
SS

Packets received by core port in the NDN network

0x44
NDN_DIAG_CORE_S
ENT

Packets completed from core port in the NDN network

Programming Counter to Monitor Events

To program a counter to monitor one of the events from the event list, the event name or
number needs to be written to the corresponding event file.

Let us call the /sys/class/hwmon/hwmon<N> folder corresponding to this driver as BFPERF_DIR.

For example, to monitor the event HNF_REQUESTS (0x45) on tile2 using counter 3:

Or:

Once this is done, counter3 resets the counter and starts monitoring the number of
HNF_REQUESTS.

$ echo 0x45 > <BFPERF_DIR>/tile2/event3

$ echo HNF_REQUESTS > <BFPERF_DIR>/tile2/event3

NVIDIA BlueField DPU BSP v4.7.0 289

To read the counter value, run:

To see what event is currently being monitored by a counter, just read the corresponding
event file to get the event name and number.

In this case, reading the event3 file returns "0x45: HNF_REQUESTS".

To clear the counter, write 0 to the counter file.

This resets the accumulator and the counter continues monitoring the same event that
has previously been programmed, but starts the count from 0 again. Writing non-zero
values to the counter files is not allowed.

To stop monitoring an event, write 0xff to the corresponding event file.

This is slightly different for the l3cache blocks due to the restriction that all counters can
only be enabled, disabled, or reset together. So once the event is written to the event file,
the counters will have to be enabled to start monitoring their respective events by writing
"1" to the "enable" file. Writing "0" to this file will stop all the counters. The most reliable
way to get accurate counter values would be by disabling the counters after a certain
time period and then proceeding to read the counter values.

$ cat <BFPERF_DIR>/tile2/counter3

$ cat <BFPERF_DIR>/tile2/event3

$ echo 0 > <BFPERF_DIR>/tile2/counter3

Note

Programming a counter to monitor a new event automatically stops
all the counters. Also, enabling the counters resets the counters to 0
first.

NVIDIA BlueField DPU BSP v4.7.0 290

For blocks that have performance statistics registers (mechanism 2), all of these statistics
are directly made available to be read or reset.

For example, to read the number of incoming posted packets to TRIO2:

The count can be reset to 0 by writing 0 to the same file. Again, non-zero writes to these
files are not allowed.

Intelligent Platform Management
Interface
IPMB requests can be initiated in 2 directions:

DPU BMC-to-BlueField

BlueField-to-DPU BMC

$ cat <BFPERF_DIR>/pcie2/IN_P_PKT_CNT

Note

The BlueField ipmb_dev_int driver is registered at the 7-bit I2C address
0x30 by default. The I2C address of the BlueField can be changed in
the file /usr/bin/set_emu_param.sh.

BlueField Controller cards provide connection from the host
server BMC to BlueField Arm I2C bus

BlueField DPUs provide connection from the host server BMC to
the BlueField NC-SI port

BlueField Reference Platforms provide connection from its on-
board BMC to BlueField Arm I2C bus

NVIDIA BlueField DPU BSP v4.7.0 291

DPU BMC IPMI Commands

The DPU BMC is able to retrieve data from NVIDIA® BlueField® DPU software over its
Intelligent Platform Management Bus (IPMB).

The DPU BMC may request information about itself using the following command format:

Issue a command with the following format from the DPU BMC to retrieve information
from the BlueField:

The following table provides a list of supported ipmitool command arguments:

Command
Description

ipmitool Command

Relevant
IPMI 2.0
Rev 1.1
Spec
Section

Get device ID mc info 20.1

Broadcast
“Get Device
ID”

Part of "mc info" 20.9

Get BMC
global enables

mc getenables 22.2

Get device
SDR info

sdr info 35.2

Get device
SDR

"sdr get", "sdr list" or
"sdr elist"

35.3

Get sensor
hysteresis

sdr get <sensor-id> 35.7

Set sensor
threshold

sensor thresh <sensor-id> <threshold> <setting> 35.8

$ ipmitool <ipmitool command>

ipmitool -I ipmb <ipmitool command>

NVIDIA BlueField DPU BSP v4.7.0 292

Command
Description

ipmitool Command

Relevant
IPMI 2.0
Rev 1.1
Spec
Section

sensor-id – name of the sensor for which a threshold
is to be set
threshold – which threshold to set

ucr – upper critical
unc – upper non-critical
lnc – lower non-critical
lcr – lower critical

setting – the value to set the threshold to

To configure all lower thresholds, use : sensor thresh
<sensor-id> lower <lnr> <lcr> <lnc>

To configure all upper thresholds, use: sensor thresh
<sensor-id> upper <unc> <ucr> <unr>

Get sensor
threshold

sdr get <sensor-id> 35.9

Get sensor
event enable

sdr get <sensor-id> 35.11

Note
The lower non-recoverable <lnr>
option is not supported

Note
The upper non-recoverable <unr>
option is not supported

NVIDIA BlueField DPU BSP v4.7.0 293

Command
Description

ipmitool Command

Relevant
IPMI 2.0
Rev 1.1
Spec
Section

Get sensor
reading

sensor reading <sensor-id> 35.14

Get sensor
type

sdr type <type> 35.16

Read FRU
data

fru read <fru-number> <file-to-write-to> 34.2

Get SDR
repository
info

sdr info 33.9

Get SEL info "sel" or "sel info" 40.2

Get SEL
allocation info

"sel" or "sel info" 40.3

Get SEL entry "sel list" or "sel elist" 40.5

Add SEL entry sel add <filename> 40.6

Delete SEL
entry

sel delete <id> 40.8

Clear SEL sel clear 40.9

Get SEL time sel time get 40.1

Set SEL time sel time set "MM/DD/YYYY HH:M:SS" 40.11

List of IPMI Supported Sensors

Sensor ID Description

bluefield_temp 0 Support NIC monitoring of BlueField's temperature

ddr0_0_temp 1 1 Support monitoring of DDR0 temp (on memory controller 0)

ddr0_1_temp 1 2 Support monitoring of DDR1 temp (on memory controller 0)

NVIDIA BlueField DPU BSP v4.7.0 294

Sensor ID Description

ddr1_0_temp 1 3 Support monitoring of DDR0 temp (on memory controller 1)

ddr1_1_temp 1 4 Support monitoring of DDR1 temp (on memory controller 1)

p0_temp 5 Port 0 temperature

p1_temp 6 Port 1 temperature

p0_link 7 Port0 link status

p1_link 8 Port1 link status

1. On BlueField-2 and BlueField-3 based boards, DDR sensors and FRUs are not
supported. They will appear as no reading.

List of IPMI Supported FRUs

FR
U

I
D

Description

upd
ate_
tim
er

0

set_emu_param.service is responsible for collecting data on sensors and FRUs every
3 seconds. This regular update is required for sensors but not for FRUs whose
content is less susceptible to change. update_timer is used to sample the FRUs
every hour instead. Users may need this timer in the case where they are
issuing several raw IPMItool FRU read commands. This helps in assessing how
much time users have to retrieve large FRU data before the next FRU update.
update_timer is a hexadecimal number.

fw_i
nfo 1

NVIDIA® ConnectX® firmware information, Arm firmware version, and
MLNX_OFED version.
The fw_info is in ASCII format.

nic_
pci_
dev
_inf
o

2
NIC vendor ID, device ID, subsystem vendor ID, and subsystem device ID.
The nic_pci_dev_info is in ASCII format.

cpui
nfo 3

CPU information reported in lscpu and /proc/cpuinfo.
The cpuinfo is in ASCII format.

NVIDIA BlueField DPU BSP v4.7.0 295

FR
U

I
D

Description

ddr
0_0_
spd
2

4
FRU for SPD MC0 DIMM 0 (MC = memory controller).
The ddr0_0_spd is in binary format.

ddr
0_1_
spd
2

5
FRU for SPD MC0 DIMM1.
The ddr0_1_spd is in binary format.

ddr
1_0_
spd
2

6
FRU for SPD MC1 DIMM0.
The ddr1_0_spd is in binary format.

ddr
1_1_
spd
2

7
FRU for SPD MC1 DIMM1.
The ddr1_1_spd is in binary format.

em
mc_
info

8
eMMC size, list of its partitions, and partitions usage (in ASCII format).
eMMC CID, CSD, and extended CSD registers (in binary format).
The ASCII data is separated from the binary data with "StartBinary" marker.

qsf
p0_
eep
rom

9 FRU for QSFP 0 EEPROM page 0 content (256 bytes in binary format)

qsf
p1_
eep
rom

1
0

FRU for QSFP 1 EEPROM page 0 content (256 bytes in binary format)

ip_a
ddr
ess
es

1
1

This FRU file can be used to write the BMC port 0 and port 1 IP addresses to the
BlueField. It is empty to begin with.
The file passed through the ipmitool fru write 11 <file> command must have the
following format:

The size of the written file should be exactly 61 bytes.

dim
ms_

1
2

FRU reporting the number of correctable and uncorrectable errors in the
DIMMs.

BMC: XXX.XXX.XXX.XXX
P0: XXX.XXX.XXX.XXX
P1: XXX.XXX.XXX.XXX

NVIDIA BlueField DPU BSP v4.7.0 296

FR
U

I
D

Description

ce_
ue

This FRU is updated once every 3 seconds.

eth
0

1
3

Network interface 0 information. Updated once every minute.

eth
1

1
4

Network interface 1 information. Updated once every minute.

bf_u
id

1
5

BlueField UID

eth_
hw_
cou
nter
s

1
6

List of ConnectX interface hardware counters

1. On BlueField-2 and BlueField-3 based boards, DDR sensors and FRUs are not
supported. They will appear as no reading.

BlueField IPMI Commands

The BlueField is able to retrieve data from the DPU BMC over IPMB.

Issue a command with the following format from the BlueField to retrieve information
from the BMC:

The BlueField may request information about itself using the following command format:

$ ipmitool <ipmitool command>

$ ipmitool -U ADMIN -P ADMIN -p 9001 -H localhost <ipmitool command>

Note

NVIDIA BlueField DPU BSP v4.7.0 297

I2C Addresses for BMC-initiated Requests

Device I2C Address

BlueField ipmb_dev_int 0x30

BMC ipmb_host 0x20

I2C Addresses for BlueField-initiated Requests

Device I2C Address

BlueField ipmb_host 0x11

BMC ipmb_dev_int 0x10

Changing I2C Addresses

To use a different BlueField or BMC I2C address, you must make changes to the following
files' variables.

The ipmb_host driver allows the BlueField to send requests to the BMC.
Once set_emu_param.service is started, it will try to load the ipmb_host

drivers. If the BMC is down or not responsive when BlueField tries to
load the ipmb_host driver, the latter will not load successfully. In that
case, make sure the BMC is up and operational, and run the following
from BlueField's console:

The set_emu_param.service script will try to load the driver again.

echo 0x1011 > /sys/bus/i2c/devices/i2c-2/delete_device
rmmod ipmb_host

NVIDIA BlueField DPU BSP v4.7.0 298

Filename Path Parameter Change

/usr/bin/set_emu_
param.sh

The ipmb_dev_int and ipmb_host drivers are registered at the following I2C
addresses:

IPMB_DEV_INT_ADD=<BlueField I2C Address 1>
IPMB_HOST_ADD=<BlueField I2C Address 2>

These addresses must be different from one another. Otherwise, one
of the drives will fail to register.
To change the BMC I2C address:

External Host IPMI Commands

It is possible for the external host to retrieve data from the BlueField via the IPMI LAN
interface (either OOB or ConnectX).

To do that:

1. Set the network interface address properly in progconf. For example, if the OOB IP
address is 192.168.101.2, edit the OOB_IP variable in the /etc/ipmi/progconf file as
follows:

2. Then reboot or restart the IPMI service as follows:

IPMB_HOST_CLIENTADDR=<BMC I2C Address>
<I2C Address> must be equal to: 0x1000+<7-bit I2C address>

root@localhost:~# cat /etc/ipmi/progconf
SUPPORT_IPMB="NONE"
LOOP_PERIOD=3
BF_FAMILY=$(/usr/bin/bffamily | tr -d '[:space:]')
OOB_IP="192.168.101.2"

systemctl restart mlx_ipmid

NVIDIA BlueField DPU BSP v4.7.0 299

3. To get information from the BlueField, issue commands from the external host in
the following format:

Loading and Using IPMI on BlueField Running CentOS

1. Load the BlueField CentOS image:

Example of loading ee1004.ko, at24.ko, and eeprom.ko:

ipmitool -I lanplus -H 192.168.101.2 -U ADMIN -P ADMIN <ipmitool command>

Note

The following steps are performed from the BlueField CentOS
prompt. The BlueField is running CentOS 7.6 with kernel 5.4.
The CentOS installation was done using the CentOS everything
ISO image.

The following drivers need to be loaded on the BlueField
running CentOS:

jc42.ko

ee1004.ko

at24.ko

eeprom.ko

i2c-dev.ko

modprobe ee1004
modprobe at24
modprobe eeprom

NVIDIA BlueField DPU BSP v4.7.0 300

2. (Optional) Update the i2c-mlx driver if the installed version is older than i2c-mlx-1.0-

0.gab579c6.src.rpm.

1. Re-compile i2c-mlx. Run:

2. Transfer the i2c-mlx RPM from the BlueField software tarball under distro/SRPM
onto the Arm. Run:

3. Load i2c-mlx. Run:

3. Install the following packages:

If the above operation fails for ipmitool, run the following to install it:

Info

The i2c-dev module is built into the kernel 5.4.60 on CentOS 7.6.

$ yum remove -y kmod-i2c-mlx
$ modprobe -rv i2c-mlx

$ rpmbuild --rebuild /root/i2c-mlx-1.0-0.g422740c.src.rpm
$ yum install -y /root/rpmbuild/RPMS/aarch64/i2c-mlx-1.0-
0.g422740c_5.4.17_mlnx.9.ga0bea68.aarch64.rpm
$ ls -l /lib/modules/$(uname -r)/extra/i2c-mlx/i2c-mlx.ko

$ modprobe i2c-mlx

$ yum install ipmitool lm_sensors

wget http://sourceforge.net/projects/ipmitool/files/ipmitool/1.8.18/ipmitool-
1.8.18.tar.gz
tar -xvzf ipmitool-1.8.18.tar.gz

NVIDIA BlueField DPU BSP v4.7.0 301

4. The i2c-tools package is also required, but the version contained in the CentOS Yum
repository is old and does not work with BlueField. Therefore, please download i2c-
tools version 4.1, and then build and install it.

5. Generate an RPM binary from the BlueField's mlx-OpenIPMI-2.0.25 source RPM.

The following packages might be needed to build the binary RPM depending on
which version of CentOS you are using.

cd ipmitool-1.8.18
./bootstrap
./configure
make
make install DESTDIR=/tmp/package-ipmitool

Build i2c-tools from a newer source
wget http://mirrors.edge.kernel.org/pub/software/utils/i2c-tools/i2c-tools-
4.1.tar.gz
tar -xvzf i2c-tools-4.1.tar.gz
cd i2c-tools-4.1
make
make install PREFIX=/usr

create a link to the libraries
ln -sfn /usr/lib/libi2c.so.0.1.1 /lib64/libi2c.so
ln -sfn /usr/lib/libi2c.so.0.1.1 /lib64/libi2c.so.0

$ yum install libtool rpm-devel rpmdevtools rpmlint wget ncurses-devel
automake
$ rpmbuild --rebuild mlx-OpenIPMI-2.0.25-0.g581ebbb.src.rpm

Note

You may obtain this rpm file by means of scp from the server
host's Bluefield Distribution folder. For example:

NVIDIA BlueField DPU BSP v4.7.0 302

If there are issues with building the OpenIPMI RPM, verify that the swig package is
not installed.

6. Generate a binary RPM from the ipmb-dev-int source RPM and install it. Run:

7. Generate a binary RPM from the ipmb-host source RPM and install it. Run:

8. Load OpenIPMI, ipmb-host, and ipmb-dev-int RPM packages. Run:

9. Load the IPMB driver. Run:

10. Install and start rasdaemon package. Run:

$ scp <BF_INST_DIR>/distro/SRPMS/mlx-OpenIPMI-2.0.25-
0.g4fdc53d.src.rpm <ip-address>:/<target_directory>/

$ yum remove -y swig

$ rpmbuild --rebuild ipmb-dev-int-1.0-0.g304ea0c.src.rpm

$ rpmbuild --rebuild ipmb-host-1.0-0.g304ea0c.src.rpm

$ yum install -y /root/rpmbuild/RPMS/aarch64/mlx-OpenIPMI-2.0.25-
0.g581ebbb_5.4.0_49.el7a.aarch64.aarch64.rpm
$ yum install -y /root/rpmbuild/RPMS/aarch64/ipmb-dev-int-1.0-
0.g304ea0c_5.4.0_49.el7a.aarch64.aarch64.rpm
$ yum install -y /root/rpmbuild/RPMS/aarch64/ipmb-host-1.0-
0.g304ea0c_5.4.0_49.el7a.aarch64.aarch64.rpm

$ modprobe ipmb-dev-int

yum install rasdaemon

NVIDIA BlueField DPU BSP v4.7.0 303

11. Start the IPMI daemon. Run:

Redfish
Redfish provides a RESTful interface designed to manage IT infrastructure and is
implemented using a modern toolchain (HTTP(s)/TLS/JSON).

Redfish supports the operations listed in this section.

BIOS Configuration Schema

The BIOS schema contains properties related to the BIOS attribute registry. The attribute
registry describes the system-specific BIOS attributes and actions for changing to BIOS
settings. It is likely that a client finds the @Redfish.Settings term in this resource, and if it is
found, the client makes requests to change BIOS settings by modifying the resource
identified by the @Redfish.Settings annotation.

URI /redfish/v1/Systems/{ComputerSystemId}/Bios

Schema file http://redfish.dmtf.org/schemas/v1/Bios.v1_1_1.json

Operations GET; PATCH

Example response:

systemctl enable rasdaemon
systemctl start rasdaemon

$ systemctl enable mlx_ipmid
$ systemctl start mlx_ipmid
$ systemctl enable set_emu_param
$ systemctl start set_emu_param

{
"@Redfish.Settings": {
"@odata.type": "#Settings.v1_3_5.Settings",
"SettingsObject": {

NVIDIA BlueField DPU BSP v4.7.0 304

"@odata.id": "/redfish/v1/Systems/Bluefield/Bios/Settings"
}
},
"@odata.id": "/redfish/v1/Systems/Bluefield/Bios",
"@odata.type": "#Bios.v1_2_0.Bios",
"Actions": {
"#Bios.ChangePassword": {
"target": "/redfish/v1/Systems/Bluefield/Bios/Actions/Bios.ChangePassword"
},
"#Bios.ResetBios": {
"target": "/redfish/v1/Systems/Bluefield/Bios/Actions/Bios.ResetBios"
}
},
"Attributes": {
"Boot Partition Protection": false,
"CurrentUefiPassword": "",
"DateTime": "2024-04-24T19:56:59Z",
"DefaultPasswordPolicy": true,
"Disable PCIe": false,
"Disable SPMI": false,
"Disable TMFF": false,
"EmmcWipe": false,
"Enable 2nd eMMC": false,
"Enable OP-TEE": false,
"Enable SMMU": true,
"Field Mode": false,
"Host Privilege Level": "Privileged",
"Internal CPU Model": "Embedded",
"LegacyPasswordEnable": true,
"NicMode": "DpuMode",
"NvmeWipe": false,
"OsArgs": "",
"ResetEfiVars": false,
"SPCR UART": "Disabled",
"UefiArgs": "",
"UefiPassword": ""

NVIDIA BlueField DPU BSP v4.7.0 305

},
"Description": "BIOS Configuration Service",
"Id": "BIOS",
"Links": {
"SoftwareImages": [
{
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_ATF"
},
{
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_BOARD"
},
{
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_BSP"
},
{
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_NIC"
},
{
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_NODE"
},
{
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_OFED"
},
{
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_OS"
},
{
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_SYS_IMAGE"
},
{
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/DPU_UEFI"
}
],
"SoftwareImages@odata.count": 9
},
"Name": "BIOS Configuration",

NVIDIA BlueField DPU BSP v4.7.0 306

The following table explains each of the attributes listed in the code:

Attribute Description

Boot Partition Protection See description in section "System Configuration"

CurrentUefiPassword See "Set Password" in section "System Configuration"

DateTime See "Set RTC" in section "System Configuration"

DefaultPasswordPolicy See "Password Settings" in section "System Configuration"

Disable PCIe See description in section "System Configuration"

Disable SPMI See description in section "System Configuration"

Disable TMFF See description in section "System Configuration"

EmmcWipe See description in section "System Configuration"

Enable 2nd eMMC See description in section "System Configuration"

Enable OP-TEE See description in section "System Configuration"

Enable SMMU See description in section "System Configuration"

Field Mode See description in section "System Configuration"

Host Privilege Level See "BlueField Modes" in section "System Configuration"

Internal CPU Model See "BlueField Modes" in section "System Configuration"

LegacyPasswordEnable See "Password Settings" in section "System Configuration"

NicMode See "BlueField Modes" under section "System Configuration"

NvmeWipe See description in section "System Configuration"

OsArgs Arguments to pass to the OS kernel

ResetEfiVars See "Reset EFI Variables" in section "System Configuration"

SPCR UART See " Select SPCR UART " in section "System Configuration"

UefiArgs Arguments to pass to the UEFI

UefiPassword See "Set Password" in section "System Configuration"

"ResetBiosToDefaultsPending": false
}

https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu#src-2821766571_UEFIMenu-SystemConfiguration

NVIDIA BlueField DPU BSP v4.7.0 307

BlueField Platform Inventory

The BlueField Platform provides inventory information in the ComputerSystemCollection

schema. To identify the DPU ComputerSystem instance, fetch the ComputerSystemCollection

first.

DPUs are identified with the SystemType attribute DPU. The DPU instance identifier value
(DPU.Embedded.1_NIC.Slot.2 in this case) differs from one server vendor to another but will
uniquely identify the DPU in all cases.

The following is a simple example of fetching Redfish inventory information from a
server's BMC:

root@localhost:~$ python3 /usr/local/bin/redfishtool.py -r <bmc_ip> -u <USER> -p
<PASSWORD> raw GET /redfish/v1/Systems/
{
"@odata.context":
"/redfish/v1/$metadata#ComputerSystemCollection.ComputerSystemCollection",
"@odata.id": "/redfish/v1/Systems",
"@odata.type": "#ComputerSystemCollection.ComputerSystemCollection",
"Description": "Collection of Computer Systems",
"Members": [
{
"@odata.id": "/redfish/v1/Systems/System.Embedded.1"
},
{
"@odata.id": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2"
}
],
"Members@odata.count": 2,
"Name": "Computer System Collection"
}

root@localhost:~$ python3 /usr/local/bin/redfishtool.py -r <bmc_ip> -u <USER> -p
<PASSWORD> raw GET /redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2
{
"@odata.context": "/redfish/v1/$metadata#ComputerSystem.ComputerSystem",

NVIDIA BlueField DPU BSP v4.7.0 308

"@odata.id": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2",
"@odata.type": "#ComputerSystem.v1_12_0.ComputerSystem",
"Actions": {
"#ComputerSystem.Reset": {
"target":
"/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2/Actions/ComputerSystem.Reset",
"ResetType@Redfish.AllowableValues": [
"ForceRestart",
"Nmi"
]
}
},
"Bios": {
"@odata.id": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2/Bios"
},
"BiosVersion": null,
"Boot": {
"BootOptions": {
"@odata.id": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2/BootOptions"
},
"BootOrder": [],
"BootOrder@odata.count": 0,
"BootSourceOverrideEnabled": null,
"BootSourceOverrideMode": null,
"BootSourceOverrideTarget": null,
"UefiTargetBootSourceOverride": null,
"BootSourceOverrideTarget@Redfish.AllowableValues": []
},
"Description": "DPU System",
"Id": "DPU.Embedded.1_NIC.Slot.2",
"Manufacturer": "DELL",
"Model": "NVIDIA Bluefield-2 25GbE 2p Crypto DPU",
"Name": "DPU System",

NVIDIA BlueField DPU BSP v4.7.0 309

"Oem": {
"Dell": {
"@odata.type": "#DellComputerSystem.v1_1_0.DellComputerSystem",
"DPUConfig": {
"FQDD": "DPU.Embedded.1:NIC.Slot.2",
"BootStatus": "OSBooting",
"DPUBootSynchronization": "Enabled",
"DPUTrust": "Enabled",
"IdenticalSBDF": [
"0:23:0:0",
"0:23:0:1"
],
"LastResetReason": null,
"OSName": null,
"OSReadyTimeout": 20,
"OSInstallationTimeout": 30,
"OSVersion": null,
"OSVendor": null,
"OSStatus": "Unknown",
"Slot": "2",
"PCIeSlotState": "Enabled",
"PostCode": null,
"VendorID": "0x15B3",
"DeviceID": "0xA2D6",
"SubVendorID": "0x15B3",
"SubDeviceID": "0x0129"
},
"Name": "DPUConfig",
"Id": "DPU.Embedded.1_NIC.Slot.2"
}
},
"PartNumber": "JNDCMX01",
"SecureBoot": {
"@odata.id": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2/SecureBoot"
},
"SerialNumber": "IL740311A5000A",

NVIDIA BlueField DPU BSP v4.7.0 310

Boot Override

This example demonstrates how to boot a BlueField Platform while overriding the
existing boot options and using HTTP boot to obtain the image.

Check the current boot override settings by doing a GET on ComputerSystem schema. Look
for the Boot property.

"SKU": "0JNDCM",
"Status": {
"Health": "Ok",
"HealthRollup": "Ok",
"State": "Enabled"
},
"SystemType": "DPU",
"UUID": "ec6dd921-882a-ec11-8000-08c0eb5180ba",
"@Redfish.Settings": {
"@odata.context": "/redfish/v1/$metadata#Settings.Settings",
"@odata.type": "#Settings.v1_3_3.Settings",
"SettingsObject": {
"@odata.id": "/redfish/v1/Systems/DPU.Embedded.1_NIC.Slot.2/Settings"
}
}
}

curl -vk -X GET -u "user:password" https://<bmc_ip>/redfish/v1/Systems/SystemId/ |
python3 -m json.tool
{
...
"Boot": {
"BootNext": "",
"BootOrderPropertySelection": "BootOrder",
"BootSourceOverrideEnabled": "Disabled",
"BootSourceOverrideMode": "UEFI",
"BootSourceOverrideTarget": "None",
"UefiTargetBootSourceOverride": "None",

NVIDIA BlueField DPU BSP v4.7.0 311

The sample output above shows the BootSourceOverrideEnabled property is Disabled and
BootSourceOverrideTarget is None. The BootSourceOverrideMode property should always be set to
UEFI. Allowable values of BootSourceOverrideEnabled and BootSourceOverrideTarget are defined in
the meta-data BootSourceOverrideEnabled@Redfish.AllowableValues and
BootSourceOverrideTarget@Redfish.AllowableValues respectively.

To perform boot override, you must perform a PATCH to pending settings URI:

After performing the above PATCH successfully, reboot the BlueField Platform. Once UEFI
has completed, check whether the settings are applied by performing a GET on
ComputerSystem schema.

.....
},
....
"BootSourceOverrideEnabled@Redfish.AllowableValues": [
"Once",
"Continuous",
"Disabled"
],
"BootSourceOverrideTarget@Redfish.AllowableValues": [
"None",
"Pxe",
"UefiHttp",
"UefiShell",
"UefiTarget",
"UefiBootNext"
],
....
}

curl -vk -X PATCH -d '{"Boot": {"BootSourceOverrideEnabled":"Once",
"BootSourceOverrideMode":"UEFI", "BootSourceOverrideTarget": "UefiHttp",
"HttpBootUri":"http://<HTTP-Server-Ip>/Image.iso"}}' -u "user:password"
https://<bmc_ip>/redfish/v1/Systems/SystemId/Settings | python3 -m json.tool

NVIDIA BlueField DPU BSP v4.7.0 312

Note that the HttpBootUri property is parsed by the Redfish server and the URI is presented
to the DPU as part of DHCP lease when the DPU performs the HTTP boot.

After confirming the settings are applied (see PATCH properties above), reboot the DPU
for the settings to take effect. If BootSourceOverrideEnabled is set to Once, boot override is
disabled and any related properties are reset to their former values to avoid repetition. If
it is set to Continuous, then on every reboot the DPU will keep performing boot override
(HTTPBoot).

Boot Order

The following is an example of changing the boot order and fetching the details of a boot
option.

1. Check the current boot order by doing GET on the ComputerSystem schema. Look for
the BootOrder attribute under the Boot property.

2. Get the details of a particular entity in the BootOrder array by performing a GET to the
respective BootOption URL. For example, to get details of Boot0006, run:

curl -vk -X GET -u "user:password" https://<bmc_ip>/redfish/v1/Systems/SystemId/ |
python3 -m json.tool
{
...
"Boot": {
"BootNext": "",
"BootOrderPropertySelection": "BootOrder",
"BootSourceOverrideEnabled": "Once",
"BootSourceOverrideMode": "UEFI",
"BootSourceOverrideTarget": "UefiHttp",
"UefiTargetBootSourceOverride": "None",
.....
},
.....
}

NVIDIA BlueField DPU BSP v4.7.0 313

3. To change the boot order, the entire BootOrder array must be PATCHed to the
pending settings URI. For the above example of the BootOrder array, if you intend to
have Boot0006 at the beginning of the array, then the PATCH operation is as follows.

After a successful PATCH, reboot the DPU and check if the settings were applied by doing
a GET on the ComputerSystem schema. If the BootOrder array is updated as intended, then
the settings were applied and the BlueField Platform should boot as per the order in
proceeding cycles.

curl -vk -X GET -u "user:password"
https://<bmc_ip>/redfish/v1/Systems/SystemId/BootOptions/Boot0006 |
python3 -m json.tool

{
"@odata.type": "#BootOption.v1_0_3.BootOption",
"@odata.id": "/redfish/v1/Systems/SystemId/BootOptions/Boot0006",
"Id": "Boot0006",
"BootOptionEnabled": true,
"BootOptionReference": "Boot0006",
"DisplayName": "UEFI HTTPv6 (MAC:B8CEF6B8A006)",
"UefiDevicePath":
"PciRoot(0x0)/Pci(0x0,0x0)/Pci(0x0,0x0)/Pci(0x0,0x0)/Pci(0x0,0x0)/MAC(B8CEF6B8A
}

curl -vk -X PATCH -d '{ "Boot": { "BootOrder": ["Boot0006", "Boot0017",
"Boot0001", "Boot0002", "Boot0003", "Boot0004", "Boot0005", "Boot0007",] }}'
-u "user:password" https://<bmc_ip>/redfish/v1/Systems/SystemId/Settings |
python3 -m json.tool

Note

Updating the BootOrder array results in a permanent boot order
change (persistent across reboots).

NVIDIA BlueField DPU BSP v4.7.0 314

BIOS Attributes

The following is an example of fetching and setting a DPU BIOS attribute.

1. Check UEFI attributes and their values by doing a GET on Bios URL. Look for Attributes

property.

curl -vk -X GET -u "user:password"
https://<bmc_ip>/redfish/v1/Systems/SystemId/Bios | python3 -m json.tool

{
....
"Attributes": {
"Boot Partition Protection": false,
"CurrentUefiPassword": "",
"DateTime": "2022-07-05T16:02:12Z",
"Disable PCIe": false,
"Disable SPMI": false,
"Disable TMFF": false,
"Enable 2nd eMMC": false,
"Enable OP-TEE": false,
"Enable SMMU": true,
"Field Mode": false,
"Host Privilege Level": "Privileged",
"Internal CPU Model": "Embedded",
"ResetEfiVars": false,
"SPCR UART": "Disabled",
"UefiPassword": ""
},
....
}

Note

NVIDIA BlueField DPU BSP v4.7.0 315

2. The following example updates the UEFI password. Perform PATCH to Bios pending
settings URI as follows:

3. To confirm whether the PATCH request is successful, perform a GET to the BIOS
pending settings URI:

4. For requests to take effect, reboot the DPU. If the CurrentUefiPassword is correct, then
the UEFI password is updated during the UEFI Redfish phase of boot.

For Security reasons, CurrentUefiPassword and UefiPassword strings
might be empty.

curl -vk -X PATCH -d '{"Attributes":{"CurrentUefiPassword":
"CURRENTPASSWD", "UefiPassword": "NEWPASSWORD"}}' -u "user:password"
https://<bmc_ip>/redfish/v1/Systems/SystemId/Bios/Settings | python3 -m
json.tool

Note

To update the password, both the current password and the
new password (requesting) should be specified as
demonstrated above. Otherwise, the change does not work. To
modify other attributes no password is required.

curl -vk -X GET -u "user:password"
https://<bmc_ip>/redfish/v1/Systems/SystemId/Bios/Settings | python3 -m
json.tool

Info

NVIDIA BlueField DPU BSP v4.7.0 316

Logging
RShim Logging

RShim logging uses an internal 1KB HW buffer to track booting progress and record
important messages. It is written by the NVIDIA ® BlueField ® Arm cores and is displayed
by the RShim driver from the USB/PCIe host machine. Starting in release 2.5.0, ATF has
been enhanced to support the RShim logging.

The RShim log messages can be displayed described in the following:

1. Check the DISPLAY_LEVEL level in file /dev/rshim0/misc.

2. Set DISPLAY_LEVEL to 2.

3. Log messages are displayed in the misc file.

The following is an example output for BlueField-2:

The UEFI password is only required to enter the UEFI menu
using the serial console.

cat /dev/rshim0/misc
DISPLAY_LEVEL 0 (0:basic, 1:advanced, 2:log)
…

echo "DISPLAY_LEVEL 2" > /dev/rshim0/misc

cat /dev/rshim0/misc
...

Log Messages

INFO[BL2]: start

NVIDIA BlueField DPU BSP v4.7.0 317

The following table details the ATF/UEFI messages for BlueField-2 and BlueField-3:

Message Explanation Action

INFO[BL2]:
start BL2 started Informational

INFO[BL2]: no
DDR on
MSS<N>

DDR is not detected on memory
controller <N>

Informational (depends on
device)

INFO[BL2]: calc
DDR freq
(clk_ref 156M,
clk xxx)

DDR frequency is calculated based on
reference clock 156M

Informational

INFO[BL2]: calc
DDR freq
(clk_ref 100M,
clk xxx)

DDR frequency is calculated based on
reference clock 100M

Informational

INFO[BL2]: calc
DDR freq
(clk_ref xxxx)

DDR frequency is calculated based on
reference clock xxxx

Informational

INFO[BL2]: DDR
POST passed BL2 DDR training passed Informational

INFO[BL2]: UEFI
loaded

UEFI image is loaded successfully in
BL2

Informational

ERR[BL2]: DDR
init fail on
MSS<N>

DDR initialization failed on memory
controller <N>

Informational (depends on
device)

INFO[BL2]: no DDR on MSS0
INFO[BL2]: calc DDR freq (clk_ref 53836948)
INFO[BL2]: DDR POST passed
INFO[BL2]: UEFI loaded
INFO[BL31]: start
INFO[BL31]: runtime
INFO[UEFI]: eMMC init
INFO[UEFI]: eMMC probed
INFO[UEFI]: PCIe enum start
INFO[UEFI]: PCIe enum end

NVIDIA BlueField DPU BSP v4.7.0 318

Message Explanation Action

ERR[BL2]:
image <N> bad
CRC

Image with ID <N> is corrupted which
will cause hang

Error message. Reset the device
and retry. If problem persists, use
a different image to retry it.

ERR[BL2]: DDR
BIST failed DDR BIST failed

Need to retry. Check the ATF
booting message whether the
detected OPN is correct or not, or
whether it is supported by this
image. If still fails, contact NVIDIA
Support.

ERR[BL2]: DDR
BIST Zero Mem
failed

DDR BIST failed in the zero-memory
operation

Power-cycle and retry. If the
problem persists, contact your
NVIDIA FAE.

WARN[BL2]:
DDR frequency
unsupported

DDR training is programmed with
unsupported parameters

Check whether official FW is being
used. If the problem persists,
contact your NVIDIA FAE.

WARN[BL2]:
DDR min-
sys(unknown)

System type cannot be determined
and boot as a minimal system

Check whether the OPN or PSID is
supported. If the problem
persists, contact your NVIDIA FAE.

WARN[BL2]:
DDR min-
sys(misconf)

System type misconfigured and boot
as a minimal system

Check whether the OPN or PSID is
supported. If the problem
persists, contact your NVIDIA FAE.

Exception(BL2):
syndrome =
xxxxxxxx
…

Exception in BL2 with syndrome code
and register dump. System hung.

Capture the log, analyze the
cause, and report to FAE if
needed

PANIC(BL2): PC
= xxx
…

Panic in BL2 with register dump.
System will hung.

Capture the log, analyze the
cause, and report to FAE if
needed

ERR[BL2]:
load/auth failed

Failed to load image (non-
existent/corrupted), or image
authentication failed when secure
boot is enabled

Try again with the correct and
properly signed image

INFO[BL31]:
start BL31 started Informational

NVIDIA BlueField DPU BSP v4.7.0 319

Message Explanation Action

INFO[BL31]:
runtime

BL31 enters the runtime state. This is
the latest BL31 message in normal
booting process.

Informational

Exception(BL31
): syndrome =
xxxxxxxx
cptr_el3 xx
daif xx
…

Exception in BL31 with syndrome
code and register dump. System
hung.

Capture the log, analyze the
cause, and report to FAE if
needed

PANIC(BL31):
PC = xxx
cptr_el3
xxx
daif xxx
…

Panic in BL31 with register dump.
System hung.

Capture the log, analyze the
cause, and report to FAE if
needed

INFO[UEFI]:
eMMC init eMMC driver is initialized

Informational and should always
be printed

INFO[UEFI]:
eMMC probed eMMC card is initialized

Informational and should always
be printed

ASSERT(UEFI]:
xxx : line-no Runtime assert message in UEFI

Contact your NVIDIA FAE with this
information. Usually the system is
able to continue running.

INFO[UEFI]:
PCIe enum
start

PCIe enumeration start Informational

INFO[UEFI]:
PCIe enum end PCIe enumeration end Informational

ERR[UEFI]:
Synchronous
Exception at
xxxxxx
ERR[UEFI]:
PC=xxxxxx
ERR[UEFI]:
PC=xxxxxx
…

UEFI Exception with PC value
reported

Contact your NVIDIA FAE with this
information

ERR[BL2]:FW
auth failed Image authentication error

Wrong image has been used in
the current secure lifecycle.
Switch to the correct image.

NVIDIA BlueField DPU BSP v4.7.0 320

Message Explanation Action

ERR[BL2]: IROT
cert sig not
found

Failed to load attestation certificates
Contact your NVIDIA FAE with this
information

ERR[BL2]: IROT
cert sig not
found

Failed to load certification update
record

Contact your NVIDIA FAE with this
information

INFO[BL31]:
PSC Turtle
Mode detected

PSC enters turtle mode

Informational

INFO[BL31]: In
Enhanced NIC
mode

BlueField-3 enters enhanced NIC
mode

Informational

ERR[BL31]:
(set_page err |
pmbus_lsb err
| mfr_vr_mc err
| set_vout err)

BlueField-3 power management
programming error.

Contact your NVIDIA FAE with this
information

Info
Only relevant for
certain BlueField-
3 DPUs.

Info
BlueField-3 only.

Info
Usually happens
when the I2C
voltage regulator
is not accessible.

NVIDIA BlueField DPU BSP v4.7.0 321

Message Explanation Action

INFO [BL31]:
MB8: VDD
adjustment
complete

BlueField-3 MainBin 8-core board
VDD CPU adjustment

Informational

INFO [BL31]:
VDD
adjustment
complete

BlueField-3 (non-8-core board) VDD
CPU adjustment

Informational

INFO [BL31]:
VDD: xxx mV BlueField-3 VDD CPU voltage Informational

ERR[BL31]:
cannot access
vr0 (or access
vr1)

BlueField-3 unable to access voltage
regulator (vr0 or vr1) via I2C

Contact your NVIDIA FAE with this
information

ERR[BL31]: ATX
power not
detected!

ATX power is not connected
Contact your NVIDIA FAE with this
information

INFO[BL31]:
PTMERROR:
Unknown OPN

Unable to detect the OPN on this
device

Contact your NVIDIA FAE with this
information

INFO[BL31]:
PTMERROR: VR
access error

Unable to access the voltage
regulator on this device

Contact your NVIDIA FAE with this
information

INFO[BL31]:
power capping
disabled

BlueField-3 power capping disabled Informational

INFO[BL2]:
boot mode
(rshim | emmc
| unknown)

Device boot mode (from external
RShim or eMMC)

Informational

Info
This also means
power capping
will be disabled.

NVIDIA BlueField DPU BSP v4.7.0 322

Message Explanation Action

ERR[BL31]:
ECC_SINGLE_ER
ROR_CNT=xxx

Single ECC error counter report
Contact your NVIDIA FAE with this
information

ERR[BL31]:
ECC_DOUBLE_E
RROR_CNT=xxx

Double ECC error counter report
Contact your NVIDIA FAE with this
information

ERR[BL31]:
mss0|mss1:
C0|C1 single-
bit ecc, IRQ[%d]

MSS (0 or 1) channel (0 or 1) single-bit
ECC error interrupt #

Contact your NVIDIA FAE with this
information

ERR[BL31]:
mss0|mss1:
C0|C1 Double
bit ecc, IRQ[%d]

MSS (0 or 1) channel (0 or 1) double-
bit ECC error interrupt #

Contact your NVIDIA FAE with this
information

ERR[BL31]:
Double-bit ECC
also detected in
same buffer

Single/double ECC error detected in
the same buffer

Contact your NVIDIA FAE with this
information

ERR[BL31]: l3c:
double-bit ecc L3c double-bit ECC error detected

Contact your NVIDIA FAE with this
information

ERR[BL31]:
MSS%d
DIMM%d
single|double
bit ECC error
detected

MSS DRAM single (or double) bit error
detected

Contact your NVIDIA FAE with this
information

ERR[BL31]:
MSS%d SRAM
double bit ECC
error detected

MSS SRAM double bit ECC error
detected

Contact your NVIDIA FAE with this
information

IPMI Logging in UEFI

During UEFI boot, the BlueField sends IPMI SEL messages over IPMB to the BMC in order
to track boot progress and report errors. The BMC must be in responder mode to receive
the log messages.

SEL Record Format

The following table presents standard SEL records (record type = 0x02).

NVIDIA BlueField DPU BSP v4.7.0 323

Byte(
s)

Field Description

1
2

Record ID
ID used to access SEL record. Filled in by the BMC. Is initialized to
zero when coming from UEFI.

3
Record
Type

Record type

4
5
6
7

Timestamp
Time when event was logged. Filled in by BMC. Is initialized to zero
when coming from UEFI.

8
9

Generator
ID

This value is always 0x0001 when coming from UEFI

10 EvM Rev
Event message format revision which provides the version of the
standard a record is using.
This value is 0x04 for all records generated by UEFI.

11
Sensor
Type

Sensor type code for sensor that generated the event

12
Sensor
Number

Number of the sensor that generated the event.
These numbers are arbitrarily chosen by the OEM.

13
Event Dir |
Event Type

[7] – 0b0 = Assertion, 0b1 = Deassertion
[6:0] – Event type code

14
Event Data
1

[7:6] – Type of data in Event Data 2

0b00 = unspecified
0b10 = OEM code
0b11 = Standard sensor-specific event extension

[5:4] – Type of data in Event Data 3

0b00 = unspecified
0b10 = OEM code
0b11 = Standard sensor-specific event extension

[3:0] – Event Offset; offers more detailed event categories.
See IPMI 2.0 Specification section 29.7 for more detail.

NVIDIA BlueField DPU BSP v4.7.0 324

Byte(
s)

Field Description

15
Event Data
2

Data attached to the event. 0xFF for unspecified.
Under some circumstances, this may be used to specify more
detailed event categories.

16
Event Data
3

Data attached to the event. 0xFF for unspecified.

See IPMI 2.0 Specification section 32.1 for more detail.

Possible SEL Field Values

BlueField UEFI implements a subset of the IPMI 2.0 SEL standard. Each field may have the
following values:

Field
Possible
Values

Description of Values

Record
Type

0x02
Standard SEL record. All events sent by UEFI are standard SEL
records.

Event Dir 0b0 All events sent by UEFI are assertion events

Event
Type

0x6F
Sensor-specific discrete events. Events with this type do not
deviate from the standard.

Sensor
Number

0x06
UEFI boot progress “sensor”. If value is 0x06, the sensor type will
always be “System Firmware Progress” (0x0F).

For Sensor Type, Event Offset, and Event Data 1-3 definitions, see next table.

Event Definitions

Events are defined by a combination of Record Type, Event Type, Sensor Type, Event
Offset (occupies Event Data 1), and sometimes Event Data 2 (referred to as the Event
Extension if it defines sub-events).

NVIDIA BlueField DPU BSP v4.7.0 325

The following tables list all currently implemented IPMI events (with Record Type = 0x02,
Event Type = 0x6F).

Sensor
Type

Sensor
Type
Code

Event
Offse
t

Event Description, Actions to Take

System
Firmware
Progress

0x0F

0x00

System firmware error (POST error).
Event Data 2:

0x06 – Unrecoverable EMMC error. Contact NVIDIA
support.

0x02

System firmware progress: Informational message, no
actions needed.
Event Data 2:

0x02 – Hard Disk Initialization. Logged when EMMC
is initialized.
0x04 – User Authentication. Logged when a user
enters the correct UEFI password. This event is never
logged if there is no UEFI password.
0x07 – PCI Resource Configuration. Logged when PCI
enumeration has started.
0x0B – SMBus Initialization. This event is logged as
soon as IPMB is configured in UEFI.
0x13 – Starting OS Boot Process. Logged when Linux
begins booting.

Note

Note that if an Event Data 2 or Event Data 3 value is not specified, it
can be assumed to be Unspecified (0xFF).

NVIDIA BlueField DPU BSP v4.7.0 326

Reading IPMI SEL Log Messages

Log messages may be read from the BMC by issuing it a “Get SEL Entry Command” while
it is in responder mode, either from a remote host, or from the BlueField DPU itself once
it is booted.

ACPI BERT Logging

ACPI boot error record table (BERT) is supported to log last boot error in Linux. Once Linux
printk is enabled (e.g., by adding "kernel.printk=8" to /etc/sysctl.conf), it will try to report the
errors automatically for last boot. The following is an example of such error reports:

$ ipmitool sel list
7b | Pre-Init |0000691604| System Firmwares #0x06 | SMBus initialization |
Asserted
7c | Pre-Init |0000691604| System Firmwares #0x06 | Hard-disk initialization |
Asserted
7d | Pre-Init |0000691654| System Firmwares #0x06 | System boot initiated
$ ipmitool sel get 0x7d
SEL Record ID : 007d
Record Type : 02
Timestamp : 01/09/1970 00:07:34
Generator ID : 0001
EvM Revision : 04
Sensor Type : System Firmwares
Sensor Number : 06
Event Type : Sensor-specific Discrete
Event Direction : Assertion Event
Event Data : c213ff
Description : System boot initiated
$ ipmitool sel clear
Clearing SEL. Please allow a few seconds to erase.
$ ipmitool sel list
SEL has no entries

NVIDIA BlueField DPU BSP v4.7.0 327

SoC Management Interface
The SoC management interface, formerly known as RShim, allows an external agent such
as the host CPU or BMC to operate the DPU and monitor its operational state. This
interface allows provisioning of the DPU, resetting Arm cores, and obtaining logs.

Installation and Upgrade

Please refer to section Updating Repo Package on Host Side.

Configuration File

[2.635539] BERT: Error records from previous boot:
[2.640434] [Hardware Error]: event severity: fatal
[2.645331] [Hardware Error]: Error 0, type: fatal
[2.650236] [Hardware Error]: section type: unknown, c6adf9e6-1108-4760-8827-
003d059fe2e1
[2.658606] [Hardware Error]: section length: 0x35
[2.663580] [Hardware Error]: 00000000: 52524520 4645555b 203a5d49 0a0d0a0d
ERR[UEFI]:
[2.672284] [Hardware Error]: 00000010: 636e7953 6e6f7268 2073756f 65637845
Synchronous Exce
[2.680987] [Hardware Error]: 00000020: 6f697470 7461206e 36783020 37313643
ption at 0x6C617
[2.689696] [Hardware Error]: 00000030: 34 37 30 0d 0a
...

Note

For instructions for Windows support, please refer to page "Windows
Support".

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installing+Repo+Package+on+Host+Side
file:///networking/display/bluefielddpuosv470/Windows+Support
file:///networking/display/bluefielddpuosv470/Windows+Support

NVIDIA BlueField DPU BSP v4.7.0 328

The configuration file for the SoC management interface is located at /etc/rshim.conf and
includes the parameters listed in the table below.

Parameter
Defa
ult

Description

BOOT_TIMEOUT 150
Timeout value in seconds when pushing BFB while Arm side is not
reading the boot stream.

DROP_MODE 0

Once set to 1, the RShim driver ignores all RShim writes and
returns 0 for RShim read.
This is used in cases such as during FW_RESET or bypassing the
RShim PF to VM.

PCIE_RESET_DEL
AY 10

Delay in seconds for RShim over PCIe, which is added after chip
reset and before pushing the boot stream.

PCIE_INTR_POLL_
INTERVAL 10

Interrupt polling interval in seconds when running RShim over
direct memory mapping.

PCIE_HAS_VFIO 1
Setting this parameter to 0 disallows RShim memory mapping via
VFIO.

PCIE_HAS_UIO 1
Setting this parameter to 0 disallows RShim memory mapping via
UIO.

Users may control which RShim index maps to which device by following this procedure:

Note

Configuring RShim is optional. The default parameters are designed
to support out-of-box deployment scenarios including multiple DPUs
on a single host.

Uncomment the 'rshim<N>' line to configure the mapping.
#
device-name pci-device
rshim0 pcie-0000:21:00.2

NVIDIA BlueField DPU BSP v4.7.0 329

Host-side Interface Configuration

The NVIDIA® BlueField® DPU registers on the host OS a "DMA controller" for DPU
management over PCIe. This can be verified by running the following:

A special SoC management driver must be installed and run on the host OS to expose the
various BlueField management interfaces to the OS. Currently, this driver is named RShim
and is automatically installed as part of the DOCA installation. Refer to section "Install
RShim on Host" for information on how to obtain and install the host-side SoC
management interface driver .

rshim1 pcie-0000:81:00.2

#
Ignored devices.
Uncomment the 'none' line to configure the ignored devices.
#
#none usb-1-1.4

#none pcie-lf-0000:84:00.0

Note

If any of these configurations are changed, then the SoC
management interface must be restarted by running:

systemctl restart rshim

lspci -d 15b3: | grep 'SoC Management Interface'
27:00.2 DMA controller: Mellanox Technologies MT42822 BlueField-2 SoC
Management Interface (rev 01)

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-InstallRShimonHost
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-InstallRShimonHost

NVIDIA BlueField DPU BSP v4.7.0 330

When the SoC management interface driver runs properly on the host side, a sysfs
device, /dev/rshim0/*, and a virtual Ethernet interface, tmfifo_net0, become available. The
following is an example for querying the status of the SoC management interface driver
on the host side:

If the SoC management interface driver device does not appear, refer to section "RShim
Troubleshooting and How-Tos".

Virtual Ethernet Interface

On the host, the SoC management interface driver exposes a virtual Ethernet device
called tmfifo_net0. This virtual Ethernet can be thought of as a peer-to-peer tunnel
connection between the host and the DPU OS. The DPU OS also configures a similar
device. The DPU OS's BFB images are customized to configure the DPU side of this
connection with a preset IP of 192.168.100.2/30. It is up to the user to configure the host
side of this connection. Configuration procedures vary for different OSs.

systemctl status rshim
● rshim.service - rshim driver for BlueField SoC
Loaded: loaded (/lib/systemd/system/rshim.service; disabled; vendor preset:
enabled)
Active: active (running) since Tue 2022-05-31 14:57:07 IDT; 1 day 1h ago
Docs: man:rshim(8)
Process: 90322 ExecStart=/usr/sbin/rshim $OPTIONS (code=exited,
status=0/SUCCESS)
Main PID: 90323 (rshim)
Tasks: 11 (limit: 76853)
Memory: 3.3M
CGroup: /system.slice/rshim.service
└─90323 /usr/sbin/rshim
May 31 14:57:07 … systemd[1]: Starting rshim driver for BlueField SoC...
May 31 14:57:07 … systemd[1]: Started rshim driver for BlueField SoC.
May 31 14:57:07 … rshim[90323]: Probing pcie-0000:a3:00.2(vfio)
May 31 14:57:07 … rshim[90323]: Create rshim pcie-0000:a3:00.2
May 31 14:57:07 … rshim[90323]: rshim pcie-0000:a3:00.2 enable
May 31 14:57:08 … rshim[90323]: rshim0 attached

https://docs.nvidia.com//networking/display/bluefielddpuosv470/RShim+Troubleshooting+and+How-Tos
https://docs.nvidia.com//networking/display/bluefielddpuosv470/RShim+Troubleshooting+and+How-Tos

NVIDIA BlueField DPU BSP v4.7.0 331

The following example configures the host side of tmfifo_net0 with a static IP and enables
IPv4-based communication to the DPU OS:

Logging in from the host to the DPU OS is now possible over the virtual Ethernet. For
example:

SoC Management Interface Driver Support for Multiple
DPUs

Multiple DPUs may connect to the same host machine. When the SoC management
interface driver is loaded and operating correctly, each BlueField device is expected to
have its own device directory on sysfs, /dev/rshim<N>, and a virtual Ethernet device,
tmfifo_net<N>.

ip addr add dev tmfifo_net0 192.168.100.1/30

Note

For instructions on persistent IP configuration of the tmfifo_net0
interface, refer to step "Assign a static IP to tmfifo_net0" under
"Updating Repo Package on Host Side".

ssh ubuntu@192.168.100.2

Note

<N> correlates to the number of BlueField DPUs used where the SoC
management interfaces of the first DPU is 0, incrementing by 1 for
each added BlueField.

file:///networking/display/bluefielddpuosv470/Installing+Repo+Package+on+Host+Side

NVIDIA BlueField DPU BSP v4.7.0 332

The following are some guidelines on how to set up the SoC management virtual
Ethernet interfaces properly if multiple DPUs are installed in the host system.

There are two methods to manage multiple tmfifo_net interfaces on a Linux platform:

Using a bridge, with all tmfifo_net<N> interfaces on the bridge – the bridge device
bares a single IP address on the host while each DPU has unique IP in the same
subnet as the bridge

Directly over the individual tmfifo_net<N> – each interface has a unique subnet IP and
each DPU has a corresponding IP per subnet

Whichever method is selected, the host-side tmfifo_net interfaces should have different
MAC addresses, which can be:

Configured using ifconfig. For example:

Or saved in configuration via the /udev/rules as can be seen later in this section.

In addition, each Arm-side tmfifo_net interface must have a unique MAC and IP address
configuration, as BlueField OS comes uniformly pre-configured with a generic MAC, and
192.168.100.2. The latter must be configured in each DPU manually or by DPU
customization scripts during BlueField OS installation.

Multi-board Management Example

This example deals with two BlueField DPUs installed on the same server (the process is
similar for more DPUs). The example assumes that the RShim package has been installed
on the host server.

Configuring Management Interface on Host

$ ifconfig tmfifo_net0 192.168.100.1/24 hw ether 02:02:02:02:02:02

Note

This example is relevant for CentOS/RHEL operating systems only.

NVIDIA BlueField DPU BSP v4.7.0 333

1. Create a bf_tmfifo interface under /etc/sysconfig/network-scripts. Run:

2. Inside ifcfg-br_tmfifo, insert the following content:

3. Create a configuration file for the first BlueField DPU, tmfifo_net0. Run:

4. Inside ifcfg-tmfifo_net0, insert the following content:

5. Create a configuration file for the second BlueField DPU, tmfifo_net1. Run:

6. Create the rules for the tmfifo_net interfaces. Run:

vim /etc/sysconfig/network-scripts/ifcfg-br_tmfifo

DEVICE="br_tmfifo"
BOOTPROTO="static"
IPADDR="192.168.100.1"
NETMASK="255.255.255.0"
ONBOOT="yes"
TYPE="Bridge"

vim /etc/sysconfig/network-scripts/ifcfg-tmfifo_net0

DEVICE=tmfifo_net0
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br_tmfifo

DEVICE=tmfifo_net1
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br_tmfifo

NVIDIA BlueField DPU BSP v4.7.0 334

7. Restart the network for the changes to take effect. Run:

Configuring BlueField DPU Side

BlueField DPUs arrive with the following factory default configurations for tmfifo_net0.

Address Value

MAC 00:1a:ca:ff:ff:01

IP 192.168.100.2

Therefore, if you are working with more than one DPU, you must change the default MAC
and IP addresses.

Updating RShim Network MAC Address

1. Use a Linux console application (e.g. screen or minicom) to log into each BlueField.
For example:

vim /etc/udev/rules.d/91-tmfifo_net.rules

/etc/init.d/network restart
Restarting network (via systemctl): [OK]

Note

This procedure is relevant for Ubuntu/Debian (sudo needed), and
CentOS BFBs. The procedure only affects the tmfifo_net0 on the Arm
side.

sudo screen /dev/rshim<0|1>/console 115200

NVIDIA BlueField DPU BSP v4.7.0 335

2. Create a configuration file for tmfifo_net0 MAC address. Run:

3. Inside bf.cfg, insert the new MAC:

4. Apply the new MAC address. Run:

5. Repeat this procedure for the second BlueField DPU (using a different MAC
address).

Updating IP Address

For Ubuntu:

sudo vi /etc/bf.cfg

NET_RSHIM_MAC=00:1a:ca:ff:ff:03

sudo bfcfg

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the IP address before you do that to
avoid unnecessary reboots.

Note

For comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

file:///networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-bf.cfgParameters

NVIDIA BlueField DPU BSP v4.7.0 336

1. Access the file 50-cloud-init.yaml and modify the tmfifo_net0 IP address:

2. Reboot the Arm. Run:

3. Repeat this procedure for the second BlueField DPU (using a different IP address).

For CentOS:

1. Access the file ifcfg-tmfifo_net0. Run:

2. Modify the value for IPADDR:

3. Reboot the Arm. Run:

sudo vim /etc/netplan/50-cloud-init.yaml

tmfifo_net0:
addresses:
- 192.168.100.2/30 ===>>> 192.168.100.3/30

sudo reboot

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the MAC address before you do that
to avoid unnecessary reboots.

vim /etc/sysconfig/network-scripts/ifcfg-tmfifo_net0

IPADDR=192.168.100.3

NVIDIA BlueField DPU BSP v4.7.0 337

Or perform netplan apply.

4. Repeat this procedure for the second BlueField DPU (using a different IP address).

Permanently Changing Arm-side MAC Address

The default MAC address is 00:1a:ca:ff:ff:01. It can be changed using ifconfig or by updating
the UEFI variable as follows:

1. Log into Linux from the Arm console.

2. Run:

reboot

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the MAC address before you do that
to avoid unnecessary reboots.

Note

It is assumed that the commands in this section are executed with
root (or sudo) permission.

$ "ls /sys/firmware/efi/efivars".

NVIDIA BlueField DPU BSP v4.7.0 338

3. If not mounted, run:

The printf command sets the MAC address to 00:1a:ca:ff:ff:03 (the last six bytes of the printf

value). Either reboot the device or reload the tmfifo driver for the change to take effect.

The MAC address can also be updated from the server host side while the Arm-side Linux
is running:

1. Enable the configuration. Run:

2. Display the current setting. Run:

3. Modify the MAC address. Run:

$ mount -t efivarfs none /sys/firmware/efi/efivars
$ chattr -i /sys/firmware/efi/efivars/RshimMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c
$ printf "\x07\x00\x00\x00\x00\x1a\xca\xff\xff\x03" > \
/sys/firmware/efi/efivars/RshimMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c

echo "DISPLAY_LEVEL 1" > /dev/rshim0/misc

cat /dev/rshim0/misc
DISPLAY_LEVEL 1 (0:basic, 1:advanced, 2:log)
BOOT_MODE 1 (0:rshim, 1:emmc, 2:emmc-boot-swap)
BOOT_TIMEOUT 300 (seconds)
DROP_MODE 0 (0:normal, 1:drop)
SW_RESET 0 (1: reset)
DEV_NAME pcie-0000:04:00.2
DEV_INFO BlueField-2(Rev 1)
PEER_MAC 00:1a:ca:ff:ff:01 (rw)
PXE_ID 0x00000000 (rw)
VLAN_ID 0 0 (rw)

NVIDIA BlueField DPU BSP v4.7.0 339

For more information and an example of the script that covers multiple DPU installation
and configuration, refer to section "Installing Full DOCA Image on Multiple DPUs" of the
NVIDIA DOCA Installation Guide.

SoC Management Interface Features and Functionality

Function Command Comments

1 Push BFB
Using bf.cfg in the command is optional. For
more details about bf.cfg, refer to section "DPU
Configuration File".

2
Open
console

The N index depends on the number of DPUs in
your setup.
Use Linux's screen or minicom console
applications to access the BlueField console.

3

Configure a
virtual
network
interface

The N index depends on the number of DPUs in
your setup. Refer to section "SoC Management
Interface Driver Support for Multiple DPUs" for
more information.
The default IP address for the DPU is
192.168.100.2/30.
The IP used in the command (192.168.100.1/30)
is for example purposes only.

4
Log into the
DPU

The N index depends on the number of DPUs in
your setup. Refer to section "SoC Management
Interface Driver Support for Multiple DPUs" for
more information.

$ echo "PEER_MAC xx:xx:xx:xx:xx:xx" > /dev/rshim0/misc

bfb-install –r
rshim<N> -b
<bfb> [-c bf.cfg]

screen
/dev/rshim<N>/
console 115200
minicom -D
/dev/rshim<N>/
console

ip addr add dev
tmfifo_net<N>
192.168.100.1/3
0

ssh -6
user@fe80::21a:
caff:feff:ff01%t
mfifo_net<N>

https://docs.nvidia.com/doca/sdk/installation-guide/index.html#installing-full-doca-image-on-multiple-dpus

NVIDIA BlueField DPU BSP v4.7.0 340

Function Command Comments

5
PXE boot
over RShim

N/A
Please refer to section "Deploying BlueField
Software Using BFB with PXE" for more
information.

6
Issue Arm
software
reset

7
Expose log
messages

N/A
For more information, please refer to section
"Logging".

DPU Configuration File

The bf.cfg file contains configuration that can be pushed to customize the installation of
the BFB.

Please see section "bf.cfg Parameters" for the bf.cfg file contents.

BlueField OOB Ethernet Interface
The BlueField OOB interface is a gigabit Ethernet interface which provides TCP/IP network
connectivity to the Arm cores. This interface is named oob_net0 and is intended to be used
for management traffic (e.g., file transfer protocols, SSH, etc). The Linux driver that
controls this interface is named mlxbf_gige.ko, and is automatically loaded upon boot. This
interface can be configured and monitored using of standard tools (e.g., ifconfig, ethtool,
etc). The OOB interface is subject to the following design limitations:

Only supports 1Gb/s full-duplex setting

Only supports GMII access to external PHY device

Supports maximum packet size of 2KB (i.e., no support for jumbo frames)

The OOB interface can also be used for PXE boot. This OOB port is not a path for the
BlueField boot stream. Any attempt to push a BFB to this port would not work. Refer to

echo
"SW_RESERT 1"
>
/dev/rshim<N>/
misc

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+with+PXE
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+with+PXE
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Logging
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-bf.cfgParameters

NVIDIA BlueField DPU BSP v4.7.0 341

"How to use the UEFI boot menu" for more information about UEFI operations related to
the OOB interface.

OOB Interface MAC Address

The MAC address to be used for the OOB port is burned into Arm-accessible UPVS
EEPROM during the manufacturing process. This EEPROM device is different from the SPI
Flash storage device used for the NIC firmware and associated NIC MACs/GUIDs. The
value of the OOB MAC address is specific to each platform and is visible on the board-
level sticker.

If there is a need to re-configure this MAC for any reason, follow these steps to configure
a UEFI variable to hold new value for OOB MAC.:

1. Log into Linux from the Arm console.

2. Issue the command ls /sys/firmware/efi/efivars to show whether efivarfs is mounted. If it
is not mounted, run:

Warning

It is not recommended to reconfigure the MAC address from the MAC
configured during manufacturing.

Note

The creation of an OOB MAC address UEFI variable will override the
OOB MAC address defined in EEPROM, but the change can be
reverted.

mount -t efivarfs none /sys/firmware/efi/efivars

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-HowtousetheUEFIbootmenu

NVIDIA BlueField DPU BSP v4.7.0 342

3. Run:

4. Set the MAC address to 00:1a:ca:ff:ff:03 (the last six bytes of the printf value).

5. Reboot the device for the change to take effect.

To revert this change and go back to using the MAC as programmed during
manufacturing, follow these steps:

1. Log into UEFI from the Arm console, go to "Boot Manager" then "EFI Internal Shell".

2. Delete the OOB MAC UEFI variable. Run:

3. Reboot the device by running "reset" from UEFI.

4. Log into Linux from the Arm console.

5. Issue the command ls /sys/firmware/efi/efivars to show whether efivarfs is mounted. If it
is not mounted, run:

6. Run:

chattr -i /sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c

printf "\x07\x00\x00\x00\x00\x1a\xca\xff\xff\x03" >
/sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c

dmpstore -d OobMacAddr

mount -t efivarfs none /sys/firmware/efi/efivars

chattr -i /sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c

NVIDIA BlueField DPU BSP v4.7.0 343

7. Reconfigure the original MAC address burned by the manufacturer in the format
aa\bb\cc\dd\ee\ff. Run:

8. Reboot the device for the change to take effect.

Supported ethtool Options for OOB Interface

The Linux driver for the OOB port supports the handling of some basic ethtool requests:
get driver info, get/set ring parameters, get registers, and get statistics.

To use the ethtool options available, use the following format:

Where <option> may be:

<no-argument> – display interface link information

-i – display driver general information

-S – display driver statistics

-d – dump driver register set

-g – display driver ring information

-G – configure driver ring(s)

-k – display driver offload information

-a – query the specified Ethernet device for pause parameter information

-r – restart auto-negotiation on the specified Ethernet device if auto-negotiation is
enabled

printf "\x07\x00\x00\x00\x00\<original-MAC-address>" >
/sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c

$ ethtool [<option>] <interface>

NVIDIA BlueField DPU BSP v4.7.0 344

For example:

$ ethtool oob_net0
Settings for oob_net0:
Supported ports: [TP]
Supported link modes: 1000baseT/Full
Supported pause frame use: Symmetric
Supports auto-negotiation: Yes
Supported FEC modes: Not reported
Advertised link modes: 1000baseT/Full
Advertised pause frame use: Symmetric
Advertised auto-negotiation: Yes
Advertised FEC modes: Not reported
Link partner advertised link modes: 1000baseT/Full
Link partner advertised pause frame use: Symmetric
Link partner advertised auto-negotiation: Yes
Link partner advertised FEC modes: Not reported
Speed: 1000Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 3
Transceiver: internal
Auto-negotiation: on
MDI-X: Unknown
Link detected: yes

$ ethtool -i oob_net0
driver: mlxbf_gige
version:
firmware-version:
expansion-rom-version:
bus-info: MLNXBF17:00
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: yes

NVIDIA BlueField DPU BSP v4.7.0 345

IP Address Configuration for OOB Interface

The files that control IP interface configuration are specific to the Linux distribution. The
udev rules file (/etc/udev/rules.d/92-oob_net.rules) that renames the OOB interface to oob_net0

and is the same for Yocto, CentOS, and Ubuntu:

The files that control IP interface configuration are slightly different for CentOS and
Ubuntu:

CentOS configuration of IP interface:

Configuration file for oob_net0: /etc/sysconfig/network-scripts/ifcfg-oob_net0

For example, use the following to enable DHCP:

supports-priv-flags: no

Display statistics specific to BlueField-2 design (i.e. statistics that are not shown in
the output of "ifconfig oob0_net")
$ ethtool -S oob_net0
NIC statistics:
hw_access_errors: 0
tx_invalid_checksums: 0
tx_small_frames: 1
tx_index_errors: 0
sw_config_errors: 0
sw_access_errors: 0
rx_truncate_errors: 0
rx_mac_errors: 0
rx_din_dropped_pkts: 0
tx_fifo_full: 0
rx_filter_passed_pkts: 5549
rx_filter_discard_pkts: 4

SUBSYSTEM=="net", ACTION=="add",
DEVPATH=="/devices/platform/MLNXBF17:00/net/eth[0-9]", NAME="oob_net0"

NVIDIA BlueField DPU BSP v4.7.0 346

For example, to configure static IP use the following:

For Ubuntu configuration of IP interface, please refer to section "Default Network
Interface Configuration".

NAME="oob_net0"
DEVICE="oob_net0"
NM_CONTROLLED="yes"
PEERDNS="yes"
ONBOOT="yes"
BOOTPROTO="dhcp"
TYPE=Ethernet

NAME="oob_net0"
DEVICE="oob_net0"
IPV6INIT="no"
NM_CONTROLLED="no"
PEERDNS="yes"
ONBOOT="yes"
BOOTPROTO="static"
IPADDR="192.168.200.2"
PREFIX=30
GATEWAY="192.168.200.1"
DNS1="192.168.200.1"
TYPE=Ethernet

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-NetworkInterfaceConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-NetworkInterfaceConfiguration

NVIDIA BlueField DPU BSP v4.7.0 347

BlueField Operation
The NVIDIA® BlueField® networking platform family delivers the flexibility to accelerate a
range of applications while leveraging ConnectX-based network controllers hardware-
based offloads with unmatched scalability, performance, and efficiency.

Functional Diagram

Modes of Operation

Kernel Representors Model

Multi-Host

Virtual Switch on DPU

Configuring Uplink MTU

Link Aggregation

Scalable Functions

RDMA Stack Support on Host and Arm System

Controlling Host PF and VF Parameters

DPDK on BlueField DPU

BlueField SNAP

BlueField SR-IOV

Compression Acceleration

Public Key Acceleration

IPsec Functionality

https://docs.nvidia.com/http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Functional+Diagram
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Kernel+Representors+Model
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Multi-Host
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtual+Switch+on+DPU
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Configuring+Uplink+MTU
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Link+Aggregation
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Scalable+Functions
https://docs.nvidia.com//networking/display/bluefielddpuosv470/RDMA+Stack+Support+on+Host+and+Arm+System
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Controlling+Host+PF+and+VF+Parameters
https://docs.nvidia.com//networking/display/bluefielddpuosv470/DPDK+on+BlueField+DPU
https://docs.nvidia.com//networking/display/bluefielddpuosv470/BlueField+SNAP
https://docs.nvidia.com//networking/display/bluefielddpuosv470/BlueField+SR-IOV
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Compression+Acceleration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Public+Key+Acceleration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/IPsec+Functionality

NVIDIA BlueField DPU BSP v4.7.0 348

fTPM over OP-TEE

QoS Configuration

Virtio-net Emulated Devices

Shared RQ Mode

Functional Diagram
The following is a functional diagram of the NVIDIA® BlueField®-2 DPU.

For each BlueField DPU network port, there are 2 physical PCIe networking functions
exposed:

To the embedded Arm subsystem

To the host over PCIe

https://docs.nvidia.com//networking/display/bluefielddpuosv470/fTPM+over+OP-TEE
https://docs.nvidia.com//networking/display/bluefielddpuosv470/QoS+Configuration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Shared+RQ+Mode

NVIDIA BlueField DPU BSP v4.7.0 349

The mlx5 drivers and their corresponding software stacks must be loaded on both hosts
(Arm and the host server). The OS running on each one of the hosts would probe the
drivers. BlueField-2 network interfaces are compatible with NVIDIA® ConnectX®-6 and
higher. BlueField-3 network interfaces are compatible with ConnectX-7 and higher.

The same network drivers are used both for BlueField and the ConnectX NIC family.

Modes of Operation
The NVIDIA® BlueField® DPU has several modes of operation:

DPU mode, or embedded function (ECPF) ownership, where the embedded Arm
system controls the NIC resources and data path

Zero-trust mode which is an extension of the ECPF ownership with additional
restrictions on the host side

NIC mode where the DPU behaves exactly like an adapter card from the perspective
of the external host

Note

Different functions have different default grace period values during
which functions can recover from/handle a single fatal error:

ECPFs have a graceful period of 3 minutes

PFs have a graceful period of 1 minute

VFs/SFs have a graceful period of 30 seconds

Note

The default mode of operation for BlueField DPU is DPU mode

NVIDIA BlueField DPU BSP v4.7.0 350

DPU Mode

This mode, known also as embedded CPU function ownership (ECPF) mode, is the default
mode for BlueField DPU.

In DPU mode, the NIC resources and functionality are owned and controlled by the
embedded Arm subsystem. All network communication to the host flows through a
virtual switch control plane hosted on the Arm cores, and only then proceeds to the host.
While working in this mode, the DPU is the trusted function managed by the data center
and host administrator—to load network drivers, reset an interface, bring an interface up
and down, update the firmware, and change the mode of operation on the DPU device.

A network function is still exposed to the host, but it has limited privileges. In particular:

1. The driver on the host side can only be loaded after the driver on the DPU has
loaded and completed NIC configuration.

2. All ICM (Interface Configuration Memory) is allocated by the ECPF and resides in the
DPU's memory.

3. The ECPF controls and configures the NIC embedded switch which means that
traffic to and from the host (DPU) interface always lands on the Arm side.

When the server and DPU are initiated, the networking to the host is blocked until the
virtual switch on the DPU is loaded. Once it is loaded, traffic to the host is allowed by
default.

The default mode of operation for BlueField SuperNIC is NIC mode

NVIDIA BlueField DPU BSP v4.7.0 351

There are two ways to pass traffic to the host interface: Either using representors to
forward traffic to the host (every packet to/from the host would be handled also by the
network interface on the embedded Arm side) or push rules to the embedded switch
which allows and offloads this traffic.

In DPU mode, OpenSM must be run from the DPU side (not the host side). Also,
management tools (e.g., sminfo, ibdev2netdev, ibnetdiscover) can only be run from the DPU
side (not from the host side).

Zero-trust Mode

Zero-trust mode is a specialization of DPU mode which implements an additional layer of
security where the host system administrator is prevented from accessing the DPU from
the host. Once zero-trust mode is enabled, the data center administrator should control
the DPU entirely through the Arm cores and/or BMC connection instead of through the
host.

For security and isolation purposes, it is possible to restrict the host from performing
operations that can compromise the DPU. The following operations can be restricted
individually when changing the DPU host to zero-trust mode:

Port ownership – the host cannot assign itself as port owner

Hardware counters – t he host does not have access to hardware counters

Tracer functionality is blocked

RShim interface is blocked

Firmware flash is restricted

Enabling Zero-trust Mode

To enable host restriction:

1. Start the MST service.

2. Set zero-trust mode. From the Arm side, run:

NVIDIA BlueField DPU BSP v4.7.0 352

Disabling Zero-trust Mode

To disable host restriction, set the mode to privileged. Run:

The configuration takes effect immediately.

NIC Mode

$ sudo mlxprivhost -d /dev/mst/<device> r --disable_rshim --disable_tracer --
disable_counter_rd --disable_port_owner

Note

If any --disable_* flags are used, users must perform BlueField
system-level reset as explained in the "NVIDIA BlueField Reset
and Reboot Procedures" troubleshooting page.

$ sudo mlxprivhost -d /dev/mst/<device> p

Note

I f host restriction has been applied using any --disable_* flags, users
must perform BlueField system-level reset as explained in the
"NVIDIA BlueField Reset and Reboot Procedures" troubleshooting
page.

NVIDIA BlueField DPU BSP v4.7.0 353

In this mode, the DPU behaves exactly like an adapter card from the perspective of the
external host.

NIC Mode for BlueField-3

Note

The following instructions presume the DPU to operate in DPU mode.
If the DPU is operating in zero-trust mode, please return to DPU
mode before continuing.

Note

The following notes are relevant for updating the BFB Bundle in NIC
mode:

During BFB Bundle installation, Linux is expected to boot to
upgrade NIC firmware and BMC software

During the BFB Bundle installation, it is expected for the mlx5
driver to error messages on the x86 host. These prints may be
ignored as they are resolved by a mandatory, post-installation
power cycle.

It is mandatory to power cycle the host after the installation is
complete for the changes to take effect

As Linux is booting during BFB Bundle installation, it is expected
for the mlx5 core driver to timeout on the BlueField Arm

Note

NVIDIA BlueField DPU BSP v4.7.0 354

NIC mode for BlueField-3 saves power, improves device performance, and improves the
host memory footprint.

Configuring NIC Mode on BlueField-3 from Linux

Enabling NIC Mode on BlueField-3 from Linux

Before moving to NIC mode, make sure you are operating in DPU mode by running:

The output should have INTERNAL_CPU_MODEL= EMBBEDDED_CPU(1) and
EXP_ROM_UEFI_ARM_ENABLE = True (1) (default).

To enable NIC mode from DPU mode:

1. Run the following on the host or Arm:

2. Perform a BlueField system-level reset, for the mlxconfig settings to take effect. Refer
to the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

Disabling NIC Mode on BlueField-3 from Linux

To return to DPU mode from NIC mode:

1. Run the following on the host:

When BlueField-3 is configured to operate in NIC mode, Arm OS will
not boot.

host/dpu> sudo mlxconfig -d /dev/mst/mt41692_pciconf0 -e q

host/dpu> sudo mlxconfig -d /dev/mst/mt41692_pciconf0 s
INTERNAL_CPU_OFFLOAD_ENGINE=1

NVIDIA BlueField DPU BSP v4.7.0 355

2. Perform a BlueField system-level reset for the mlxconfig settings to take effect. Refer
to the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

Configuring NIC Mode on BlueField-3 from Host BIOS HII UEFI Menu

1. Select the network device that presents the uplink (i.e., select the device with the
uplink MAC address).

2. Select "BlueField Internal Cpu Configuration".

host> sudo mlxconfig -d /dev/mst/mt41692_pciconf0 s
INTERNAL_CPU_OFFLOAD_ENGINE=0

Info

The screenshots in this section are examples only and may vary
depending on the vendor of your specific host.

NVIDIA BlueField DPU BSP v4.7.0 356

To enable NIC mode, set "Internal Cpu Offload Engine" to "Disabled".

To switch back to DPU mode, set "Internal Cpu Offload Engine" to "Enabled".

NVIDIA BlueField DPU BSP v4.7.0 357

Configuring NIC Mode on BlueField-3 from Arm UEFI

1. Access the Arm UEFI menu by pressing the Esc button twice.

2. Select "Device Manager".

3. Select "System Configuration".

4. Select "BlueField Modes".

5. Set the "NIC Mode" field to NicMode to enable NIC mode.

6. Exit "BlueField Modes" and "System Configuration" and make sure to save the
settings. Exit the UEFI setup using the 'reset' option. The configuration is not yet
applied and the DPU is expected to boot regularly, still in DPU Mode.

7. Perform a BlueField system-level reset, to change to NIC Mode. Refer to the "NVIDIA
BlueField Reset and Reboot Procedures" troubleshooting page for instructions.

Configuring NIC Mode on BlueField-3 Using Redfish

Run the following from the BlueField BMC:

Info

Configuring Unavailable is inapplicable.

NVIDIA BlueField DPU BSP v4.7.0 358

1. Get the current BIOS attributes:

2. Change BlueField mode from DpuMode to NicMode:

3. Verify that the BMC has registered the new settings:

4. Issue a software reset then power cycle the host for the change to take effect.

5. Verify the mode is changed:

sudo curl -k -u root:'<password>' -H 'content-type: application/json' -X GET
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios/

curl -k -u root:'<password>' -H 'content-type: application/json' -d '{ "Attributes":
{ "NicMode": "NicMode" } }' -X PATCH
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios/Settings

Info

To revert back to DPU mode, run:

curl -k -u root:'<password>' -H 'content-type:
application/json' -d '{ "Attributes": { "NicMode":
"DpuMode" } }' -X PATCH
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios/Settings

curl -k -u root:'<password>' -H 'content-type: application/json' -X GET
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios/Settings

curl -k -u root:'<password>' -H 'content-type: application/json' -X GET
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Oem/Nvidia

NVIDIA BlueField DPU BSP v4.7.0 359

Updating Firmware Components in BlueField-3 NIC Mode

Once in NIC mode, updating ATF and UFEI can be done using the standard *.bfb image:

NIC Mode for BlueField-2

In this mode, the ECPFs on the Arm side are not functional but the user is still able to
access the Arm system and update mlxconfig options.

Configuring NIC Mode on BlueField-2 from Linux

Enabling NIC Mode on BlueField-2 from Linux

To enable NIC mode from DPU mode:

Note

To retrieve the mode via BIOS attributes, another BlueField
software reset is required before running the command:

curl -k -u root:'<password>' -H 'content-type: application/json' -X
GET https://<bmc_ip>/redfish/v1/Systems/Bluefield/Bios

bfb-install --bfb <BlueField-BSP>.bfb --rshim rshim0

Note

When NIC mode is enabled, the drivers and services on the Arm are
no longer functional.

NVIDIA BlueField DPU BSP v4.7.0 360

1. Run the following from the x86 host side:

2. Perform BlueField system-level reset t o load the new configuration .

$ mst start
$ mlxconfig -d /dev/mst/<device> s \
INTERNAL_CPU_PAGE_SUPPLIER=1 \
INTERNAL_CPU_ESWITCH_MANAGER=1 \
INTERNAL_CPU_IB_VPORT0=1 \
INTERNAL_CPU_OFFLOAD_ENGINE=1

Note

To restrict RShim PF (optional), make sure to configure
INTERNAL_CPU_RSHIM=1 as part of the mlxconfig command.

Info

Refer to the troubleshooting section of the guide for a step-by-
step procedure.

Note

Multi-host is not supported when the DPU is operating in NIC mode.

Note

NVIDIA BlueField DPU BSP v4.7.0 361

Disabling NIC Mode on BlueField-2 from Linux

To change from NIC mode back to DPU mode:

1. Install and start the RShim driver on the host.

2. Disable NIC mode. Run:

3. Perform a BlueField system reboot for the mlxconfig settings to take effect. Refer to
the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

Configuring NIC Mode on BlueField-2 from Arm UEFI

To obtain firmware BINs for BlueField-2 devices, please refer to the
BlueField-2 firmware download page.

$ mst start
$ mlxconfig -d /dev/mst/<device> s \
INTERNAL_CPU_PAGE_SUPPLIER=0 \
INTERNAL_CPU_ESWITCH_MANAGER=0 \
INTERNAL_CPU_IB_VPORT0=0 \
INTERNAL_CPU_OFFLOAD_ENGINE=0

Note

If INTERNAL_CPU_RSHIM=1, then make sure to configure
INTERNAL_CPU_RSHIM=0 as part of the mlxconfig command.

https://network.nvidia.com/support/firmware/bluefield2/

NVIDIA BlueField DPU BSP v4.7.0 362

Follow the same instructions in section "Configuring NIC Mode on BlueField-3 from Arm
UEFI".

Configuring NIC Mode on BlueField-2 Using Redfish

Follow the same instructions in section "Configuring NIC Mode on BlueField-3 Using
Redfish".

Kernel Representors Model

BlueField® DPU uses netdev representors to map each one of the host side physical and
virtual functions.

1. Serve as the tunnel to pass traffic for the virtual switch or application running on the
Arm cores to the relevant PF or VF on the host side.

2. Serve as the channel to configure the embedded switch with rules to the
corresponding represented function.

Those representors are used as the virtual ports being connected to OVS or any other
virtual switch running on the Arm cores.

When operating in DPU mode, we see 2 representors for each one of the DPU's network
ports: one for the uplink, and another one for the host side PF (the PF representor
created even if the PF is not probed on the host side). For each one of the VFs created on

Note

This model is only applicable when the DPU is operating in DPU
mode.

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation
file:///networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-SmartNICmode
file:///networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-SmartNICmode

NVIDIA BlueField DPU BSP v4.7.0 363

the host side a corresponding representor would be created on the Arm side. The
naming convention for the representors is as follows:

Uplink representors: p<port_number>

PF representors: pf<port_number>hpf

VF representors: pf<port_number>vf<function_number>

The following diagram shows the mapping of between the PCIe functions exposed on the
host side and the representors. For the sake of simplicity, a single port model (duplicated
for the second port) is shown.

The red arrow demonstrates a packet flow through the representors, while the green
arrow demonstrates the packet flow when steering rules are offloaded to the embedded
switch. More details on that are available in the switch offload section.

NVIDIA BlueField DPU BSP v4.7.0 364

Multi-Host

In multi-host mode, each host interface can be divided into up to 4 independent PCIe
interfaces. All interfaces would share the same physical port, and are managed by the
same multi-physical function switch (MPFS). Each host would have its own e-switch and
would control its own traffic.

Note

The MTU of host functions (PF/VF) must be smaller than the MTUs of
both the uplink and corresponding PF/VF representor. For example, if
the host PF MTU is set to 9000, both uplink and PF representor must
be set to above 9000.

Note

This is only applicable to DPUs running on multi-host model.

NVIDIA BlueField DPU BSP v4.7.0 365

Representors

Similar to Kernel Representors Model, each host here has an uplink representor, PF
representor, and VF representors (if SR-IOV is enabled). There are 8 sets of representors
(uplink/PF; see example code). For each host to work with OVS offload, the corresponding
representors must be added to the OVS bridge.

139: p0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master ovs-
system state UP group default qlen 1000
link/ether 0c:42:a1:70:1d:b2 brd ff:ff:ff:ff:ff:ff
140: p1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 0c:42:a1:70:1d:b3 brd ff:ff:ff:ff:ff:ff
141: p2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master ovs-
system state UP group default qlen 1000
link/ether 0c:42:a1:70:1d:b4 brd ff:ff:ff:ff:ff:ff
142: p3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 0c:42:a1:70:1d:b5 brd ff:ff:ff:ff:ff:ff
143: p4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Kernel+Representors+Model

NVIDIA BlueField DPU BSP v4.7.0 366

The following is an example of adding all representors to OVS:

link/ether 0c:42:a1:70:1d:b6 brd ff:ff:ff:ff:ff:ff
144: p5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 0c:42:a1:70:1d:b7 brd ff:ff:ff:ff:ff:ff
145: p6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 0c:42:a1:70:1d:b8 brd ff:ff:ff:ff:ff:ff
146: p7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 0c:42:a1:70:1d:b9 brd ff:ff:ff:ff:ff:ff
147: pf0hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master
ovs-system state UP group default qlen 1000
link/ether 86:c5:8a:b7:7c:84 brd ff:ff:ff:ff:ff:ff
148: pf1hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 6e:ea:1b:84:88:49 brd ff:ff:ff:ff:ff:ff
149: pf2hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 92:ec:99:cb:d7:23 brd ff:ff:ff:ff:ff:ff
150: pf3hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 0e:0d:8e:03:2e:27 brd ff:ff:ff:ff:ff:ff
151: pf4hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 5e:42:af:05:67:93 brd ff:ff:ff:ff:ff:ff
152: pf5hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 96:e4:69:4c:b7:7f brd ff:ff:ff:ff:ff:ff
153: pf6hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 5e:67:33:c0:35:05 brd ff:ff:ff:ff:ff:ff
154: pf7hpf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 12:29:7d:56:07:3e brd ff:ff:ff:ff:ff:ff

NVIDIA BlueField DPU BSP v4.7.0 367

Bridge armBr-3
Port armBr-3
Interface armBr-3
type: internal
Port p3
Interface p3
Port pf3hpf
Interface pf3hpf
Bridge armBr-2
Port p2
Interface p2
Port pf2hpf
Interface pf2hpf
Port armBr-2
Interface armBr-2
type: internal
Bridge armBr-5
Port p5
Interface p5
Port pf5hpf
Interface pf5hpf
Port armBr-5
Interface armBr-5
type: internal
Bridge armBr-7
Port pf7hpf
Interface pf7hpf
Port armBr-7
Interface armBr-7
type: internal
Port p7
Interface p7
Bridge armBr-0
Port p0
Interface p0

NVIDIA BlueField DPU BSP v4.7.0 368

For now, users can get the representor-to-host PF mapping by comparing the MAC
address queried from host control on the Arm-side and PF MAC on the host-side. In the
following example, the user knows p0 is the uplink representor for p6p1 as the MAC
address is the same.

Port armBr-0
Interface armBr-0
type: internal
Port pf0hpf
Interface pf0hpf
Bridge armBr-4
Port p4
Interface p4
Port pf4hpf
Interface pf4hpf
Port armBr-4
Interface armBr-4
type: internal
Bridge armBr-1
Port armBr-1
Interface armBr-1
type: internal
Port p1
Interface p1
Port pf1hpf
Interface pf1hpf
Bridge armBr-6
Port armBr-6
Interface armBr-6
type: internal
Port p6
Interface p6
Port pf6hpf
Interface pf6hpf
ovs_version: "2.13.1"

NVIDIA BlueField DPU BSP v4.7.0 369

From Arm:

From host:

The implicit mapping is as follows:

PF0, PF1 = host controller 1

PF2, PF3 = host controller 2

PF4, PF5 = host controller 3

PF6, PF7 = host controller 4

Virtual Switch on DPU

cat /sys/class/net/p0/smart_nic/pf/config
MAC : 0c:42:a1:70:1d:9a
MaxTxRate : 0
State : Up

ip addr show p6p1
3: p6p1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
link/ether 0c:42:a1:70:1d:9a brd ff:ff:ff:ff:ff:ff

Note

The maximum SF or VF count across all hosts is limited to 488 in total.
The user can divide 488 VFs/SFs to single or multiple controllers as
desired.

NVIDIA BlueField DPU BSP v4.7.0 370

NVIDIA® BlueField® supports ASAP2 technology. It utilizes the representors mentioned in
the previous section. BlueField SW package includes OVS installation which already
supports ASAP2. The virtual switch running on the Arm cores allows us to pass all the
traffic to and from the host functions through the Arm cores while performing all the
operations supported by OVS. ASAP2 allows us to offload the datapath by programming
the NIC embedded switch and avoiding the need to pass every packet through the Arm
cores. The control plane remains the same as working with standard OVS.

OVS bridges are created by default upon first boot of the DPU after BFB installation.

If manual configuration of the default settings for the OVS bridge is desired, run:

To verify successful bridging:

Note

For general information on OVS offload using ASAP² direct, please
refer to the MLNX_OFED documentation under OVS Offload Using
ASAP² Direct.

Note

ASAP2 is only supported in Embedded (DPU) mode.

systemctl start openvswitch-switch.service
ovs-vsctl add-port ovsbr1 p0
ovs-vsctl add-port ovsbr1 pf0hpf
ovs-vsctl add-port ovsbr2 p1
ovs-vsctl add-port ovsbr2 pf1hpf

$ ovs-vsctl show

https://docs.nvidia.com/http://www.mellanox.com/page/asap2?mtag=asap2
https://docs.mellanox.com/category/mlnxofedib

NVIDIA BlueField DPU BSP v4.7.0 371

The host is now connected to the network.

9f635bd1-a9fd-4f30-9bdc-b3fa21f8940a
Bridge ovsbr2
Port ovsbr2
Interface ovsbr2
type: internal
Port p1
Interface p1
Port pf1sf0
Interface en3f1pf1sf0
 Port pf1hpf
Interface pf1hpf
Bridge ovsbr1
Port pf0hpf
Interface pf0hpf
Port p0
Interface p0
Port ovsbr1
Interface ovsbr1
type: internal
Port pf0sf0
Interface en3f0pf0sf0
ovs_version: "2.14.1"

Note

TC-offload is not supported for IPv6 fragment packets. To make IPv6
fragment packets pass through OVS, the MTU of a specific port must
be set to equal to or larger than the fragmented packet size. IPv4
fragment packets can be TC-offloaded as their packet size is not
checked by OVS.

NVIDIA BlueField DPU BSP v4.7.0 372

Verifying Host Connection on Linux

When the DPU is connected to another DPU on another machine, manually assign IP
addresses with the same subnet to both ends of the connection.

1. Assuming the link is connected to p3p1 on the other host, run:

2. On the host which the DPU is connected to, run:

3. Have one ping the other. This is an example of the DPU pinging the host:

Verifying Connection from Host to BlueField

There are two SFs configured on the BlueFIeld-2 device, enp3s0f0s0 and enp3s0f1s0, and
their representors are part of the built-in bridge. These interfaces will get IP addresses
from the DHCP server if it is present. Otherwise it is possible to configure IP address from
the host. It is possible to access BlueField via the SF netdev interfaces.

For example:

1. Verify the default OVS configuration. Run:

$ ifconfig p3p1 192.168.200.1/24 up

$ ifconfig p4p2 192.168.200.2/24 up

$ ping 192.168.200.1

ovs-vsctl show
5668f9a6-6b93-49cf-a72a-14fd64b4c82b
Bridge ovsbr1
Port pf0hpf
Interface pf0hpf
Port ovsbr1
Interface ovsbr1
type: internal

NVIDIA BlueField DPU BSP v4.7.0 373

2. Verify whether the SF netdev received an IP address from the DHCP server. If not,
assign a static IP. Run:

3. Verify the connection of the configured IP address. Run:

Port p0
Interface p0
Port en3f0pf0sf0
 Interface en3f0pf0sf0
Bridge ovsbr2
Port en3f1pf1sf0
Interface en3f1pf1sf0
Port ovsbr2
Interface ovsbr2
type: internal
Port pf1hpf
Interface pf1hpf
Port p1
Interface p1
ovs_version: "2.14.1"

ifconfig enp3s0f0s0
enp3s0f0s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.200.125 netmask 255.255.255.0 broadcast 192.168.200.255
inet6 fe80::8e:bcff:fe36:19bc prefixlen 64 scopeid 0x20<link>
ether 02:8e:bc:36:19:bc txqueuelen 1000 (Ethernet)
RX packets 3730 bytes 1217558 (1.1 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 22 bytes 2220 (2.1 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

ping 192.168.200.25 -c 5
PING 192.168.200.25 (192.168.200.25) 56(84) bytes of data.
64 bytes from 192.168.200.25: icmp_seq=1 ttl=64 time=0.228 ms
64 bytes from 192.168.200.25: icmp_seq=2 ttl=64 time=0.175 ms

NVIDIA BlueField DPU BSP v4.7.0 374

Verifying Host Connection on Windows

Set IP address on the Windows side for the RShim or Physical network adapter, please
run the following command in Command Prompt:

To get the interface name, please run the following command in Command Prompt:

Output should give us the interface name that matches the description (e.g. NVIDIA
BlueField Management Network Adapter).

Once IP address is set, Have one ping the other.

64 bytes from 192.168.200.25: icmp_seq=3 ttl=64 time=0.232 ms
64 bytes from 192.168.200.25: icmp_seq=4 ttl=64 time=0.174 ms
64 bytes from 192.168.200.25: icmp_seq=5 ttl=64 time=0.168 ms

--- 192.168.200.25 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 91ms
rtt min/avg/max/mdev = 0.168/0.195/0.232/0.031 ms

PS C:\Users\Administrator> New-NetIPAddress -InterfaceAlias "Ethernet 16" -
IPAddress "192.168.100.1" -PrefixLength 22

PS C:\Users\Administrator> Get-NetAdapter

Ethernet 2 NVIDIA ConnectX-4 Lx Ethernet Adapter 6 Not Present 24-8A-07-0D-E8-
1D
Ethernet 6 NVIDIA ConnectX-4 Lx Ethernet Ad...#2 23 Not Present 24-8A-07-0D-E8-
1C
Ethernet 16 NVIDIA BlueField Management Netw...#2 15 Up CA-FE-01-CA-FE-02

C:\Windows\system32>ping 192.168.100.2

NVIDIA BlueField DPU BSP v4.7.0 375

Enabling OVS HW Offloading

OVS HW offloading is set by default by the /sbin/mlnx_bf_configure script upon first boot after
installation.

1. Enable TC offload on the relevant interfaces. Run:

2. Enable the HW offload: run the following commands (after enabling the HW offload):

3. Restarting OVS is required for the configuration to apply:

For Ubuntu:

For CentOS/RHEL:

To show OVS configuration:

Pinging 192.168.100.2 with 32 bytes of data:
Reply from 192.168.100.2: bytes=32 time=148ms TTL=64
Reply from 192.168.100.2: bytes=32 time=152ms TTL=64
Reply from 192.168.100.2: bytes=32 time=158ms TTL=64
Reply from 192.168.100.2: bytes=32 time=158ms TTL=64

$ ethtool -K <PF> hw-tc-offload on

$ ovs-vsctl set Open_vSwitch . Other_config:hw-offload=true

$ systemctl restart openvswitch-switch

$ systemctl restart openvswitch

$ ovs-dpctl show
system@ovs-system:
lookups: hit:0 missed:0 lost:0
flows: 0

NVIDIA BlueField DPU BSP v4.7.0 376

At this point OVS would automatically try to offload all the rules.

To see all the rules that are added to the OVS datapath:

To see the rules that are offloaded to the HW:

Enabling OVS-DPDK Hardware Offload

1. Remove previously configured OVS bridges. Run:

Issue the command ovs-vsctl show to see already configured OVS bridges.

2. Enable the Open vSwitch service. Run:

3. Configure huge pages:

masks: hit:0 total:0 hit/pkt:0.00
port 0: ovs-system (internal)
port 1: armbr1 (internal)
port 2: p0
port 3: pf0hpf
port 4: pf0vf0
port 5: pf0vf1
port 6: pf0vf2

$ ovs-appctl dpctl/dump-flows

$ ovs-appctl dpctl/dump-flows type=offloaded

ovs-vsctl del-br <bridge-name>

systemctl start openvswitch

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

NVIDIA BlueField DPU BSP v4.7.0 377

4. Configure DPDK socket memory and limit. Run:

5. Enable hardware offload (disabled by default). Run:

6. Configure the DPDK whitelist. Run:

7. Create OVS-DPDK bridge. Run:

8. Add PF to OVS. Run:

9. Add representor to OVS. Run:

ovs-vsctl set Open_vSwitch . other_config:dpdk-socket-limit=2048

ovs-vsctl set Open_vSwitch . other_config:dpdk-socket-mem=2048

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true
ovs-vsctl --no-wait set Open_vSwitch . other_config:hw-offload=true

ovs-vsctl set Open_vSwitch . other_config:dpdk-extra="-a
0000:03:00.0,representor=
[0,65535],dv_flow_en=1,dv_xmeta_en=1,sys_mem_en=1"

ovs-vsctl add-br br0-ovs -- set Bridge br0-ovs datapath_type=netdev -- br-set-
external-id br0-ovs bridge-id br0-ovs -- set bridge br0-ovs fail-
mode=standalone

ovs-vsctl add-port br0-ovs p0 -- set Interface p0 type=dpdk options:dpdk-
devargs=0000:03:00.0

ovs-vsctl add-port br0-ovs pf0vf0 -- set Interface pf0vf0 type=dpdk
options:dpdk-devargs=0000:03:00.0,representor=[0]
ovs-vsctl add-port br0-ovs pf0hpf -- set Interface pf0hpf type=dpdk
options:dpdk-devargs=0000:03:00.0,representor=[65535]

NVIDIA BlueField DPU BSP v4.7.0 378

10. Restart the Open vSwitch service. This step is required for HW offload changes to
take effect.

For CentOS, run:

For Debian/Ubuntu, run:

For a reference setup configuration for BlueField-2 devices, refer to the article
"Configuring OVS-DPDK Offload with BlueField-2".

Configuring DPDK and Running TestPMD

1. Configure hugepages. Run:

2. Run testpmd.

For Ubuntu/Debian:

For CentOS:

systemctl restart openvswitch

systemctl restart openvswitch-switch

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

env LD_LIBRARY_PATH=/opt/mellanox/dpdk/lib/aarch64-linux-gnu
/opt/mellanox/dpdk/bin/dpdk-testpmd -a 03:00.0,representor=[0,65535]
--socket-mem=1024 -- --total-num-mbufs=131000 -i

env LD_LIBRARY_PATH=/opt/mellanox/dpdk/lib64/
/opt/mellanox/dpdk/bin/dpdk-testpmd -a 03:00.0,representor=[0,65535]
--socket-mem=1024 -- --total-num-mbufs=131000 -i

https://enterprise-support.nvidia.com/s/article/Configuring-OVS-DPDK-Offload-with-BlueField-2

NVIDIA BlueField DPU BSP v4.7.0 379

For a detailed procedure with port display, refer to the article "Configuring DPDK and
Running testpmd on BlueField-2".

Flow Statistics and Aging

The aging timeout of OVS is given in milliseconds and can be configured by running the
following command:

Connection Tracking Offload

This feature enables tracking connections and storing information about the state of
these connections. When used with OVS, the DPU can offload connection tracking, so that
traffic of established connections bypasses the kernel and goes directly to hardware.

Both source NAT (SNAT) and destination NAT (DNAT) are supported with connection
tracking offload.

Configuring Connection Tracking Offload

This section provides an example of configuring OVS to offload all IP connections of host
PF0.

1. Enable OVS HW offloading.

2. Create OVS connection tracking bridge. Run:

3. Add p0 and pf0hpf to the bridge. Run:

4. Configure ARP packets to behave normally. Packets which do not comply are routed
to table1. Run:

$ ovs-vsctl set Open_vSwitch . other_config:max-idle=30000

$ ovs-vsctl add-br ctBr

$ ovs-vsctl add-port ctBr p0
$ ovs-vsctl add-port ctBr pf0hpf

https://enterprise-support.nvidia.com/s/article/Configuring-OVS-DPDK-Offload-with-BlueField-2
https://enterprise-support.nvidia.com/s/article/Configuring-OVS-DPDK-Offload-with-BlueField-2

NVIDIA BlueField DPU BSP v4.7.0 380

5. Configure RoCEv2 packets to behave normally. RoCEv2 packets follow UDP port
4791 and a different source port in each direction of the connection. RoCE traffic is
not supported by CT. In order to run RoCE from the host add the following line
before ovs-ofctl add-flow ctBr "table=0,ip,ct_state=-trk,action=ct(table=1)":

This rule allows RoCEv2 UDP packets to skip connection tracking rules.

6. Configure the new established flows to be admitted to the connection tracking
bridge and to then behave normally. Run:

7. Set already established flows to behave normally. Run:

Connection Tracking With NAT

This section provides an example of configuring OVS to offload all IP connections of host
PF0, and performing source network address translation (SNAT). The server host sends
traffic via source IP from 2.2.2.1 to 1.1.1.2 on another host. Arm performs SNAT and
changes the source IP to 1.1.1.16. Note that static ARP or route table must be configured
to find that route.

1. Configure untracked IP packets to do nat. Run:

$ ovs-ofctl add-flow ctBr "table=0,arp,action=normal"
$ ovs-ofctl add-flow ctBr "table=0,ip,ct_state=-trk,action=ct(table=1)"

$ ovs-ofctl add-flow ctBr table=0,udp,tp_dst=4791,action=normal

$ ovs-ofctl add-flow ctBr
"table=1,priority=1,ip,ct_state=+trk+new,action=ct(commit),normal"

$ ovs-ofctl add-flow ctBr
"table=1,priority=1,ip,ct_state=+trk+est,action=normal"

NVIDIA BlueField DPU BSP v4.7.0 381

2. Configure new established flows to do SNAT, and change source IP to 1.1.1.16. Run:

3. Configure already established flows act normal. Run:

Conntrack shows the connection with SNAT applied. Run conntrack -L for Ubuntu
22.04 kernel or cat /proc/net/nf_conntrack for older kernel versions. Example output:

Querying Connection Tracking Offload Status

Start traffic on PF0 from the server host (e.g., iperf) with an external network. Note that
only established connections can be offloaded. TCP should have already finished the
handshake, UDP should have gotten the reply.

To check if specific connections are offloaded from Arm, run conntrack -L for Ubuntu 22.04
kernel or cat /proc/net/nf_conntrack for older kernel versions.

ovs-ofctl add-flow ctBr "table=0,ip,ct_state=-trk,action=ct(table=1,nat)"

ovs-ofctl add-flow ctBr
"table=1,in_port=pf0hpf,ip,ct_state=+trk+new,action=ct(commit,nat(src=1.1.1.16)
p0"

ovs-ofctl add-flow ctBr "table=1,ip,ct_state=+trk+est,action=normal"

ipv4 2 tcp 6 src=2.2.2.1 dst=1.1.1.2 sport=34541 dport=5001 src=1.1.1.2
dst=1.1.1.16 sport=5001 dport=34541 [OFFLOAD] mark=0 zone=1 use=3

Note

ICMP is not currently supported.

NVIDIA BlueField DPU BSP v4.7.0 382

The following is example output of offloaded TCP connection:

Performance Tune Based on Traffic Pattern

Offloaded flows (including connection tracking) are added to virtual switch FDB flow
tables. FDB tables have a set of flow groups. Each flow group saves the same traffic
pattern flows. For example, for connection tracking offloaded flow, TCP and UDP are
different traffic patterns which end up in two different flow groups.

A flow group has a limited size to save flow entries. By default, the driver has 4 big FDB
flow groups. Each of these big flow groups can save at most 4000000/(4+1)=800k
different 5-tuple flow entries. For scenarios with more than 4 traffic patterns, the driver
provides a module parameter (num_of_groups) to allow customization and performance
tune.

To change the number of big FDB flow groups, run:

The change takes effect immediately if there is no flow inside the FDB table (no traffic
running and all offloaded flows are aged out), and it can be dynamically changed without
reloading the driver.

If there are residual offloaded flows when changing this parameter, then the new
configuration only takes effect after all flows age out.

ipv4 2 tcp 6 src=1.1.1.2 dst=1.1.1.3 sport=51888 dport=5001 src=1.1.1.3 dst=1.1.1.2
sport=5001 dport=51888 [HW_OFFLOAD] mark=0 zone=0 use=3

Note

The size of each big flow groups can be calculated according to
formula: size = 4000000/(num_of_groups+1)

$ echo <num_of_groups> > /sys/module/mlx5_core/parameters/num_of_groups

NVIDIA BlueField DPU BSP v4.7.0 383

Connection Tracking Aging

Aside from the aging of OVS, connection tracking offload has its own aging mechanism
with a default aging time of 30 seconds.

Maximum Tracked Connections

The OS has a default setting of maximum tracked connections which may be configured
by running:

This changes the maximum tracked connections (both offloaded and non-offloaded)
setting to 1 million.

The following option specifies the limit on the number of offloaded connections. For
example:

This value is set to 1 million by default from BlueFiled. Users may choose a different
number by using the devlink command.

Note

The maximum number for tracked offloaded connections is limited to
1M by default.

$ /sbin/sysctl -w net.netfilter.nf_conntrack_max=1000000

devlink dev param set pci/${pci_dev} name ct_max_offloaded_conns value $max
cmode runtime

NVIDIA BlueField DPU BSP v4.7.0 384

Offloading VLANs

OVS enables VF traffic to be tagged by the virtual switch.

For the BlueField DPU, the OVS can add VLAN tag (VLAN push) to all the packets sent by a
network interface running on the host (either PF or VF) and strip the VLAN tag (VLAN pop)
from the traffic going from the wire to that interface. Here we operate in Virtual Switch
Tagging (VST) mode. This means that the host/VM interface is unaware of the VLAN
tagging. Those rules can also be offloaded to the HW embedded switch.

To configure OVS to push/pop VLAN you need to add the tag=$TAG section for the OVS
command line that adds the representor ports. So if you want to tag all the traffic of VF0
with VLAN ID 52, you should use the following command when adding its representor to
the bridge:

Note

Make sure net.netfilter.nf_conntrack_tcp_be_liberal=1 when using connection
tracking.

$ ovs-vsctl add-port armbr1 pf0vf0 tag=52

Note

If the virtual port is already connected to the bridge prior to
configuring VLAN, you would need to remove it first:

$ ovs-vsctl del-port pf0vf0

NVIDIA BlueField DPU BSP v4.7.0 385

In this scenario all the traffic being sent by VF 0 will have the same VLAN tag. We could set
a VLAN tag by flow when using the TC interface, this is explained in section "Using TC
Interface to Configure Offload Rules".

VXLAN Tunneling Offload

VXLAN tunnels are created on the Arm side and attached to the OVS. VXLAN
decapsulation/encapsulation behavior is similar to normal VXLAN behavior, including
over hw_offload=true.

To allow VXLAN encapsulation, the uplink representor (p0) should have an MTU value at
least 50 bytes greater than that of the host PF/VF. Please refer to "Configuring Uplink
MTU" for more information.

Configuring VXLAN Tunnel

1. Consider p0 to be the local VXLAN tunnel interface (or VTEP).

2. Remove p0 from any OVS bridge.

3. Build a VXLAN tunnel over OVS arm-ovs. Run:

4. Connect any host representor (e.g., pf0hpf) for which VXLAN is desired to the same
arm-ovs bridge.

Note

To be consistent with the examples below, it is assumed that p0

is configured with a 1.1.1.1 IPv4 address.

ovs-vsctl add-br arm-ovs -- add-port arm-ovs vxlan11 -- set interface vxlan11
type=vxlan
options:local_ip=1.1.1.1 options:remote_ip=1.1.1.2 options:key=100
options:dst_port=4789

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Configuring+Uplink+MTU
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Configuring+Uplink+MTU

NVIDIA BlueField DPU BSP v4.7.0 386

5. Configure the MTU of the VTEP (p0) used by VXLAN to at least 50 bytes larger than
the host representor's MTU.

At this point, the host is unaware of any VXLAN operations done by the DPU's OVS. If the
remote end of the VXLAN tunnel is properly set, any network traffic traversing arm-ovs
undergoes VXLAN encap/decap.

Querying OVS VXLAN hw_offload Rules

Run the following:

ovs-appctl dpctl/dump-flows type=offloaded
in_port(2),eth(src=ae:fd:f3:31:7e:7b,dst=a2:fb:09:85:84:48),eth_type(0x0800),
packets:1, bytes:98, used:0.900s,
actions:set(tunnel(tun_id=0x64,src=1.1.1.1,dst=1.1.1.2,tp_dst=4789,flags(key))),3
tunnel(tun_id=0x64,src=1.1.1.2,dst=1.1.1.1,tp_dst=4789,flags(+key)),in_port(3),eth(src=
packets:75, bytes:7350, used:0.900s, actions:2

Note

For the host PF, in order for VXLAN to work properly with the default
1500 MTU, follow these steps.

1. Disable host PF as the port owner from Arm (see section "Zero-
trust Mode"). Run:

2. The MTU of the end points (pf0hpf in the example above) of the
VXLAN tunnel must be smaller than the MTU of the tunnel

$ mlxprivhost -d /dev/mst/mt41682_pciconf0 --
disable_port_owner r

file:///networking/display/bluefielddpuosv470/Modes+of+Operation
file:///networking/display/bluefielddpuosv470/Modes+of+Operation

NVIDIA BlueField DPU BSP v4.7.0 387

GRE Tunneling Offload

GRE tunnels are created on the Arm side and attached to the OVS. GRE
decapsulation/encapsulation behavior is similar to normal GRE behavior, including over
hw_offload=true.

To allow GRE encapsulation, the uplink representor (p0) should have an MTU value at
least 50 bytes greater than that of the host PF/VF.

Please refer to "Configuring Uplink MTU" for more information.

Configuring GRE Tunnel

1. Consider p0 to be the local GRE tunnel interface. p0 should not be attached to any
OVS bridge.

2. Create an OVS bridge, br0, with a GRE tunnel interface, gre0. Run:

3. Add pf0hpf to br0.

interfaces (p0) to account for the size of the VXLAN headers. For
example, you can set the MTU of P0 to 2000.

Note

To be consistent with the examples below, it is assumed that p0

is configured with a 1.1.1.1 IPv4 address and that the remote
end of the tunnel is 1.1.1.2.

ovs-vsctl add-port br0 gre0 -- set interface gre0 type=gre
options:local_ip=1.1.1.1 options:remote_ip=1.1.1.2 options:key=100

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Configuring+Uplink+MTU

NVIDIA BlueField DPU BSP v4.7.0 388

4. At this point, any network traffic sent or received by the host's PF0 undergoes GRE
processing inside the BlueField OS.

Querying OVS GRE hw_offload Rules

Run the following:

ovs-vsctl add-port br0 pf0hpf

ovs-appctl dpctl/dump-flows type=offloaded
recirc_id(0),in_port(3),eth(src=50:6b:4b:2f:0b:74,dst=de:d0:a3:63:0b:30),eth_type(0x080
packets:878, bytes:122802, used:0.440s,
actions:set(tunnel(tun_id=0x64,src=1.1.1.1,dst=1.1.1.2,ttl=64,flags(key))),2
tunnel(tun_id=0x64,src=1.1.1.1,dst=1.1.1.2,flags(+key)),recirc_id(0),in_port(2),eth(src=d
packets:995, bytes:97510, used:0.440s, actions:3

Note

For the host PF, in order for GRE to work properly with the default
1500 MTU, follow these steps.

1. Disable host PF as the port owner from Arm (see section "Zero-
trust Mode"). Run:

2. The MTU of the end points (pf0hpf in the example above) of the
GRE tunnel must be smaller than the MTU of the tunnel
interfaces (p0) to account for the size of the GRE headers. For
example, you can set the MTU of P0 to 2000.

$ mlxprivhost -d /dev/mst/mt41682_pciconf0 --
disable_port_owner r

file:///networking/display/bluefielddpuosv470/Modes+of+Operation
file:///networking/display/bluefielddpuosv470/Modes+of+Operation

NVIDIA BlueField DPU BSP v4.7.0 389

GENEVE Tunneling Offload

GENEVE tunnels are created on the Arm side and attached to the OVS. GENEVE
decapsulation/encapsulation behavior is similar to normal GENEVE behavior, including
over hw_offload=true.

To allow GENEVE encapsulation, the uplink representor (p0) must have an MTU value at
least 50 bytes greater than that of the host PF/VF.

Please refer to "Configuring Uplink MTU" for more information.

Configuring GENEVE Tunnel

1. Consider p0 to be the local GENEVE tunnel interface. p0 should not be attached to
any OVS bridge.

2. Create an OVS bridge, br0, with a GENEVE tunnel interface, gnv0. Run:

3. Add pf0hpf to br0.

4. At this point, any network traffic sent or received by the host's PF0 undergoes
GENEVE processing inside the BlueField OS.

Options are supported for GENEVE. For example, you may add option 0xea55 to tunnel
metadata, run:

ovs-vsctl add-port br0 gnv0 -- set interface gnv0 type=geneve
options:local_ip=1.1.1.1 options:remote_ip=1.1.1.2 options:key=100

ovs-vsctl add-port br0 pf0hpf

ovs-ofctl add-tlv-map geneve_br "{class=0xffff,type=0x0,len=4}->tun_metadata0"
ovs-ofctl add-flow geneve_br ip,actions="set_field:0xea55->tun_metadata0",normal

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Configuring+Uplink+MTU

NVIDIA BlueField DPU BSP v4.7.0 390

Using TC Interface to Configure Offload Rules

Offloading rules can also be added directly, and not just through OVS, using the tc utility.
To enable TC ingress on all the representors (i.e., uplink, PF, and VF).

L2 Rules Example

The rule below drops all packets matching the given source and destination MAC
addresses.

Note

For the host PF, in order for GENEVE to work properly with the
default 1500 MTU, follow these steps.

1. Disable host PF as the port owner from Arm (see section "Zero-
trust Mode"). Run:

2. The MTU of the end points (pf0hpf in the example above) of the
GENEVE tunnel must be smaller than the MTU of the tunnel
interfaces (p0) to account for the size of the GENEVE headers.
For example, you can set the MTU of P0 to 2000.

$ mlxprivhost -d /dev/mst/mt41682_pciconf0 --
disable_port_owner r

$ tc qdisc add dev p0 ingress
$ tc qdisc add dev pf0hpf ingress
$ tc qdisc add dev pf0vf0 ingress

$ tc filter add dev pf0hpf protocol ip parent ffff: \
flower \

file:///networking/display/bluefielddpuosv470/Modes+of+Operation
file:///networking/display/bluefielddpuosv470/Modes+of+Operation

NVIDIA BlueField DPU BSP v4.7.0 391

VLAN Rules Example

The following rules push VLAN ID 100 to packets sent from VF0 to the wire (and forward it
through the uplink representor) and strip the VLAN when sending the packet to the VF.

VXLAN Encap/Decap Example

skip_sw \
dst_mac e4:11:22:11:4a:51 \
src_mac e4:11:22:11:4a:50 \
action drop

$ tc filter add dev pf0vf0 protocol 802.1Q parent ffff: \
flower \
skip_sw \
dst_mac e4:11:22:11:4a:51 \
src_mac e4:11:22:11:4a:50 \
action vlan push id 100 \
action mirred egress redirect dev p0

$ tc filter add dev p0 protocol 802.1Q parent ffff: \
flower \
skip_sw \
dst_mac e4:11:22:11:4a:51 \
src_mac e4:11:22:11:4a:50 \
vlan_ethtype 0x800 \
vlan_id 100 \
vlan_prio 0 \
action vlan pop \
action mirred egress redirect dev pf0vf0

$ tc filter add dev pf0vf0 protocol 0x806 parent ffff: \
flower \

NVIDIA BlueField DPU BSP v4.7.0 392

VirtIO Acceleration Through Hardware vDPA

For configuration procedure, please refer to the MLNX_OFED documentation under OVS
Offload Using ASAP² Direct > VirtIO Acceleration through Hardware vDPA.

Configuring Uplink MTU
To configure the port MTU while operating in SmartNIC mode, you must restrict the
external host port ownership by issuing the following command on the DPU:

Server cold reboot is required for this restriction to take effect.

skip_sw \
dst_mac e4:11:22:11:4a:51 \
src_mac e4:11:22:11:4a:50 \
action tunnel_key set \
src_ip 20.1.12.1 \
dst_ip 20.1.11.1 \
id 100 \
action mirred egress redirect dev vxlan100

$ tc filter add dev vxlan100 protocol 0x806 parent ffff: \
flower \
skip_sw \
dst_mac e4:11:22:11:4a:51 \
src_mac e4:11:22:11:4a:50 \
enc_src_ip 20.1.11.1 \
enc_dst_ip 20.1.12.1 \
enc_key_id 100 \
enc_dst_port 4789 \
action tunnel_key unset \
action mirred egress redirect dev pf0vf0

mlxprivhost -d /dev/mst/<pciconf0 device> r --disable_port_owner

https://docs.mellanox.com/category/mlnxofedib
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-SmartNICmode

NVIDIA BlueField DPU BSP v4.7.0 393

Once the host is restricted, the port MTU is configured by changing the MTU of the uplink
representor (p0 or p1).

Link Aggregation
Network bonding enables combining two or more network interfaces into a single
interface. It increases the network throughput, bandwidth and provides redundancy if
one of the interfaces fails.

NVIDIA ® BlueField ® DPU has an option to configure network bonding on the Arm side
in a manner transparent to the host. Under such configuration, the host would only see a
single PF.

The diagram below describes this configuration:

Note

This functionality is supported when the DPU is set in embedded
function ownership mode for both ports.

Note

While LAG is being configured (starting with step 2 under section
"LAG Configuration"), traffic cannot pass through the physical ports.

NVIDIA BlueField DPU BSP v4.7.0 394

LAG Modes

Two LAG modes are supported on BlueField:

Queue Affinity mode

Hash mode

Queue Affinity Mode

In this mode, packets are distributed according to the QPs.

1. To enable this mode, run:

Example device name: mt41686_pciconf0.

2. Add/edit the following field from /etc/mellanox/mlnx-bf.conf as follows:

$ mlxconfig -d /dev/mst/<device-name> s LAG_RESOURCE_ALLOCATION=0

LAG_HASH_MODE="no"

NVIDIA BlueField DPU BSP v4.7.0 395

3. Perform a BlueField system reboot for the mlxconfig settings to take effect. Refer to
the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

Hash Mode

In this mode, packets are distributed to ports according to the hash on packet headers.

1. To enable this mode, run:

Example device name: mt41686_pciconf0.

2. Add/edit the following field from /etc/mellanox/mlnx-bf.conf as follows:

3. Perform a BlueField system reboot for the mlxconfig settings to take effect. Refer to
the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

Prerequisites

1. Set the LAG mode to work with.

2. (Optional) Hide the second PF on the host. Run:

Note

For this mode, prerequisite steps 3 and 4 are not required.

$ mlxconfig -d /dev/mst/<device-name> s LAG_RESOURCE_ALLOCATION=1

LAG_HASH_MODE="yes"

NVIDIA BlueField DPU BSP v4.7.0 396

Example device name: mt41686_pciconf0.

3. Delete any installed Scalable Functions (SFs) on the Arm side.

4. Stop the driver on the host side. Run:

5. The uplink interfaces (p0 and p1) on the Arm side must be disconnected from any
OVS bridge.

LAG Configuration

1. Create the bond interface. Run:

$ mlxconfig -d /dev/mst/<device-name> s HIDE_PORT2_PF=True NUM_OF_PF=1

Note

Perform a BlueField system reboot for the mlxconfig settings to
take effect. Refer to the "NVIDIA BlueField Reset and Reboot
Procedures" troubleshooting page for instructions.

$ systemctl stop openibd

$ ip link add bond0 type bond
$ ip link set bond0 down
$ ip link set bond0 type bond miimon 100 mode 4 xmit_hash_policy layer3+4

Note

NVIDIA BlueField DPU BSP v4.7.0 397

2. Subordinate both the uplink representors to the bond interface. Run:

3. Bring the interfaces up. Run:

The following is an example of LAG configuration in Ubuntu:

While LAG is being configured (starting with the next step),
traffic cannot pass through the physical ports.

$ ip link set p0 down
$ ip link set p1 down
$ ip link set p0 master bond0
$ ip link set p1 master bond0

$ ip link set p0 up
$ ip link set p1 up
$ ip link set bond0 up

cat /etc/network/interfaces

interfaces(5) file used by ifup(8) and ifdown(8)
Include files from /etc/network/interfaces.d:
source /etc/network/interfaces.d/*
auto lo
iface lo inet loopback
#p0
auto p0
iface p0 inet manual
bond-master bond1
#
#p1
auto p1
iface p1 inet manual

NVIDIA BlueField DPU BSP v4.7.0 398

As a result, only the first PF of the DPU would be available to the host side for
networking and SR-IOV.

For OVS configuration, the bond interface is the one that needs to be added to the OVS
bridge (interfaces p0 and p1 should not be added). The PF representor for the first port
(pf0hpf) of the LAG must be added to the OVS bridge. The PF representor for the second
port (pf1hpf) would still be visible, but it should not be added to OVS bridge. Consider the
following examples:

bond-master bond1
#bond1
auto bond1
iface bond1 inet static

address 192.168.1.1

netmask 255.255.0.0

mtu 1500

bond-mode 2
bond-slaves p0 p1
bond-miimon 100

pre-up (sleep 2 && ifup p0) &
pre-up (sleep 2 && ifup p1) &

Warning

When in shared RQ mode (enabled by default), the uplink
interfaces (p0 and p1) must always stay enabled. Disabling them
will break LAG support and VF-to-VF communication on same
host.

ovs-vsctl add-br bf-lag
ovs-vsctl add-port bf-lag bond0
ovs-vsctl add-port bf-lag pf0hpf

file:///networking/display/bluefielddpuosv470/Shared+RQ+Mode

NVIDIA BlueField DPU BSP v4.7.0 399

Removing LAG Configuration

1. If Queue Affinity mode LAG is configured (i.e., LAG_RESOURCE_ALLOCATION=0):

1. Delete any installed Scalable Functions (SFs) on the Arm side.

2. Stop driver (openibd) on the host side. Run:

2. Delete the LAG OVS bridge on the Arm side. Run:

This allows for later restoration of OVS configuration for non-LAG networking.

3. Stop OVS service. Run:

Warning

Trying to change bonding configuration in Queue Affinity mode
(including bringing the subordinated interface up/down) while the
host driver is loaded would cause FW syndrome and failure of the
operation. Make sure to unload the host driver before altering DPU
bonding configuration to avoid this.

Note

When performing driver reload (openibd restart) or reboot, it is required
to remove bond configuration and to reapply the configurations after
the driver is fully up. Refer to steps 1-4 of "Removing LAG
Configuration".

systemctl stop openibd

ovs-vsctl del-br bf-lag

NVIDIA BlueField DPU BSP v4.7.0 400

4. Run:

As a result, both of the DPU's network interfaces would be available to the host side
for networking and SR-IOV.

5. For the host to be able to use the DPU ports, make sure to attach the ECPF and host
representor in an OVS bridge on the Arm side. Refer to "Virtual Switch on DPU" for
instructions on how to perform this.

6. Revert from HIDE_PORT2_PF, on the Arm side. Run:

7. Restore default LAG settings in the DPU's firmware. Run:

8. Delete the following line from /etc/mellanox/mlnx-bf.conf on the Arm side:

9. Perform a BlueField system reboot for the mlxconfig settings to take effect. Refer to
the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

LAG on Multi-host

Only LAG hash mode is supported with BlueField multi-host.

systemctl stop openvswitch-switch.service

ip link set bond0 down
modprobe -rv bonding

mlxconfig -d /dev/mst/<device-name> s HIDE_PORT2_PF=False NUM_OF_PF=2

mlxconfig -d /dev/mst/<device-name> s
LAG_RESOURCE_ALLOCATION=DEVICE_DEFAULT

LAG_HASH_MODE=...

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtual+Switch+on+DPU#src-2821766711_VirtualSwitchonDPU-OVSbridgeconfig

NVIDIA BlueField DPU BSP v4.7.0 401

LAG Multi-host Prerequisites

1. Enable LAG hash mode.

2. Hide the second PF on the host. Run:

3. Make sure NVME emulation is disabled:

Example device name: mt41686_pciconf0.

4. The uplink interfaces (p0 and p4) on the Arm side, representing port0 and port1,
must be disconnected from any OVS bridge. As a result, only the first PF of the DPU
would be available to the host side for networking and SR-IOV.

LAG Configuration on Multi-host

1. Create the bond interface. Run:

2. Subordinate both the uplink representors to the bond interface. Run:

3. Bring the interfaces up. Run:

$ mlxconfig -d /dev/mst/<device-name> s HIDE_PORT2_PF=True NUM_OF_PF=1

$ mlxconfig -d /dev/mst/<device-name> s NVME_EMULATION_ENABLE=0

$ ip link add bond0 type bond
$ ip link set bond0 down
$ ip link set bond0 type bond miimon 100 mode 4 xmit_hash_policy layer3+4

$ ip link set p0 down
$ ip link set p4 down
$ ip link set p0 master bond0
$ ip link set p4 master bond0

NVIDIA BlueField DPU BSP v4.7.0 402

4. For OVS configuration, the bond interface is the one that must be added to the OVS
bridge (interfaces p0 and p4 should not be added). The PF representor, pf0hpf, must
be added to the OVS bridge with the bond interface. The rest of the uplink
representors must be added to another OVS bridge along with their PF
representors. Consider the following examples:

Removing LAG Configuration on Multi-host

$ ip link set p0 up
$ ip link set p4 up
$ ip link set bond0 up

ovs-vsctl add-br br-lag
ovs-vsctl add-port br-lag bond0
ovs-vsctl add-port br-lag pf0hpf
ovs-vsctl add-br br1
ovs-vsctl add-port br1 p1
ovs-vsctl add-port br1 pf1hpf
ovs-vsctl add-br br2
ovs-vsctl add-port br2 p2
ovs-vsctl add-port br2 pf2hpf
ovs-vsctl add-br br3
ovs-vsctl add-port br3 p3
ovs-vsctl add-port br3 pf3hpf

Note

When performing driver reload (openibd restart) or reboot, you
must remove bond configuration from NetworkManager, and to
reapply the configurations after the driver is fully up.

NVIDIA BlueField DPU BSP v4.7.0 403

Refer to section "Removing LAG Configuration".

Scalable Functions
A scalable function (SF) is a lightweight function that has a parent PCIe function on which
it is deployed. An mlx5 SF has its own function capabilities and its own resources. This
means that an SF has its own dedicated queues (txq, rxq, cq, eq) which are neither shared
nor stolen from the parent PCIe function.

No special support is needed from system BIOS to use SFs. SFs co-exist with PCIe SR-IOV
virtual functions. SFs do not require enabling PCIe SR-IOV.

Scalable Function Configuration

The following procedure offers a guide on using scalable functions with upstream Linux
kernel.

Device Configuration

NVIDIA BlueField DPU BSP v4.7.0 404

1. Make sure your firmware version supports SFs (20.30.1004 and above).

2. Enable SF support in device. Run:

3. Perform a BlueField system reboot for the mlxconfig settings to take effect. Refer to
the "NVIDIA BlueField Reset and Reboot Procedures" troubleshooting page for
instructions.

Mandatory Kernel Configuration on Host

Support for Linux kernel mlx5 SFs must be enabled as it is disabled by default.

The following two Kconfig flags must be enabled.

MLX5_ESWITCH

MLX5_SF

Software Control and Commands

SFs use a 4-step process as follows:

Create

Configure

Deploy

Use

SFs are managed using mlxdevm tool. It is located under directory
/opt/mellanox/iproute2/sbin/mlxdevm.

$ mlxconfig -d 0000:03:00.0 s PF_BAR2_ENABLE=0 PER_PF_NUM_SF=1
PF_TOTAL_SF=236 PF_SF_BAR_SIZE=10

NVIDIA BlueField DPU BSP v4.7.0 405

1. Display the physical (i.e. uplink) port of the PF. Run:

2. Add an SF. Run:

When an SF is added on the external controller (e.g. DPU) users must supply the
controller number. In a single host DPU case, there is only one controller starting
with controller number 1.

Example of adding an SF for PF0 of external controller 1:

$ devlink port show
pci/0000:03:00.0/65535: type eth netdev p0 flavour physical port 0 splittable
false

$ mlxdevm port add pci/0000:03:00.0 flavour pcisf pfnum 0 sfnum 88
pci/0000:03:00.0/229409: type eth netdev eth0 flavour pcisf controller 0 pfnum
0 sfnum 88
function:
hw_addr 00:00:00:00:00:00 state inactive opstate detached trust off

Note

An added SF is still not usable for the end-user application. It
can only be used after configuration and activation.

Note

SF number ≥1 000 is reserved for the virtio-net controller.

file:///networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-VirtIO-netController

NVIDIA BlueField DPU BSP v4.7.0 406

3. Show the newly added devlink port by its port index or its representor device.

Or:

4. Set the MAC address of the SF. Run:

5. Set SF as trusted (optional). Run:

$ mlxdevm port add pci/0000:03:00.0 flavour pcisf pfnum 0 sfnum 88
controller 1
pci/0000:03:00.0/32768: type eth netdev eth6 flavour pcisf controller 1 pfnum
0 sfnum 88 splittable false
function:
hw_addr 00:00:00:00:00:00 state inactive opstate detached

$ mlxdevm port show en3f0pf0sf88
pci/0000:03:00.0/229409: type eth netdev en3f0pf0sf88 flavour pcisf controller
0 pfnum 0 sfnum 88
function:
hw_addr 00:00:00:00:00:00 state inactive opstate detached trust off

$ mlxdevm port show pci/0000:03:00.0/229409
pci/0000:03:00.0/229409: type eth netdev en3f0pf0sf88 flavour pcisf controller
0 pfnum 0 sfnum 88
function:
hw_addr 00:00:00:00:00:00 state inactive opstate detached trust off

$ mlxdevm port function set pci/0000:03:00.0/229409 hw_addr
00:00:00:00:88:88

$ mlxdevm port function set pci/0000:03:00.0/229409 trust on
pci/0000:03:00.0/229409: type eth netdev en3f0pf0sf88 flavour pcisf controller
0 pfnum 0 sfnum 88
function:

NVIDIA BlueField DPU BSP v4.7.0 407

6. Configure OVS. Run:

7. Activate the SF. Run:

Activating the SF results in creating an auxiliary device and initiating driver load
sequence for netdevice, RDMA, and VDPA devices. Once the operational state is
marked as attached, a driver is attached to this SF and device loading begins.

8. By default, SF is attached to the configuration driver mlx5_core.sf_cfg. Users must
unbind an SF from the configuration and bind it to the mlx5_core.sf driver to make use

hw_addr 00:00:00:00:88:88 state inactive opstate detached trust on

Note

A trusted function has additional privileges like the ability to
update steering database.

$ systemctl start openvswitch
$ ovs-vsctl add-br network1
$ ovs-vsctl add-port network1 ens3f0npf0sf88
$ ip link set dev ens3f0npf0sf88 up

$ mlxdevm port function set pci/0000:03:00.0/229409 state active

Note

An application interested in using the SF netdevice and rdma
device must monitor the RDMA and netdevices either through
udev monitor or poll the sysfs hierarchy of the SF's auxiliary
device.

NVIDIA BlueField DPU BSP v4.7.0 408

of it. Run:

9. View the new state of the SF. Run:

10. View the auxiliary device of the SF. Run:

There can be hundreds of auxiliary SF devices on the auxiliary bus. Each SF's
auxiliary device contains a unique sfnum and PCI information.

$ echo mlx5_core.sf.4 >
/sys/bus/auxiliary/devices/mlx5_core.sf.4/driver/unbind
$ echo mlx5_core.sf.4 > /sys/bus/auxiliary/drivers/mlx5_core.sf/bind

$ mlxdevm port show en3f0pf0sf88 -jp
{
"port": {
"pci/0000:03:00.0/229409": {
"type": "eth",
"netdev": "en3f0pf0sf88",
"flavour": "pcisf",
"controller": 0,
"pfnum": 0,
"sfnum": 88,
"function": {
"hw_addr": "00:00:00:00:88:88",
"state": "active",
"opstate": "detached",
"trust": "on"
}
}
}
}

$ cat /sys/bus/auxiliary/devices/mlx5_core.sf.4/sfnum
88

NVIDIA BlueField DPU BSP v4.7.0 409

11. View the parent PCI device of the SF. Run:

12. View the devlink instance of the SF device. Run:

13. View the port and netdevice associated with the SF. Run:

14. View the RDMA device for the SF. Run:

15. Deactivate SF. Run:

Deactivating the SF triggers driver unload in the host system. Once SF is deactivated,
its operational state changes to "detached". An orchestration system should poll for
the operational state to be changed to "detached" before deleting the SF. This
ensures a graceful hot-unplug.

16. Delete SF. Run:

$ readlink /sys/bus/auxiliary/devices/mlx5_core.sf.1
../../../devices/pci0000:00/0000:00:00.0/0000:01:00.0/0000:02:00.0/0000:03:00.0/m

$ devlink dev show
$ devlink dev show auxiliary/mlx5_core.sf.4

$ devlink port show auxiliary/mlx5_core.sf.4/1
auxiliary/mlx5_core.sf.4/1: type eth netdev enp3s0f0s88 flavour virtual port 0
splittable false

$ rdma dev show
$ ls /sys/bus/auxiliary/devices/mlx5_core.sf.4/infiniband/

$ mlxdevm port function set pci/0000:03:00.0/229409 state inactive

NVIDIA BlueField DPU BSP v4.7.0 410

Finally, once the state is "inactive" and the operational state is "detached" the user
can safely delete the SF. For faster provisioning, a user can reconfigure and active
the SF again without deletion.

RDMA Stack Support on Host and
Arm System
Full RDMA stack is pre-installed on the Arm Linux system. RDMA, whether RoCE or
InfiniBand, is supported on BlueField® DPU in the configurations listed below.

Separate Host Mode

RoCE is supported from both the host and Arm system.

InfiniBand is supported on the host system.

Embedded CPU Mode

RDMA Support on Host

To use RoCE on a host system's PCIe PF, OVS hardware offloads must be enabled on the
Arm system.

RoCE is not supported by connection tracking offload. Please refer to "Configuring
Connection Tracking Offload" for a workaround for it.

RDMA Support on Arm

RoCE is unsupported on the Arm system on the PCIe PF. However, RoCE is fully supported
using scalable function as explained under "Scalable Functions". Scalable functions are

$ mlxdevm port del pci/0000:03:00.0/229409

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtual+Switch+on+DPU#src-2821766711_VirtualSwitchonDPU-ConfiguringConnectionTrackingOffload
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtual+Switch+on+DPU#src-2821766711_VirtualSwitchonDPU-ConfiguringConnectionTrackingOffload
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Scalable+Functions

NVIDIA BlueField DPU BSP v4.7.0 411

created by default, allowing RoCE traffic without further configuration.

InfiniBand is supported on the Arm system on the PCIe PF in this mode.

Controlling Host PF and VF
Parameters
NVIDIA® BlueField® allows control over some of the networking parameters of the PFs
and VFs running on the host side.

Setting Host PF and VF Default MAC Address

From the Arm, users may configure the MAC address of the physical function in the host.
After sending the command, users must reload the NVIDIA driver in the host to see the
newly configured MAC address. The MAC address goes back to the default value in the
FW after system reboot.

Example:

Setting Host PF and VF Link State

vPort state can be configured to Up, Down, or Follow. For example:

Querying Configuration

To query the current configuration, run:

$ echo "c4:8a:07:a5:29:59" > /sys/class/net/p0/smart_nic/pf/mac
$ echo "c4:8a:07:a5:29:61" > /sys/class/net/p0/smart_nic/vf0/mac

$ echo "Follow" > /sys/class/net/p0/smart_nic/pf/vport_state

$ cat /sys/class/net/p0/smart_nic/pf/config

NVIDIA BlueField DPU BSP v4.7.0 412

Zero signifies that the rate limit is unlimited.

Disabling Host Networking PFs

It is possible to not expose ConnectX networking functions to the host for users
interested in using storage or VirtIO functions only. When this feature is enabled, the host
PF representors (i.e. pf0hpf and pf1hpf) will not be seen on the Arm.

Without a PF on the host, it is not possible to enable SR-IOV, so VF representors will
not be seen on the Arm either

Without PFs on the host, there can be no SFs on it

To disable host networking PFs, run:

To reactivate host networking PFs:

For single-port DPUs, run:

For dual-port DPUs, run:

MAC : e4:8b:01:a5:79:5e
MaxTxRate : 0
State : Follow

mlxconfig -d /dev/mst/mt41686_pciconf0 s NUM_OF_PF=0

mlxconfig -d /dev/mst/mt41686_pciconf0 s NUM_OF_PF=1

mlxconfig -d /dev/mst/mt41686_pciconf0 s NUM_OF_PF=2

Note

NVIDIA BlueField DPU BSP v4.7.0 413

DPDK on BlueField DPU
Please refer to "NVIDIA BlueField Board Support Package" in the DPDK documentation.

BlueField SNAP
NVIDIA® BlueField® SNAP (Software-defined Network Accelerated Processing)
technology enables hardware-accelerated virtualization of NVMe storage. BlueField SNAP
presents networked storage as a local NVMe SSD, emulating an NVMe drive on the PCIe
bus. The host OS/Hypervisor makes use of its standard NVMe-driver unaware that the
communication is terminated, not by a physical drive, but by the BlueField SNAP. Any
logic may be applied to the data via the BlueField SNAP framework and transmitted over
the network, on either Ethernet or InfiniBand protocol, to a storage target.

BlueField SNAP combines unique hardware-accelerated storage virtualization with the
advanced networking and programmability capabilities of the DPU. BlueField SNAP
together with the DPU enable a world of applications addressing storage and networking
efficiency and performance.

To enable BlueField SNAP, please refer to the NVIDIA BlueField-3 SNAP for NVMe and
Virtio-blk documentation.

When there are no networking functions exposed on the host, the
reactivation command must be run from the Arm.

Note

Perform a BlueField system reboot for the mlxconfig settings to take
effect. Refer to the "NVIDIA BlueField Reset and Reboot Procedures"
troubleshooting page for instructions.

https://docs.nvidia.com/http://doc.dpdk.org/guides/platform/bluefield.html
https://docs.nvidia.com/networking/dpu-doca/index.html#doca
https://docs.nvidia.com/networking/dpu-doca/index.html#doca

NVIDIA BlueField DPU BSP v4.7.0 414

BlueField SR-IOV
The BlueField SR-IOV solution is based on asymmetric VF and enables per-ECPF and per
PF control over number of VF allocation .

ECPF VFs are intended to be used in switchdev mode. Like SFs and host VFs, ECPF VFs
have a representor. Representor naming for ECPF VFs start after the host VFs. For
example, if the host has 32 VFs enabled, then the host VF representors are named pf0vf0-
pf0vf31, and the Arm representors continue at pf0vf32 onward.

To enable BlueField SR-IOV, apply the following configuration in the BlueField OS:

The BlueField should now support setting asymmetric VF configuration per port.

The following are examples for configuring the number of VFs per port:

1. In the BlueField, issue the following commands to configure 32 VFs per port:

mlxconfig -d 03:00.0 -y s PF_NUM_OF_VF_VALID=1

Note

Once PF_NUM_OF_VF_VALID is set, the NUM_OF_VFS mlxconfig option is not
relevant and the user must set PF_NUM_OF_VF for each host and EC
function. It is recommended for the number of VFs for each ECPF and
each host PF be the same.

dpu> mlxconfig -d 03:00.0 -y s PF_NUM_OF_VF=32

dpu> mlxconfig -d 03:00.1 -y s PF_NUM_OF_VF=32

Note

NVIDIA BlueField DPU BSP v4.7.0 415

2. In the host OS, issue the following commands to configure up to 126 VFs per port:

3. Perform a BlueField system reboot for the mlxconfig settings to take effect.

4. Create ECPF VFs:

Compression Acceleration
NVIDIA® BlueField® DPU supports high-speed compression acceleration. This feature
allows the host to offload multiple compression/decompression jobs to the DPU.

The BlueField ECPF driver in the BlueField's Arm OS limits the
number of VFs it supports to 32 per port.

host> mlxconfig -d 03:00.0 -y s PF_NUM_OF_VF=126

host> mlxconfig -d 03:00.1 -y s PF_NUM_OF_VF=126

echo 1 > /sys/class/net/p0/device/sriov_numvfs

Note

BlueField SR-IOV VFs do not support the following legacy SRIOV
functionalities:

Virtual switch tagging (VF VLAN)

Spoof check

VF trust

VF rate

https://docs.nvidia.com//networking/display/bluefielddpuosv470/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-2821766774_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystemReboot

NVIDIA BlueField DPU BSP v4.7.0 416

Compress-class operations are supported in parallel to the net, vDPA, and RegEx class
operations.

Configuring Compression Acceleration

The compression application can run either from the host or Arm.

For more information, please refer to:

The DPDK community documentation about compression

The mlx5 support documentation

Public Key Acceleration
NVIDIA BlueField DPU incorporates several public key acceleration (PKA) engines to
offload the processor of the Arm host, providing high-performance computation of PK
algorithms. BlueField's PKA is useful for a wide range of security applications. It can assist
with SSL acceleration, or a secure high-performance PK signature generator/checker and
certificate related operations.

BlueField's PKA software libraries implement a simple, complete framework for crypto
public key infrastructure (PKI) acceleration. It provides direct access to hardware
resources from the user space and makes available a number of arithmetic operations—
some basic (e.g., addition and multiplication), and some complex (e.g., modular
exponentiation and modular inversion)—and high-level operations such as RSA, Diffie-
Hallman, Elliptic Curve Cryptography, and the Federal Digital Signature Algorithm (DSA as
documented in FIPS-186) public-private key systems.

PKA Prerequisites

The BlueField PKA software is intended for BlueField products with HW accelerated
crypto capabilities. To verify whether your BlueField chip has crypto capabilities,
look for CPU flags aes, sha1, and sha2 in the DPU OS. For example:

lscpu
...
Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid

https://docs.nvidia.com/http://doc.dpdk.org/guides/prog_guide/compressdev.html
https://docs.nvidia.com/http://doc.dpdk.org/guides/compressdevs/mlx5.html

NVIDIA BlueField DPU BSP v4.7.0 417

BlueField bootloader must enable SMMU support to benefit from the full hardware
and software capabilities. SMMU support may be enabled in UEFI menu through
system configuration options.

PKA Use Cases

Some of the use cases for the BlueField PKA involve integrating OpenSSL software
applications with BlueField's PKA hardware. The BlueField PKA dynamic engine for
OpenSSL allows applications integrated with OpenSSL (e.g., StrongSwan) to accomplish a
variety of security-related goals and to accelerate the cryptographic processing with the
BlueField PKA hardware. OpenSSL versions ≥1.0.0, ≤1.1.1, and 3.0.2 are supported.

The engine supports the following operations:

RSA

DH

DSA

ECDSA

ECDH

Random number generation that is cryptographically secure.

Up to 4096-bit keys for RSA, DH, and DSA operations are supported. Elliptic Curve
Cryptography support of (nist) prime curves for 160, 192, 224, 256, 384 and 521 bits.

For example, to sign a file using BlueField's PKA engine:

Note

With CentOS 7.6, only OpenSSL 1.1 (not 1.0) works with PKA engine
and keygen. Use openssl11 with PKA engine and keygen.

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-HowtoenabledisableSMMU
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-HowtoenabledisableSMMU

NVIDIA BlueField DPU BSP v4.7.0 418

To verify the signature, execute:

For further details on BlueField PKA, please refer to "PKA Driver Design and
Implementation Architecture Document" and/or "PKA Programming Guide". Directions
and instructions on how to integrate the BlueField PKA software libraries are provided in
the README files on the Mellanox PKA GitHub.

IPsec Functionality

Transparent IPsec Encryption and Decryption

BlueField DPU can offload IPsec operations transparently from the host CPU. This means
that the host does not need to be aware that network traffic is encrypted before hitting
the wire or decrypted after coming off the wire. IPsec operations can be run on the DPU
in software on the Arm cores or in the accelerator block.

IPsec Hardware Offload: Crypto Offload

IPsec hardware crypto offload, also known as IPsec inline offload or IPsec aware offload,
enables the user to offload IPsec crypto encryption and decryption operations to the
hardware, leaving the encapsulation/decapsulation task to the software.

Please refer to the MLNX_OFED documentation under Features Overview and
Configuration > Ethernet Network > IPsec Crypto Offload for more information on
enabling and configuring this feature.

Please note that to use IPsec crypto offload with OVS, you must disable hardware
offloads.

IPsec Hardware Offload: Packet Offload

$ openssl dgst -engine pka -sha256 -sign <privatekey> -out <signature> <filename>

$ openssl dgst -engine pka -sha256 -verify <publickey> -signature <signature>
<filename>

https://github.com/Mellanox/pka
https://docs.mellanox.com/category/mlnxofedib

NVIDIA BlueField DPU BSP v4.7.0 419

IPsec packet offload offloads both IPsec crypto and IPsec encapsulation to the hardware.
IPsec packet offload is configured on the Arm via the uplink netdev. The following figure
illustrates IPsec packet offload operation in hardware.

Enabling IPsec Packet Offload

Explicitly enable IPsec packet offload on the Arm cores before setting up offload-aware
IPsec tunnels .

Note

IPSec packet offload is only supported on Ubuntu BlueField kernel
5.15

Note

If an OVS VXLAN tunnel configuration already exists, stop openvswitch

service prior to performing the steps below and restart the service
afterwards.

NVIDIA BlueField DPU BSP v4.7.0 420

Explicitly enable IPsec full offload on the Arm cores.

1. Set IPSEC_FULL_OFFLOAD="yes" in /etc/mellanox/mlnx-bf.conf .

2. Restart IB driver (rebooting also works). Run:

/etc/init.d/openibd restart

Note

If mlx-regex is running:

1. Disable mlx-regex:

2. Restart IB driver according to the command above.

3. Re-enable mlx-regex after the restart has finished:

systemctl stop mlx-regex

systemctl restart mlx-regex

Note

To revert IPsec full offload mode, redo the procedure from step 1,
only difference is to set IPSEC_FULL_OFFLOAD="no" in /etc/mellanox/mlnx-

bf.conf.

Note

NVIDIA BlueField DPU BSP v4.7.0 421

To configure IPsec rules, please follow the instructions in MLNX_OFED documentation
under Features Overview and Configuration > Ethernet Network > IPsec Crypto Offload >
Configuring Security Associations for IPsec Offloads but, use "offload packet" to achieve
IPsec Packet offload.

Configuring IPsec Rules with iproute2

The following example configures IPsec packet offload rules with local address
192.168.1.64 and remote address 192.168.1.65:

To use IPsec packet packet with strongSwan, refer to section "IPsec
Packet Offload strongSwan Support".

Note

If you are working directly with the ip xfrm tool, you must use the
/opt/mellanox/iproute2/sbin/ip to benefit from IPsec packet offload
support.

ip xfrm state add src 192.168.1.64/24 dst 192.168.1.65/24 proto esp spi 0x4834535d
reqid 0x4834535d mode transport aead 'rfc4106(gcm(aes))'
0xc57f6f084ebf8c6a71dd9a053c2e03b94c658a9bf00dd25780e73948931d10d08058a2
128 offload packet dev p0 dir out sel src 192.168.1.64 dst 192.168.1.65
ip xfrm state add src 192.168.1.65/24 dst 192.168.1.64/24 proto esp spi 0x2be60844
reqid 0x2be60844 mode transport aead 'rfc4106(gcm(aes))'
0xacca06b66489011d3c1c21f1a36d925cf7449d3aeaa6fe534446c3a8f8bd5f5fdc26658
128 offload packet dev p0 dir in sel src 192.168.1.65 dst 192.168.1.64
sudo ip xfrm policy add src 192.168.1.64 dst 192.168.1.65 offload packet dev p0 dir
out tmpl src 192.168.1.64/24 dst 192.168.1.65/24 proto esp reqid 0x4834535d mode
transport

https://docs.mellanox.com/category/mlnxofedib

NVIDIA BlueField DPU BSP v4.7.0 422

IPsec Packet Offload strongSwan Support

BlueField DPU supports configuring IPsec rules using strongSwan 5.9.10—appears as
5.9.10bf in the BFB which is based on upstream 5.9.10 version—which supports new
fields in the swanctl.conf file.

The following figure illustrates an example with two BlueField DPUs , Left and Right,
operating with a secured VXLAN channel .

sudo ip xfrm policy add src 192.168.1.65 dst 192.168.1.64 offload packet dev p0 dir
in tmpl src 192.168.1.65/24 dst 192.168.1.64/24 proto esp reqid 0x2be60844 mode
transport

Note

The numbers used by the spi, reqid, or aead algorithms are random.
These same numbers are also used in the configuration of peer Arm.
Do not confuse these numbers with source and destination IPs. The
connection may fail if they are not consistent.

NVIDIA BlueField DPU BSP v4.7.0 423

Support for strongSwan IPsec packet HW offload requires using VXLAN together with
IPSec as shown here .

1. Follow the procedure under section "Enabling IPsec Packet Offload".

2. Follow the procedure under section "VXLAN Tunneling Offload" to configure VXLAN
on Arm.

3. Enable tc offloading. Run:

Setting IPSec Packet Offload Using strongSwan

strongSwan configures IPSec HW packet offload using a new value added to its
configuration file swanctl.conf (as of strongSwan version 5.9.10).

The file should be placed under "sysconfdir" which by default can be found at
/etc/swanctl/swanctl.conf.

The terms Left (BFL) and Right (BFR) are used to identify the two nodes that communicate
(corresponding with the figure under section "IPsec Packet Offload strongSwan Support").

Note

Make sure the MTU of the PF used by VXLAN is at least 50 bytes
larger than VXLAN-REP MTU.

ethtool -K <PF> hw-tc-offload on

Note

Do not add the PF itself using "ovs-vsctl add-port" to the OVS.

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtual+Switch+on+DPU#src-2821766711_VirtualSwitchonDPU-VXLANTunnelingOffload

NVIDIA BlueField DPU BSP v4.7.0 424

In this example, 192.168.50.1 is used for the left PF uplink and 192.168.50.2 for the right
PF uplink.

connections {
BFL-BFR {
local_addrs = 192.168.50.1
remote_addrs = 192.168.50.2

local {
auth = psk
id = host1
}
remote {
auth = psk
id = host2
}
children {
bf-out {
local_ts = 192.168.50.1/24 [udp]
remote_ts = 192.168.50.2/24 [udp/4789]
esp_proposals = aes128gcm128-x25519-esn
mode = transport
policies_fwd_out = yes
hw_offload = packet
}
bf-in {
local_ts = 192.168.50.1/24 [udp/4789]
remote_ts = 192.168.50.2/24 [udp]
esp_proposals = aes128gcm128-x25519-esn
mode = transport
policies_fwd_out = yes
hw_offload = packet
}
}
version = 2
mobike = no

NVIDIA BlueField DPU BSP v4.7.0 425

Note that:

"hw_offload = packet" is responsible for configuring IPsec packet offload

Packet offload support has been added to the existing hw_offload field and preserves
backward compatibility.

For your reference:

Val
ue

Description

no Do not configure HW offload

reauth_time = 0
proposals = aes128-sha256-x25519
}
}

secrets {
ike-BF {
id-host1 = host1
id-host2 = host2
secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
}
}

Note

BFB installation will place two example swanctl.conf files for both Left
and Right nodes (BFL.swanctl.conf and BFR.swanctl.conf respectively)
in the strongSwan conf.d directory. Please move one of them
manually to the other machine and edit it according to your
configuration.

NVIDIA BlueField DPU BSP v4.7.0 426

Val
ue

Description

cryp
to

Configure crypto HW offload if supported by the kernel and hardware, fail if
not supported

yes Same as crypto (considered legacy)

pack
et

Configure packet HW offload if supported by the kernel and hardware, fail if
not supported

auto
Configure packet HW offload if supported by the kernel and hardware, do
not fail (perform fallback to crypto or no as necessary)

[udp/4789] is crucial for instructing strongSwan to IPSec only VXLAN communication

Mind the following limitations:

Field Limitation

reauth_time Ignored if set

rekey_time Do not use. Ignored if set.

rekey_bytes Do not use. Not supported and will fail if it is set.

rekey_packets Use for rekeying

Note

Whenever the value of hw_offload is changed, strongSwan
configuration must be reloaded.

Note

Packet HW offload can only be done on what is streamed over
VXLAN.

NVIDIA BlueField DPU BSP v4.7.0 427

Running strongSwan Example

Notes:

IPsec daemons are started by systemd strongswan.service, users must avoid using
strongswan-starter.service as it is a legacy service and using both services at the same
time leads to anomalous behavior

Use systemctl [start | stop | restart] to control IPsec daemons through strongswan.service.
For example, to restart, the command systemctl restart strongswan.service will effectively
do the same thing as ipsec restart.

The strongSwan package installs openssl.cnf config files to enable hardware offload of
PK and RNG operations via the OpenSSL plugin

The OpenSSL dynamic engine is used to carry out the offload to hardware. OpenSSL
dynamic engine ID is "pka".

Procedure:

Warning

Do not use ipsec script to restart/stop/start.

If you are using the ipsec script, then, in order to restart or start
the daemons, openssl.cnf.orig must be copied to openssl.cnf
before performing ipsec restart or ipsec start. Then openssl.cnf.mlnx

can be copied to openssl.cnf after restart or start. Failing to do so
can result in errors since openssl.cnf.mlnx allows IPsec PK and RNG
hardware offload via the OpenSSL plugin.

On Ubuntu/Debian/Yocto, openssl.cnf* can be found under
/etc/ssl/

On CentOS, openssl.cnf* can be found under /etc/pki/tls/

NVIDIA BlueField DPU BSP v4.7.0 428

1. Perform the following on Left and Right devices (corresponding with the figure
under section "IPsec Packet Offload strongSwan Support").

The following should appear.

2. Perform the actual connection on one side only (client, Left in this case).

The following should appear.

systemctl start strongswan.service
swanctl --load-all

Starting strongSwan 5.9.10bf IPsec [starter]...
no files found matching '/etc/ipsec.d/*.conf'
deprecated keyword 'plutodebug' in config setup
deprecated keyword 'virtual_private' in config setup
loaded ike secret 'ike-BF'
no authorities found, 0 unloaded
no pools found, 0 unloaded
loaded connection 'BFL-BFR'
successfully loaded 1 connections, 0 unloaded

swanctl -i --child bf-in bf-out

[IKE] initiating IKE_SA BFL-BFR[1] to 192.168.50.2
[ENC] generating IKE_SA_INIT request 0 [SA KE No N(NATD_S_IP) N(NATD_D_IP)
N(FRAG_SUP) N(HASH_ALG) N(REDIR_SUP)]
[NET] sending packet: from 192.168.50.1[500] to 192.168.50.2[500] (240 bytes)
[NET] received packet: from 192.168.50.2[500] to 192.168.50.1[500] (273 bytes)
[ENC] parsed IKE_SA_INIT response 0 [SA KE No N(NATD_S_IP) N(NATD_D_IP)
CERTREQ N(FRAG_SUP) N(HASH_ALG) N(CHDLESS_SUP) N(MULT_AUTH)]
[CFG] selected proposal:
IKE:AES_CBC_128/HMAC_SHA2_256_128/PRF_HMAC_SHA2_256/CURVE_25519
[IKE] received 1 cert requests for an unknown ca
[IKE] authentication of 'host1' (myself) with pre-shared key

NVIDIA BlueField DPU BSP v4.7.0 429

You may now send encrypted data over the HOST VF interface (192.168.70.[1|2])
configured for VXLAN.

Building strongSwan

Do this only if you want to build your own BFB and would like to rebuild strongSwan.

1. Install dependencies mentioned here. libgmp-dev is missing from that list, so make
sure to install that as well.

2. Git clone https://github.com/Mellanox/strongswan.git.

3. Git checkout BF-5.9.10. This branch is based on the official strongSwan 5.9.10
branch with added packaging and support for DOCA IPsec plugin (check the NVIDIA
DOCA IPsec Security Gateway Application Guide for more information regarding the
strongSwan DOCA plugin).

4. Run autogen.sh within the strongSwan repo.

5. Run the following:

[IKE] establishing CHILD_SA bf{1}
[ENC] generating IKE_AUTH request 1 [IDi N(INIT_CONTACT) IDr AUTH
N(USE_TRANSP) SA TSi TSr N(MULT_AUTH) N(EAP_ONLY) N(MSG_ID_SYN_SUP)]
[NET] sending packet: from 192.168.50.1[500] to 192.168.50.2[500] (256 bytes)
[NET] received packet: from 192.168.50.2[500] to 192.168.50.1[500] (224 bytes)
[ENC] parsed IKE_AUTH response 1 [IDr AUTH N(USE_TRANSP) SA TSi TSr
N(AUTH_LFT)]
[IKE] authentication of 'host2' with pre-shared key successful
[IKE] IKE_SA BFL-BFR[1] established between
192.168.50.1[host1]...192.168.50.2[host2]
[IKE] scheduling reauthentication in 10027s
[IKE] maximum IKE_SA lifetime 11107s
[CFG] selected proposal: ESP:AES_GCM_16_128/NO_EXT_SEQ
[IKE] CHILD_SA bf{1} established with SPIs ce543905_i c60e98a2_o and TS
192.168.50.1/32 === 192.168.50.2/32
initiate completed successfully

https://wiki.strongswan.org/projects/strongswan/repository/entry/HACKING
https://github.com/Mellanox/strongswan.git
https://github.com/strongswan/strongswan/tree/5.9.10
https://github.com/strongswan/strongswan/tree/5.9.10
https://docs.nvidia.com/doca/sdk/ipsec-security-gateway/
https://docs.nvidia.com/doca/sdk/ipsec-security-gateway/

NVIDIA BlueField DPU BSP v4.7.0 430

Note:

--enable-systemd enables the systemd service for strongSwan present inside the
GitHub repo (see step 3) at init/systemd-starter/strongswan.service.in.

When building strongSwan on your own, the openssl.cnf.mlnx file, required for PK and
RNG HW offload via OpenSSL plugin, is not installed. It must be copied over
manually from github repo inside the openssl-conf directory. See section "Running
Strongswan Example" for important notes.

IPsec Packet Offload and OVS Offload

IPsec packet offload configuration works with and is transparent to OVS offload. This
means all packets from OVS offload are encrypted by IPsec rules.

The following figure illustrates the interaction between IPsec packet offload and OVS
VXLAN offload.

configure --enable-openssl --disable-random --prefix=/usr/local --
sysconfdir=/etc --enable-systemd
make
make install

Note

The openssl.cnf.mlnx file references PKA engine shared objects.
libpka (version 1.3 or later) and openssl (version 1.1.1) must be
installed for this to work.

NVIDIA BlueField DPU BSP v4.7.0 431

OVS IPsec

To start the service, run:

Refer to section "Enabling IPsec Packet Offload" for information to prepare the IPsec
packet offload environment.

Configuring IPsec Tunnel

For the sake of example, if you want to build an IPsec tunnel between two hosts with the
following external IP addresses:

Note

OVS offload and IPsec IPv6 do not work together.

systemctl start openvswitch-ipsec.service

NVIDIA BlueField DPU BSP v4.7.0 432

host1 – 1.1.1.1

host2 – 1.1.1.2

You have to first make sure host1 and host2 can ping each other via these external IPs.

This example will set up some variables on both hosts, set ip1 and ip2:

1. Set up OVS bridges in both hosts.

1. On Arm_1:

2. On Arm_2:

ip1=1.1.1.1
ip2=1.1.1.2
REP=eth5
PF=p0

ovs-vsctl add-br ovs-br
ovs-vsctl add-port ovs-br $REP
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

ovs-vsctl add-br ovs-br
ovs-vsctl add-port ovs-br $REP
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

Note

Configuring other_config:hw-offload=true sets IPsec packet
offload. Setting it to false sets software IPsec. Make sure
that IPsec devlink's mode is set back to none for software
IPsec.

NVIDIA BlueField DPU BSP v4.7.0 433

2. Set up IPsec tunnel. Three authentication methods are possible. Follow the steps
relevant for the method that works best for your environment.

3. Make sure the MTU of the PF used by tunnel is at least 50 bytes larger than VXLAN-
REP MTU.

1. Disable host PF as the port owner from Arm (see section "Zero-trust Mode").
Run:

2. The MTU of the end points (pf0hpf in the example above) of the tunnel must be
smaller than the MTU of the tunnel interfaces (p0) to account for the size of the
tunnel headers. For example, you can set the MTU of P0 to 2000.

Authentication Methods

Using Pre-shared Key

Note

Do not try to use more than 1 authentication method.

Note

After the IPsec tunnel is set up, strongSwan configuration will be
automatically done.

$ mlxprivhost -d /dev/mst/mt41682_pciconf0 --disable_port_owner r

Note

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation

NVIDIA BlueField DPU BSP v4.7.0 434

1. On Arm_1, run:

2. On Arm_2, run:

The following example uses tun type=gre and dst_port=1723. Depending
on your configuration, tun type can be vxlan or geneve with dst_port 4789
or 6081 respectively.

Note

The following example uses ovs-br as the bridge name. However, this
value can be any string you have chosen to create the bridge
previously.

ovs-vsctl add-port ovs-br tun -- \
set interface tun type=gre \
options:local_ip=$ip1 \
options:remote_ip=$ip2 \
options:key=100 \
options:dst_port=1723 \
options:psk=swordfish

ovs-vsctl add-port ovs-br tun -- \
set interface tun type=gre \
options:local_ip=$ip2 \
options:remote_ip=$ip1 \
options:key=100 \
options:dst_port=1723 \
options:psk=swordfish

NVIDIA BlueField DPU BSP v4.7.0 435

Using Self-signed Certificate

1. Generate self-signed certificates in both host1 and host2, then copy the certificate of
host1 to host2, and the certificate of host2 to host1.

2. Move both host1-cert.pem and host2-cert.pem to /etc/swanctl/x509/, if on Ubuntu, or
/etc/strongswan/swanctl/x509/, if on CentOS.

3. Move the local private key to /etc/swanctl/private, if on Ubuntu, or
/etc/strongswan/swanctl/private, if on CentOS. For example, for host1:

4. Set up OVS other_config on both sides.

1. On Arm_1:

2. On Arm_2:

5. Set up the tunnel.

1. On Arm_1:

mv host1-privkey.pem /etc/swanctl/private

ovs-vsctl set Open_vSwitch .
other_config:certificate=/etc/swanctl/x509/host1-cert.pem \
other_config:private_key=/etc/swanctl/private/host1-privkey.pem

ovs-vsctl set Open_vSwitch .
other_config:certificate=/etc/swanctl/x509/host2-cert.pem \
other_config:private_key=/etc/swanctl/private/host2-privkey.pem

ovs-vsctl add-port ovs-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip1 \
options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
options:remote_cert=/etc/swanctl/x509/host2-cert.pem
service openvswitch-switch restart

NVIDIA BlueField DPU BSP v4.7.0 436

2. On Arm_2:

Using CA-signed Certificate

1. For this method, you need all the certificates and the requests to be in the same
directory during the certificate generating and signing. This example refers to this
directory as certsworkspace.

1. On Arm_1:

2. On Arm_2:

2. Move both host1-cert.pem and host2-cert.pem to /etc/ swanctl/x509/, if on Ubuntu, or
/etc/strongswan/swanctl/x509/, if on CentOS.

3. Move the local private key to /etc/swanctl/private, if on Ubuntu, or
/etc/strongswan/swanctl/private, if on CentOS. For example, for host1:

ovs-vsctl add-port ovs-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip2 \
options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
options:remote_cert=/etc/swanctl/x509/host1-cert.pem
service openvswitch-switch restart

ovs-pki init --force
cp /var/lib/openvswitch/pki/controllerca/cacert.pem
<path_to>/certsworkspace
ovs-pki req -u host1
ovs-pki sign host1 switch

ovs-pki init --force
cp /var/lib/openvswitch/pki/controllerca/cacert.pem
<path_to>/certsworkspace
ovs-pki req -u host2
ovs-pki sign host2 switch

NVIDIA BlueField DPU BSP v4.7.0 437

4. Copy cacert.pem to the x509ca directory under /etc/swanctl/x509ca/, if on Ubuntu, or
/etc/strongswan/swanctl/x509ca/, if on CentOS.

5. Set up OVS other_config on both sides.

1. On Arm_1:

2. On Arm_2:

6. Set up the tunnel:

1.

1. On Arm_1:

2. On Arm_2:

mv host1-privkey.pem /etc/swanctl/private

ovs-vsctl set Open_vSwitch . \
other_config:certificate=/etc/strongswan/swanctl/x509/host1.pem \
other_config:private_key=/etc/strongswan/swanctl/private/host1-
privkey.pem \
other_config:ca_cert=/etc/strongswan/swanctl/x509ca/cacert.pem

ovs-vsctl set Open_vSwitch . \
other_config:certificate=/etc/strongswan/swanctl/x509/host2.pem \
other_config:private_key=/etc/strongswan/swanctl/private/host2-
privkey.pem \
other_config:ca_cert=/etc/strongswan/swanctl/x509ca/cacert.pem

ovs-vsctl add-port ovs-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip1 \
options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
options:remote_name=host2
#service openvswitch-switch restart

NVIDIA BlueField DPU BSP v4.7.0 438

Ensuring IPsec is Configured

Use /opt/mellanox/iproute2/sbin/ip xfrm state show. You should be able to see IPsec states with
the keyword in mode packet.

Troubleshooting

For troubleshooting information, refer to Open vSwitch's official documentation.

fTPM over OP-TEE

The Trusted Computing Group (TCG) is responsible for the specifications governing the
trusted platform module (TPM). In many systems, the TPM provides integrity
measurements, health checks and authentication services.

Attributes of a TPM:

ovs-vsctl add-port ovs-br vxlanp0 -- set interface vxlanp0 type=vxlan
options:local_ip=$ip2 \
options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
options:remote_name=host1
#service openvswitch-switch restart

Note

fTMP over OP-TEE is supported on BlueField-3 only at beta level.

https://docs.openvswitch.org/en/latest/tutorials/ipsec/

NVIDIA BlueField DPU BSP v4.7.0 439

Support for bulk (symmetric) encryption in the platform

High quality random numbers

Cryptographic services

Protected persistent store for small amounts of data, sticky bits, monotonic
counters, and extendible registers

Protected pseudo-persistent store for unlimited amounts of keys and data

Extensive choice of authorization methods to access protected keys and data

Platform identities

Support for platform privacy

Signing and verifying digital signatures

Certifying the properties of keys and data

Auditing the usage of keys and data

With TPM 2.0., the TCG creates a library specification describing all the commands or
features that could be implemented and may be necessary in servers, laptops, or
embedded systems. Each platform can select the features needed and the level of
security or assurance required. This flexibility allows the newest TPMs to be applied to
many embedded applications.

Firmware TPM (fTPM) is implemented in protected software. The code runs on the main
CPU so that a separate chip is not required. While running like any other program, the
code is in a protected execution environment called a trusted execution environment
(TEE) which is separate from the rest of the programs running on the CPU. By doing this,
secrets (e.g., private keys perhaps needed by the TPM but should not be accessed by
others) can be kept in the TEE creating a more secure environment.

Info

fTPM provides similar functionality to a chip-based TPM, but does not
require extra hardware. It complies with the official TCG reference

NVIDIA BlueField DPU BSP v4.7.0 440

Characteristics of an fTPM:

Emulated TPM using an isolated hardware environment

Executes in an open-source trusted execution environment (OP-TEE)

fTPM trusted application (TA) is part of the OP-TEE binary. This allows early access
on bootup, runs only in secure DRAM.

fTPM is not a task waiting to be woken up. It only executes when TPM primitives are
forwarded to it from the user space. It is guaranteed shielded execution via the TEE
OS and, when invoked via the TEE Dispatcher, runs to completion.

The fTPM TA is the only TA NVIDIA® BlueField®-3 currently supports. Any TA loaded by
OP-TEE must be signed (signing done externally) and then authenticated by OP-TEE
before being allowed to load and execute.

implementation of the TPM 2.0 specification . The source code of this
implementation is located here.

Info

fTPM f ully supports TPM2 Tools and the TCG TPM2 Software Stack
(TSS).

Info

Currently, the only TA supported is fTPM.

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftrustedcomputinggroup.org%2Fwp-content%2Fuploads%2FPC-Client-Specific-Platform-TPM-Profile-for-TPM-2p0-v1p05p_r14_pub.pdf&data=05%7C01%7Camirn%40nvidia.com%7Cb10a1b42ef9c42e03c6408dbec4dc011%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638363590913828498%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=DZ%2B75rGawGJX8VYpXN069ELRRNZ4L6z2eXXHMCYhEZo%3D&reserved=0
https://github.com/microsoft/ms-tpm-20-ref
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftpm2-tools.readthedocs.io%2Fen%2Flatest%2Fman%2Ftpm2_create.1%2F&data=05%7C01%7Camirn%40nvidia.com%7Cb10a1b42ef9c42e03c6408dbec4dc011%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638363590913828498%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=cNQ5fkjqwCh%2BFs9UF5iL49x0rYapZ4i0se1AM65AfKY%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftpm2-software%2Ftpm2-tss&data=05%7C01%7Camirn%40nvidia.com%7Cb10a1b42ef9c42e03c6408dbec4dc011%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638363590913828498%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=TYLGKHmIok4Q74QPL8d7vWa%2FDaV6sb9Gmk0BzD2XeQM%3D&reserved=0

NVIDIA BlueField DPU BSP v4.7.0 441

A replay-protected memory block (RPMB) is provided as a means for a system to store
data to the specific memory area in an authenticated and replay-protected manner,
making it readable and writable only after a successful authentication read/write
accesses. The RPMB is a dedicated partition available on the eMMC, which makes it
possible to store and retrieve data with integrity and authenticity support. A signed
access to an RPMB is supported by first programming authentication key information to
the eMMC memory (shared secret). The RPMB authentication key is programmed into the
DPU at manufacturing time.

There is no eMMC controller driver in OP-TEE. All device operations have to go through
the normal world via the TEE-supplicant daemon, which relies on the Linux kernel's ioctl
interface to access the device. All writes to the RPMB are atomic, authenticated, and
encrypted. The RPMB partition stores data in an authenticated, replay-protected manner,
making it a perfect complement to fTPM for storing and protecting data.

Info

RPMB features a 4MB partition secure storage for BlueField-3.

NVIDIA BlueField DPU BSP v4.7.0 442

Enabling OP-TEE on BlueField-3

Enable OP-TEE in the UEFI menu:

1. ESC into the UEFI on DPU boot.

2. Navigate to Device Manager > System Configuration.

3. Check "Enable OP-TEE".

4. Save the change and reset/reboot.

5. Upon reboot OP-TEE is enabled.

Note

NVIDIA BlueField DPU BSP v4.7.0 443

Verifying BlueField-3 is Running OP-TEE

Users can see the OP-TEE version during BlueField-3 DPU boot:

The following indicators should all be present if fTPM over OP-TEE is enabled:

Check "dmesg" for the OP-TEE driver initializing

Verify that the following kernel modules are loaded (running):

OP-TEE is essentially dormant (does not have an OS scheduler) and
reacts to external inputs.

root@localhost ~]# dmesg | grep tee

[5.646578] optee: probing for conduit method.
[5.653282] optee: revision 3.10 (450b24ac)
[5.653991] optee: initialized driver

[root@localhost ~]# lsmod | grep tee

tpm_ftpm_tee 16384 0
optee 49152 1

NVIDIA BlueField DPU BSP v4.7.0 444

Verify that the proper devices are created/available (4 in total):

Verify that the required processes are running (3 in total):

QoS Configuration

tee 49152 3 optee,tpm_ftpm_tee

[root@localhost ~]# ls -l /dev/tee*

crw------- 1 root root 234, 0 Sep 8 18:24 /dev/tee0
crw------- 1 root root 234, 16 Sep 8 18:24 /dev/teepriv0

[root@localhost ~]# ls -l /dev/tpm*

crw-rw---- 1 tss root 10, 224 Sep 8 18:24 /dev/tpm0
crw-rw---- 1 tss tss 252, 65536 Sep 8 18:24 /dev/tpmrm0

[root@localhost ~]# ps axu | grep tee

root 707 0.0 0.0 76208 1372 ? Ssl 14:42 0:00 /usr/sbin/tee-
supplicant
root 715 0.0 0.0 0 0 ? I< 14:42 0:00 [optee_bus_scan]

[root@localhost ~]# ps axu | grep tpm

root 124 0.0 0.0 0 0 ? I< 18:24 0:00 [tpm_dev_wq]

Note

To learn more about port QoS configuration, refer to this community
post.

Warning

https://support.mellanox.com/s/article/mlnx-qos

NVIDIA BlueField DPU BSP v4.7.0 445

This section explains how to configure QoS group and settings using devlink located
under /opt/mellanox/iproute2/sbin/. It is applicable to host PF/VF and Arm side SFs. The
following uses VF as example.

The settings of a QoS group include creating/deleting a QoS group and modifying its
tx_max and tx_share values. The settings of VF QoS include modifying its tx_max and tx_share

values, assigning a VF to a QoS group, and unassigning a VF from a QoS group. This
section focuses on the configuration syntax.

Please refer to section "Limit and Bandwidth Share Per VF" in the MLNX_OFED User
Manual for detailed explanation on vPort QoS behaviors.

devlink port function rate add

devlink port function rate add <DEV>/<GROUP_NAME>
Adds a QoS group.

Syntax
Description

DEV/GROUP_NAME Specifies group name in string format

Example

This command adds a new QoS group named 12_group under device
pci/0000:03:00.0:

When working in Embedded Host mode, using mlnx_qos on both the
host and Arm will result with undefined behavior. Users must only
use mlnx_qos from the Arm. After changing the QoS settings from Arm,
users must restart the mlx5 driver on host.

Note

When configuring QoS using DCBX, the lldpad service from the DPU
side must be disabled if the configurations are not done using tools
other than lldpad.

devlink port function rate add pci/0000:03:00.0/12_group

NVIDIA BlueField DPU BSP v4.7.0 446

Notes

devlink port function rate del

devlink port function rate del <DEV>/<GROUP_NAME>
Deletes a QoS group.

Syntax
Description

DEV/GROUP_NAME Specifies group name in string format

Example

This command deletes QoS group 12_group from device
pci/0000:03:00.0:

Notes

devlink port function rate set tx_max tx_share

devlink port function rate set {<DEV>/<GROUP_NAME> | <DEV>/<PORT_INDEX>} tx_max
<TX_MAX> [tx_share <TX_SHARE>]
Sets tx_max and tx_share for QoS group or devlink port.

Syntax
Description

DEV/GROUP_NAME Specifies the group name to operate on

DEV/PORT_INDEX Specifies the devlink port to operate on

TX_MAX tx_max bandwidth in MB/s

TX_SHARE tx_share bandwidth in MB/s

Example This command sets tx_max to 2000MB/s and tx_share to 500MB/s for the
12_group QoS group:

This command sets tx_max to 2000MB/s and tx_share to 500MB/s for the VF
represented by port index 196609:

This command displays a mapping between VF devlink ports and netdev
names:

devlink port function rate del pci/0000:03:00.0/12_group

devlink port function rate set pci/0000:03:00.0/12_group tx_max
2000MBps tx_share 500MBps

devlink port function rate set pci/0000:03:00.0/196609 tx_max
200MBps tx_share 50MBps

NVIDIA BlueField DPU BSP v4.7.0 447

In the output of this command, VFs are indicated by flavour pcivf.

Notes

devlink port function rate set parent

devlink port function rate set <DEV>/<PORT_INDEX> {parent
<PARENT_GROUP_NAME>}
Assigns devlink port to a QoS group.

Syntax
Description

DEV/PORT_INDEX Specifies the devlink port to operate on

PARENT_GROUP_NAME parent group name in string format

Example

This command assigns this function to the QoS group 12_group:

Notes

devlink port function rate set noparent

devlink port function rate set <DEV>/<PORT_INDEX> noparent
Ungroups a devlink port.

Syntax
Description

DEV/PORT_INDEX Specifies the devlink port to operate on

Example

This command ungroups this function:

Notes

devlink port function rate show

devlink port function rate show [<DEV>/<GROUP_NAME> | <DEV>/<PORT_INDEX>]
Displays QoS information QoS group or devlink port.

$ devlink port

devlink port function rate set pci/0000:03:00.0/196609 parent
12_group

devlink port function rate set pci/0000:03:00.0/196609
noparent

NVIDIA BlueField DPU BSP v4.7.0 448

Syntax
Description

DEV/GROUP_NAME Specifies the group name to display

DEV/PORT_INDEX Specifies the devlink port to display

Example

This command displays the QoS info of all QoS groups and devlink ports
on the system:

This command displays QoS info of 12_group:

Notes
If a QoS group name or devlink port are not specified, all QoS groups
and devlink ports are displayed.

Virtio-net Emulated Devices
For information on virtio-net emulation, please refer to NVIDIA BlueField Virtio-net
documentation.

Shared RQ Mode
When creating 1 send queue (SQ) and 1 receive queue (RQ), each representor consumes
~3MB memory per single channel. Scaling this to the desired 1024 representors (SFs
and/or VFs) would require ~3GB worth of memory for single channel. A major chunk of
the 3MB is contributed by RQ allocation (receive buffers and SKBs). Therefore, to make
efficient use of memory, shared RQ mode is implemented so PF/VF/SF representors
share receive queues owned by the uplink representor.

The feature is enabled by default. To disable it:

1. Edit the field ALLOW_SHARED_RQ in /etc/mellanox/mlnx-bf.conf as follows:

devlink port function rate show
pci/0000:03:00.0/12_group type node tx_max 2000MBps tx_share
500MBps
pci/0000:03:00.0/196609 type leaf tx_max 200MBps tx_share
50MBps parent 12_group

devlink port function rate show pci/0000:03:00.0/12_group
pci/0000:03:00.0/12_group type node tx_max 2000MBps tx_share
500MBps

https://docs.nvidia.com/networking/display/bluefieldvirtionetv190

NVIDIA BlueField DPU BSP v4.7.0 449

2. Restart the driver. Run:

To connect from the host to BlueField in shared RQ mode, please refer to section
Verifying Connection from Host to BlueField.

The following behavior is observed in shared RQ mode:

It is expected to see a 0 in the rx_bytes and rx_packets and valid vport_rx_packets and
vport_rx_bytes after running traffic. Example output:

Ethtool usage – in this mode, it is not possible to change/set the ring or coalesce
parameters for the RX side using ethtool. Changing channels also only affects the TX
side.

ALLOW_SHARED_RQ="no"

/etc/init.d/openibd restart

Note

PF/VF representor to PF/VF communication on the host is not
possible.

ethtool -S pf0hpf
NIC statistics:
rx_packets: 0
rx_bytes: 0
tx_packets: 66946
tx_bytes: 8786869
vport_rx_packets: 546093
vport_rx_bytes: 321100036
vport_tx_packets: 549449
vport_tx_bytes: 321679548

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtual+Switch+on+DPU#src-2821766711_VirtualSwitchonDPU-VerifyingConnectionfromHosttoBlueField

NVIDIA BlueField DPU BSP v4.7.0 450

Troubleshooting and How-
Tos

NVIDIA BlueField Reset and Reboot Procedures

RShim Troubleshooting and How-Tos

Connectivity Troubleshooting

Performance Troubleshooting

PCIe Troubleshooting and How-Tos

SR-IOV Troubleshooting

eSwitch Troubleshooting

Isolated Mode Troubleshooting and How-Tos

General Troubleshooting

Installation Troubleshooting and How-Tos

NVIDIA BlueField Reset and Reboot
Procedures

BlueField System Reboot

This section describes the necessary operations to load new NIC firmware, following
NVIDIA® BlueField® NIC firmware update. This procedure deprecates the need for full
server power cycle.

The following steps are executed in the BlueField OS:

https://docs.nvidia.com//networking/display/bluefielddpuosv470/NVIDIA+BlueField+Reset+and+Reboot+Procedures
https://docs.nvidia.com//networking/display/bluefielddpuosv470/RShim+Troubleshooting+and+How-Tos
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Connectivity+Troubleshooting
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Performance+Troubleshooting
https://docs.nvidia.com//networking/display/bluefielddpuosv470/PCIe+Troubleshooting+and+How-Tos
https://docs.nvidia.com//networking/display/bluefielddpuosv470/SR-IOV+Troubleshooting
https://docs.nvidia.com//networking/display/bluefielddpuosv470/eSwitch+Troubleshooting
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Isolated+Mode+Troubleshooting+and+How-Tos
https://docs.nvidia.com//networking/display/bluefielddpuosv470/General+Troubleshooting
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos

NVIDIA BlueField DPU BSP v4.7.0 451

1. Issue a query command to ascertain whether BlueField system reboot is supported
by your environment:

If the output includes the following lines, proceed to step 2:

2. Issue a BlueField system reboot:

BlueField System-level Reset

This section describes the necessary system-level reset following firmware configuration
changes.

The two methods for performing BlueField system-level reset are described in the
following subsection. Each method is designed to support different host platforms, in
which host OS/CPUs and PCIe slots may have uniform or separate power control.

In each approach, the procedure can be performed through various methods, according
to resource availability and support in the user's environment.

mlxfwreset -d 03:00.0 q

3: Driver restart and PCI reset -Supported (default)
...
1: Driver is the owner -Supported (default)

Note

If it says Not Supported instead, then proceed to the instructions
under section "BlueField System-level Reset".

mlxfwreset -d 03:00.0 -y -l 3 --sync 1 r

NVIDIA BlueField DPU BSP v4.7.0 452

System-level Reset for BlueField in DPU Mode with
Minimal Host OS Downtime

The following is the high-level flow of the procedure:

1. Graceful shutdown of BlueField Arm cores.

2. Query BlueField state to affirm shutdown reached.

3. Warm reboot the server.

Step by step process:

1. Graceful shutdown of BlueField Arm cores.

Options:

From the BlueField OS:

Or:

Info

In systems with multiple BlueField networking platforms, repeat
steps 1 and 2 for all devices before proceeding.

Info

This operation is expected to finish within 15 seconds.

shutdown -h now

NVIDIA BlueField DPU BSP v4.7.0 453

From the host OS:

Using the BlueField BMC:

Or using Redfish (BlueField-3 and above):

2. Query BlueField state. Options:

From the host OS:

mlxfwreset -d /dev/mst/mt*pciconf0 -l 1 -t 4 --sync 0 r

Info

Not relevant when the BlueField is operating in Zero-Trust
Mode.

mlxfwreset -d <mst-device> -l 1 -t 4 r

ipmitool -C 17 -I lanplus -H <bmc_ip> -U root -P <password> power soft

curl -k -u root:<password> -H "Content-Type: application/json" -X POST
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Actions/ComputerSystem.Reset -d

'{"ResetType": "GracefulShutdown"}'

Info

Not relevant when the BlueField is operating in Zero-Trust
Mode.

NVIDIA BlueField DPU BSP v4.7.0 454

Expected output:

Utilizing the BlueField BMC:

Expected output: 06.

3. Warm reboot the server:

From the host OS:

Or:

echo DISPLAY_LEVEL 2 > /dev/rshim0/misc
cat /dev/rshim0/misc

INFO[BL31]: System Off

ipmitool -C 17 -I lanplus -H <bmc_ip> -U root -P <password> raw 0x32 0xA3

mlxfwreset -d <mst-device> -l 4 r

Note

If multiple DPUs are present in the host, this command
must run only once. In this case, the MST device can be of
any of the DPUs for which the reset is necessary and
participated in step 1.

reboot

Note

NVIDIA BlueField DPU BSP v4.7.0 455

System-level Reset for BlueField in DPU Mode where
Host is Down Throughout the Process

This procedure is only relevant to server platforms that have separate power control for
PCIe slot and CPUs in which the BlueField is provided power while host OS/CPUs may be
in shutdown or similar standby state.

The following is the high-level flow of the procedure:

1. Graceful shutdown of host OS or similar CPU standby.

2. Graceful shutdown of BlueField Arm cores.

3. Query BlueField state to affirm shutdown reached.

4. Full BlueField Reset

5. Query BlueField state to affirm operational state reached

6. Power on the server.

Step by step process:

1. Graceful shutdown of host OS by any means preferable.

For external hosts which do not toggle PERST# in their
standard reboot command, use the mlxfwreset option.

Info

In systems with multiple BlueField networking platforms, repeat
steps 1 through 5 for all devices before proceeding.

NVIDIA BlueField DPU BSP v4.7.0 456

2. Graceful shutdown of BlueField Arm cores.

From the BlueField OS:

Utilizing the BlueField BMC:

Using IPMI:

Using Redfish (for BlueField-3 and above):

3. Query the BlueField's state utilizing the BlueField BMC:

Expected output: 06.

4. Perform BlueField hard reset utilizing the BlueField BMC:

Info

This step normally takes up to 15 seconds to complete.

shutdown -h now

ipmitool -C 17 -I lanplus -H <bmc_ip> -U root -P <password> power
soft

curl -k -u root:<password> -H "Content-Type: application/json" -X POST
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Actions/ComputerSystem.Reset -d

'{"ResetType": "GracefulShutdown"}'

ipmitool -C 17 -I lanplus -H <bmc_ip> -U root -P <password> raw 0x32 0xA3

Info

NVIDIA BlueField DPU BSP v4.7.0 457

Using IPMI:

Using Redfish (for BlueField-3 and above):

5. Query BlueField operational state u tilizing the BlueField BMC :

Expected output: 05.

6. Power on/boot up the host OS.

System-level Reset for BlueField in NIC Mode

Perform warm reboot of the host OS:

This step takes up to 2 minutes to complete .

ipmitool -C 17 -I lanplus -H <bmc_ip> -U root -P <password> power cycle

curl -k -u root:<password> -H "Content-Type: application/json" -X POST
https://<bmc_ip>/redfish/v1/Systems/Bluefield/Actions/ComputerSystem.Reset -d

'{"ResetType" : "PowerCycle"}'

Info

At this point, the BlueField is expected to b e operational .

ipmitool -C 17 -I lanplus -H <bmc_ip> -U root -P <password> raw 0x32 0xA3

NVIDIA BlueField DPU BSP v4.7.0 458

Or:

RShim Troubleshooting and How-Tos
Another backend already attached

Several generations of BlueField DPUs are equipped with a USB interface in which RShim
can be routed, via USB cable, to an external host running Linux and the RShim driver.

In this case, typically following a system reboot, the RShim over USB prevails and the DPU
host reports RShim status as "another backend already attached". This is correct behavior, since
there can only be one RShim backend active at any given time. However, this means that
the DPU host does not own RShim access.

To reclaim RShim ownership safely:

1. Stop the RShim driver on the remote Linux. Run:

mlxfwreset -d <mst-device> -l 4 r

reboot

Note

For external hosts which do not toggle PERST# in their standard
reboot command, use the mlxfwreset option.

systemctl stop rshim
systemctl disable rshim

NVIDIA BlueField DPU BSP v4.7.0 459

2. Restart RShim on the DPU host. Run:

The "another backend already attached" scenario can also be attributed to the RShim backend
being owned by the BMC in DPUs with integrated BMC. This is elaborated on further
down on this page.

RShim driver not loading

Verify whether your DPU features an integrated BMC or not. Run:

Example output for DPU with integrated BMC:

If your DPU has an integrated BMC, refer to RShim driver not loading on host with
integrated BMC.

If your DPU does not have an integrated BMC, refer to RShim driver not loading on host
on DPU without integrated BMC.

RShim driver not loading on DPU with integrated BMC

RShim driver not loading on host

1. Access the BMC via the RJ45 management port of the DPU.

2. Delete RShim on the BMC:

systemctl enable rshim
systemctl start rshim

sudo sudo lspci -s $(sudo lspci -d 15b3: | head -1 | awk '{print $1}') -vvv | grep
"Product Name"

Product Name: BlueField-2 DPU 25GbE Dual-Port SFP56, integrated BMC, Crypto
and Secure Boot Enabled, 16GB on-board DDR, 1GbE OOB management, Tall
Bracket, FHHL

NVIDIA BlueField DPU BSP v4.7.0 460

3. Enable RShim on the host:

4. Restart RShim service. Run:

If RShim service does not launch automatically, run:

This command is expected to display "active (running)".

5. Display the current setting. Run:

This output indicates that the RShim service is ready to use.

RShim driver not loading on BMC

1. Verify that the RShim service is not running on host. Run:

If the output is active, then it may be presumed that the host has ownership of the
RShim.

systemctl stop rshim
systemctl disable rshim

systemctl enable rshim
systemctl start rshim

sudo systemctl restart rshim

sudo systemctl status rshim

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME pcie-04:00.2 (ro)

systemctl status rshim

NVIDIA BlueField DPU BSP v4.7.0 461

2. Delete RShim on the host. Run:

3. Enable RShim on the BMC. Run:

4. Display the current setting. Run:

This output indicates that the RShim service is ready to use.

RShim driver not loading on host on DPU without
integrated BMC

1. Download the suitable DEB/RPM for RShim (management interface for DPU from
the host) driver.

2. Reinstall RShim package on the host.

For Ubuntu/Debian, run:

For RHEL/CentOS, run:

systemctl stop rshim
systemctl disable rshim

systemctl enable rshim
systemctl start rshim

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME usb-1.0

sudo dpkg --force-all -i rshim-<version>.deb

sudo rpm -Uhv rshim-<version>.rpm

NVIDIA BlueField DPU BSP v4.7.0 462

3. Restart RShim service. Run:

If RShim service does not launch automatically, run:

This command is expected to display "active (running)".

4. Display the current setting. Run:

This output indicates that the RShim service is ready to use.

Change ownership of RShim from NIC BMC to host

1. Verify that your card has BMC. Run the following on the host:

The product name is supposed to show "integrated BMC" .

2. Access the BMC via the RJ45 management port of the DPU.

3. Delete RShim on the BMC:

sudo systemctl restart rshim

sudo systemctl status rshim

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME pcie-04:00.2 (ro)

sudo sudo lspci -s $(sudo lspci -d 15b3: | head -1 | awk '{print $1}') -vvv |grep
"Product Name"

Product Name: BlueField-2 DPU 25GbE Dual-Port SFP56, integrated BMC,
Crypto and Secure Boot Enabled, 16GB on-board DDR, 1GbE OOB
management, Tall Bracket, FHHL

systemctl stop rshim

NVIDIA BlueField DPU BSP v4.7.0 463

4. Enable RShim on the host:

5. Restart RShim service. Run:

If RShim service does not launch automatically, run:

This command is expected to display "active (running)".

6. Display the current setting. Run:

This output indicates that the RShim service is ready to use.

How to support multiple DPUs on the host

For more information, refer to section "RShim Multiple Board Support".

BFB installation monitoring

The BFB installation flow can be traced using various interfaces:

From the host:

RShim console (/dev/rshim0/console)

systemctl disable rshim

systemctl enable rshim
systemctl start rshim

sudo systemctl restart rshim

sudo systemctl status rshim

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME pcie-04:00.2 (ro)

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Host-side+Interface+Configuration#src-2821766582_HostsideInterfaceConfiguration-RShimMultipleBoardSupport

NVIDIA BlueField DPU BSP v4.7.0 464

RShim log buffer (/dev/rshim0/misc); also included in bfb-install's output

UART console (/dev/ttyUSB0)

From the BMC console:

SSH to the BMC and run obmc-console-client

From the DPU:

/root/<OS>.installation.log available on the DPU OS after installation

Connectivity Troubleshooting
Connection (ssh, screen console) to the BlueField is lost

The UART cable in the Accessories Kit (OPN: MBF20-DKIT) can be used to connect to the
DPU console and identify the stage at which BlueField is hanging.

Follow this procedure:

1. Connect the UART cable to a USB socket, and find it in your USB devices.

Info

Additional information about BMC interfaces is available in
BMC software documentation

sudo lsusb
Bus 002 Device 003: ID 0403:6001 Future Technology Devices International,
Ltd FT232 Serial (UART) IC

Note

https://docs.nvidia.com/networking/display/bfbmc/

NVIDIA BlueField DPU BSP v4.7.0 465

2. Install the minicom application.

For CentOS/RHEL:

For Ubuntu/Debian:

3. Open the minicom application.

4. Go to "Serial port setup"

5. Enter "F" to change "Hardware Flow control" to NO

6. Enter "A" and change to /dev/ttyUSB0 and press Enter

7. Press ESC.

8. Type on "Save setup as dfl"

For more information on the UART connectivity, please refer to
the DPU's hardware user guide under Supported Interfaces >
Interfaces Detailed Description > NC-SI Management Interface.

Info

It is good practice to connect the other end of the NC-SI cable to
a different host than the one on which the BlueField DPU is
installed.

sudo yum install minicom -y

sudo apt-get install minicom

sudo minicom -s -c on

https://docs.mellanox.com/category/bluefieldsnic

NVIDIA BlueField DPU BSP v4.7.0 466

9. Exit minicom by pressing Ctrl + a + z.

Driver not loading in host server

What this looks like in dmsg:

+---+
| A - Serial Device : /dev/ttyUSB0 |
| |
| C - Callin Program : |
| D - Callout Program : |
| E - Bps/Par/Bits : 115200 8N1 |
| F - Hardware Flow Control : No |
| G - Software Flow Control : No |
| |
| Change which setting? |
+---+

[275604.216789] mlx5_core 0000:af:00.1: 63.008 Gb/s available PCIe bandwidth,
limited by 8 GT/s x8 link at 0000:ae:00.0 (capable of 126.024 Gb/s with 16 GT/s x8
link)
[275624.187596] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW
initialization, timeout abort in 100s
[275644.152994] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW
initialization, timeout abort in 79s
[275664.118404] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW
initialization, timeout abort in 59s
[275684.083806] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW
initialization, timeout abort in 39s
[275704.049211] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW
initialization, timeout abort in 19s
[275723.954752] mlx5_core 0000:af:00.1: mlx5_function_setup:1237:(pid 943):
Firmware over 120000 MS in pre-initializing state, aborting
[275723.968261] mlx5_core 0000:af:00.1: init_one:1813:(pid 943): mlx5_load_one
failed with error code -16

NVIDIA BlueField DPU BSP v4.7.0 467

The driver on the host server is dependent on the Arm side. If the driver on Arm is up,
then the driver on the host server will also be up.

Please verify that:

The driver is loaded in the BlueField (Arm)

The Arm is booted into OS

The Arm is not in UEFI Boot Menu

The Arm is not hanged

Then:

1. Perform a graceful shutdown and a power cycle on the host server.

2. If the problem persists, reset nvconfig (sudo mlxconfig -d /dev/mst/<device> -y reset) and
perform a BlueField system reboot.

3. If this problem still persists, please make sure to install the latest bfb image and
then restart the driver in host server. Please refer to "Upgrading NVIDIA BlueField

[275723.978578] mlx5_core: probe of 0000:af:00.1 failed with error -16

Note

If your BlueField is VPI capable, please be aware that this
configuration will reset the link type on the network ports to IB.
To change the network port's link type to Ethernet, run:

This configuration change requires performing a BlueField
system reboot.

sudo mlxconfig -d <device> s LINK_TYPE_P1=2
LINK_TYPE_P2=2

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-Howtoperformgracefulshutdown
https://docs.nvidia.com//networking/display/bluefielddpuosv470/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-2821766774_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystemReboot
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installing+Repo+Package+on+Host+Side
file:///networking/display/bluefielddpuosv470/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-2821766774_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystemReboot
file:///networking/display/bluefielddpuosv470/NVIDIA+BlueField+Reset+and+Reboot+Procedures#src-2821766774_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystemReboot

NVIDIA BlueField DPU BSP v4.7.0 468

DPU Software" for more information.

No connectivity between network interfaces of source
host to destination device

Verify that the bridge is configured properly on the Arm side.

The following is an example for default configuration:

If no bridge configuration exists, please refer to "Virtual Switch on BlueField".

Uplink in Arm down while uplink in host server up

$ sudo ovs-vsctl show
f6740bfb-0312-4cd8-88c0-a9680430924f
Bridge ovsbr1
Port pf0sf0
Interface pf0sf0
Port p0
Interface p0
Port pf0hpf
Interface pf0hpf
Port ovsbr1
Interface ovsbr1
type: internal
Bridge ovsbr2
Port p1
Interface p1
Port pf1sf0
Interface pf1sf0
Port pf1hpf
Interface pf1hpf
Port ovsbr2
Interface ovsbr2
type: internal
ovs_version: "2.14.1"

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installing+Repo+Package+on+Host+Side
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtual+Switch+on+DPU

NVIDIA BlueField DPU BSP v4.7.0 469

Please check that the cables are connected properly into the network ports of the DPU
and the peer device.

Performance Troubleshooting
Degradation in performance

Degradation in performance indicates that openvswitch may not be offloaded.

Verify offload state. Run:

If hw-offload = true – Fast Pass is configured (desired result)

If hw-offload = false – Slow Pass is configured

If hw-offload = false :

For RHEL/CentOS, run:

Ubuntu/Debian:

PCIe Troubleshooting and How-Tos
Insufficient power on the PCIe slot error

ovs-vsctl get Open_vSwitch . other_config:hw-offload

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true;
systemctl restart openvswitch;
systemctl enable openvswitch;

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true;
/etc/init.d/openvswitch-switch restart

NVIDIA BlueField DPU BSP v4.7.0 470

If the error "insufficient power on the PCIe slot" is printed in dmsg, please refer to the
Specifications section of your hardware user guide and make sure that you are providing
your DPU the correct amount of power.

To verify how much power is supported on your host's PCIe slots, run the command lspci -

vvv | grep PowerLimit. For example:

HowTo update PCIe device description

lspci may not present the full description for the NVIDIA PCIe devices connected to your
host. For example:

Please run the following command:

Now you should be able to see the full description for those devices. For example:

lspci -vvv | grep PowerLimit
Slot #6, PowerLimit 75.000W; Interlock- NoCompl-
Slot #1, PowerLimit 75.000W; Interlock- NoCompl-
Slot #4, PowerLimit 75.000W; Interlock- NoCompl-

Note

Be aware that this command is not supported by all host
vendors/types.

lspci | grep -i Mellanox
a3:00.0 Infiniband controller: Mellanox Technologies Device a2d6 (rev 01)
a3:00.1 Infiniband controller: Mellanox Technologies Device a2d6 (rev 01)
a3:00.2 DMA controller: Mellanox Technologies Device c2d3 (rev 01)

update-pciids

https://docs.mellanox.com/category/bluefieldsnic

NVIDIA BlueField DPU BSP v4.7.0 471

HowTo handle two BlueField DPU devices in the same
server

Please refer to section "Multi-board Management Example".

SR-IOV Troubleshooting
Unable to create VFs

1. Please make sure that SR-IOV is enabled in BIOS.

2. Verify SRIOV_EN is true and NUM_OF_VFS bigger than 1. Run:

3. Verify that GRUB_CMDLINE_LINUX="iommu=pt intel_iommu=on pci=assign-busses".

No traffic between VF to external host

1. Please verify creation of representors for VFs inside the Bluefield DPU. Run:

lspci | grep -i Mellanox
a3:00.0 Infiniband controller: Mellanox Technologies MT42822 BlueField-2
integrated ConnectX-6 Dx network controller (rev 01)
a3:00.1 Infiniband controller: Mellanox Technologies MT42822 BlueField-2
integrated ConnectX-6 Dx network controller (rev 01)
a3:00.2 DMA controller: Mellanox Technologies MT42822 BlueField-2 SoC
Management Interface (rev 01)

mlxconfig -d /dev/mst/mt41686_pciconf0 -e q |grep -i
"SRIOV_EN\|num_of_vf"
Configurations: Default Current Next Boot
* NUM_OF_VFS 16 16 16
* SRIOV_EN True(1) True(1) True(1)

/opt/mellanox/iproute2/sbin/rdma link |grep -i up

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Host-side+Interface+Configuration#src-2821766582_HostsideInterfaceConfiguration-Multi-boardManagementExample

NVIDIA BlueField DPU BSP v4.7.0 472

2. Make sure the representors of the VFs are added to the bridge. Run:

3. Verify VF configuration. Run:

...
link mlx5_0/2 state ACTIVE physical_state LINK_UP netdev pf0vf0
...

ovs-vsctl add-port <bridage_name> pf0vf0

$ ovs-vsctl show
bb993992-7930-4dd2-bc14-73514854b024
Bridge ovsbr1
Port pf0vf0
Interface pf0vf0
type: internal
Port pf0hpf
Interface pf0hpf
Port pf0sf0
Interface pf0sf0
Port p0
Interface p0
Bridge ovsbr2
Port ovsbr2
Interface ovsbr2
type: internal
Port pf1sf0
Interface pf1sf0
Port p1
Interface p1
Port pf1hpf
Interface pf1hpf
ovs_version: "2.14.1"

NVIDIA BlueField DPU BSP v4.7.0 473

eSwitch Troubleshooting
Unable to configure legacy mode

To set devlink to "Legacy" mode in BlueField, run:

Please verify that:

No virtual functions are open. To verify if VFs are configured, run:

If any VFs are configured, destroy them by running:

If any SFs are configured, delete them by running:

devlink dev eswitch set pci/0000:03:00.0 mode legacy
devlink dev eswitch set pci/0000:03:00.1 mode legacy

/opt/mellanox/iproute2/sbin/rdma link | grep -i up
link mlx5_0/2 state ACTIVE physical_state LINK_UP netdev pf0vf0
link mlx5_1/2 state ACTIVE physical_state LINK_UP netdev pf1vf0

echo 0 > /sys/class/infiniband/mlx5_0/device/mlx5_num_vfs
echo 0 > /sys/class/infiniband/mlx5_1/device/mlx5_num_vfs

/sbin/mlnx-sf -a delete --sfindex <SF Index>

Note

You may retrieve the <SF Index> of the currently installed SFs by
running:

mlnx-sf -a show

NVIDIA BlueField DPU BSP v4.7.0 474

If the error "Error: mlx5_core: Can't change mode when flows are configured" is encountered while
trying to configure legacy mode, please make sure that

1. Any configured SFs are deleted (see above for commands).

2. Shut down the links of all interfaces, delete any ip xfrm rules, delete any configured
OVS flows, and stop openvswitch service. Run:

Pay attention to the SF Index values. For example:

SF Index: pci/0000:03:00.0/229408
Parent PCI dev: 0000:03:00.0
Representor netdev: en3f0pf0sf0
Function HWADDR: 02:61:f6:21:32:8c
Auxiliary device: mlx5_core.sf.2
netdev: enp3s0f0s0
RDMA dev: mlx5_2

SF Index: pci/0000:03:00.1/294944
Parent PCI dev: 0000:03:00.1
Representor netdev: en3f1pf1sf0
Function HWADDR: 02:30:13:6a:2d:2c
Auxiliary device: mlx5_core.sf.3
netdev: enp3s0f1s0
RDMA dev: mlx5_3

/sbin/mlnx-sf -a delete --sfindex pci/0000:03:00.0/229408
/sbin/mlnx-sf -a delete --sfindex pci/0000:03:00.1/294944

ip link set dev p0 down
ip link set dev p1 down
ip link set dev pf0hpf down
ip link set dev pf1hpf down
ip link set dev vxlan_sys_4789 down

NVIDIA BlueField DPU BSP v4.7.0 475

Arm appears as two interfaces

What this looks like:

Check if you are working in legacy mode.

If the following line is printed, this means that you are working in legacy mode:

Please configure the DPU to work in switchdev mode. Run:

ip x s f ;
ip x p f ;

tc filter del dev p0 ingress
tc filter del dev p1 ingress
tc qdisc show dev p0
tc qdisc show dev p1
tc qdisc del dev p0 ingress
tc qdisc del dev p1 ingress
tc qdisc show dev p0
tc qdisc show dev p1

systemctl stop openvswitch-switch

sudo /opt/mellanox/iproute2/sbin/rdma link
link mlx5_0/1 state ACTIVE physical_state LINK_UP netdev p0
link mlx5_1/1 state ACTIVE physical_state LINK_UP netdev p1

devlink dev eswitch show pci/0000:03:00.<0|1>

pci/0000:03:00.<0|1>: mode legacy inline-mode none encap enable

devlink dev eswitch set pci/0000:03:00.<0|1> mode switchdev

NVIDIA BlueField DPU BSP v4.7.0 476

Check if you are working in separated mode:

Please configure the DPU to work in embedded mode. Run:

Isolated Mode Troubleshooting and
How-Tos

Unable to burn FW from host server

Please verify that you are not in running in isolated mode. Run:

By default, BlueField operates in privileged mode. Please refer to "Modes of Operation"
for more information.

General Troubleshooting
Server unable to find the DPU

Ensure that the DPU is placed correctly

Make sure the DPU slot and the DPU are compatible

mlxconfig -d /dev/mst/mt41686_pciconf0 q | grep -i cpu
* INTERNAL_CPU_MODEL SEPERATED_HOST(0)

devlink dev eswitch set pci/0000:03:00.<0|1> mode switchdev

$ sudo mlxprivhost -d /dev/mst/mt41686_pciconf0 q
Current device configurations:

level : PRIVILEGED
...

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation

NVIDIA BlueField DPU BSP v4.7.0 477

Install the DPU in a different PCI Express slot

Use the drivers that came with the DPU or download the latest

Make sure your motherboard has the latest BIOS

Perform a graceful shutdown then power cycle the server

DPU no longer works

Reseat the DPU in its slot or a different slot, if necessary

Try using another cable

Reinstall the drivers for the network driver files may be damaged or deleted

Perform a graceful shutdown then power cycle the server

DPU stopped working after installing another BFB

Try removing and reinstalling all DPUs

Check that cables are connected properly

Make sure your motherboard has the latest BIOS

Link indicator light is off

Try another port on the switch

Make sure the cable is securely attached

Check you are using the proper cables that do not exceed the recommended
lengths

Verify that your switch and DPU port are compatible

Link light is on but no communication is established

Check that the latest driver is loaded

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-Howtoperformgracefulshutdown
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-Howtoperformgracefulshutdown

NVIDIA BlueField DPU BSP v4.7.0 478

Check that both the DPU and its link are set to the same speed and duplex settings

Installation Troubleshooting and
How-Tos
BlueField target is stuck inside UEFI menu

Upgrade to the latest stable boot partition images, see "How to upgrade the boot
partition (ATF & UEFI) without re-installation".

BFB does not recognize the BlueField board type

If the .bfb file cannot recognize the BlueField board type, it reverts to low core operation.
The following message will be printed on your screen:

Please contact NVIDIA Support if this occurs.

Unable to load BL2, BL2R, or PSC image

The following errors appear in console if images are corrupted or not signed properly:

Device Error

BlueField ERROR: Failed to load BL2 firmware

BlueField-2 ERROR: Failed to load BL2R firmware

BlueField-3 Failed to load PSC-BL1 or PSC VERIFY_BCT timeout

CentOS fails into "dracut" mode during installation

This is most likely configuration related.

System type can't be determined
Booting as a minimal system

NVIDIA BlueField DPU BSP v4.7.0 479

If installing through the RShim interface, check whether /var/pxe/centos7 is
mounted or not. If not, either manually mount it or re-run the setup.sh script.

Check the Linux boot message to see whether eMMC is found or not. If not, the
BlueField driver patch is missing. For local installation via RShim, run the setup.sh
script with the absolute path and check if there are any errors. For a corporate PXE
server, make sure the BlueField and ConnectX driver disk are patched into the initrd
image.

How to find the software versions of the running
system

Run the following:

Also, the version information is printed to the console.

For ATF, a version string is printed as the system boots.

For UEFI, a version string is printed as the system boots.

/opt/mellanox/scripts/bfvcheck:
root@bluefield:/usr/bin/bfvcheck# ./bfvcheck
Beginning version check...
-RECOMMENDED VERSIONS-
ATF: v1.5(release):BL2.0-1-gf9f7cdd
UEFI: 2.0-6004a6b
FW: 18.25.1010
-INSTALLED VERSIONS-
ATF: v1.5(release):BL2.0-1-gf9f7cdd
UEFI: 2.0-6004a6b
FW: 18.25.1010
Version checked

"NOTICE: BL2: v1.3(release):v1.3-554-ga622cde"

"UEFI firmware (version 0.99-18d57e3 built at 00:55:30 on Apr 13 2018)"

NVIDIA BlueField DPU BSP v4.7.0 480

For Yocto, run:

How to upgrade the host RShim driver

See the readme at <BF_INST_DIR>/src/drivers/rshim/README.

How to upgrade the boot partition (ATF & UEFI) without
re-installation

1. Boot the target through the RShim interface from a host machine:

2. Log into the BlueField target:

How to upgrade ConnectX firmware from Arm side

The mst, mlxburn, and flint tools can be used to update firmware.

For Ubuntu, CentOS and Debian, run the following command from the Arm side:

How to configure ConnectX firmware

Configuring ConnectX firmware can be done using the mlxconfig tool.

It is possible to configure privileges of both the internal (Arm) and the external host (for
DPUs) from a privileged host. According to the configured privilege, a host may or may

$ cat /etc/bluefield_version
2.0.0.10817

$ cat <BF_INST_DIR>/sample/install.bfb > /dev/rshim<N>/boot

$ /opt/mlnx/scripts/bfrec

sudo /opt/mellanox/mlnx-fw-updater/mlnx_fw_updater.pl

NVIDIA BlueField DPU BSP v4.7.0 481

not perform certain operations related to the NIC (e.g. determine if a certain host is
allowed to read port counters).

For more information and examples please refer to the MFT User Manual which can be
found at the following link.

How to use the UEFI boot menu

Press the "Esc" key when prompted after booting (before the countdown timer runs out)
to enter the UEFI boot menu and use the arrows to select the menu option.

It could take 1-2 minutes to enter the Boot Manager depending on how many devices are
installed or whether the EXPROM is programmed or not.

Once in the boot manager:

"EFI Network xxx" entries with device path "PciRoot..." are ConnectX interface

"EFI Network xxx" entries with device path "MAC(..." are for the RShim interface and
the BlueField OOB Ethernet interface

Select the interface and press ENTER will start PXE boot.

The following are several useful commands under UEFI shell:

How to Use the Kernel Debugger (KGDB)

The default Yocto kernel has CONFIG_KGDB and CONFIG_KGDB_SERIAL_CONSOLE enabled. This
allows the Linux kernel on BlueField to be debugged over the serial port. A single serial

Shell> ls FS0: # display file
Shell> ls FS0:\EFI # display file
Shell> cls # clear screen
Shell> ifconfig -l # show interfaces
Shell> ifconfig -s eth0 dhcp # request DHCP
Shell> ifconfig -l eth0 # show one interface
Shell> tftp 192.168.100.1 grub.cfg FS0:\grub.cfg # tftp download a file
Shell> bcfg boot dump # dump boot variables
Shell> bcfg boot add 0 FS0:\EFI\centos\shim.efi "CentOS" # create an entry

https://www.mellanox.com/page/management_tools

NVIDIA BlueField DPU BSP v4.7.0 482

port cannot be used both as a console and by KGDB at the same time. It is recommended
to use the RShim for console access (/dev/rshim0/console) and the UART port (/dev/ttyAMA0 or

/dev/ttyAMA1) for KGDB. Kernel GDB over console (KGDBOC) does not work over the RShim
console. If the RShim console is not available, there are open-source packages such as
KGDB demux and agent-proxy which allow a single serial port to be shared.

There are two ways to configure KGDBOC. If the OS is already booted, then write the
name of the serial device to the KGDBOC module parameter. For example:

To attach GDB to the kernel, it must be stopped first. One way to do that is to send a "g"
to /proc/sysrq-trigger.

To debug incidents that occur at boot time, kernel boot parameters must be configured.
Add "kgdboc=ttyAMA1,115200 kgdwait" to the boot arguments to use UART1 for debugging and
force it to wait for GDB to attach before booting.

Once the KGDBOC module is configured and the kernel stopped, run the Arm64 GDB on
the host machine connected to the serial port, then set the remote target to the serial
device on the host side.

<BF_INST_DIR> is the directory where the BlueField software is installed. It is assumed that
the SDK has been unpacked in the same directory.

$ echo ttyAMA1 > /sys/module/kgdboc/parameters/kgdboc

$ echo g > /proc/sysrq-trigger

<BF_INST_DIR>/sdk/sysroots/x86_64-pokysdk-linux/usr/bin/aarch64-poky-
linux/aarch64-poky-linux-gdb <BF_INST_DIR>/sample/vmlinux

(gdb) target remote /dev/ttyUSB3
Remote debugging using /dev/ttyUSB3
arch_kgdb_breakpoint () at
/labhome/dwoods/src/bf/linux/arch/arm64/include/asm/kgdb.h:32
32 asm ("brk %0" : : "I" (KGDB_COMPILED_DBG_BRK_IMM));
(gdb)

NVIDIA BlueField DPU BSP v4.7.0 483

How to enable/disable SMMU

SMMU could affect performance for certain applications. It is disabled by default and can
be modified in different ways.

Enable/disable SMMU in the UEFI System Configuration

Set it in bf.cfg and push it together with the install.bfb (see section "Installing Popular
Linux Distributions on BlueField")

In BlueField Linux, create a file with one line with SYS_ENABLE_SMMU=TRUE, then run
bfcfg.

The configuration change will take effect after reboot. The configuration value is stored in
a persistent UEFI variable. It is not modified by OS installation.

See section "UEFI System Configuration" for information on how to access the UEFI
System Configuration menu.

How to change the default console of the install image

On UART0:

On UART1:

On RShim:

$ echo "console=ttyAMA0 earlycon=pl011,0x01000000 initrd=initramfs" > bootarg
$ <BF_INST_DIR>/bin/mlx-mkbfb --boot-args bootarg \
<BF_INST_DIR>/sample/ install.bfb

$ echo "console=ttyAMA1 earlycon=pl011,0x01000000 initrd=initramfs" > bootarg
$ <BF_INST_DIR>/bin/mlx-mkbfb --boot-args bootarg \
<BF_INST_DIR>/sample/install.bfb

$ echo "console=hvc0 initrd=initramfs" > bootarg
$ <BF_INST_DIR>/bin/mlx-mkbfb --boot-args bootarg \

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installing+Popular+Linux+Distributions+on+BlueField
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installing+Popular+Linux+Distributions+on+BlueField
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Upgrading+Boot+Software#src-2821766662_UpgradingBootSoftware-UEFISystemConfiguration

NVIDIA BlueField DPU BSP v4.7.0 484

How to change the default network configuration
during BFB installation

On Ubuntu OS, the default network configuration for tmfifo_net0 and oob_net0 interfaces is
set by the cloud-init service upon first boot after BFB installation.

The default content of /var/lib/cloud/seed/nocloud-net/network-config as follows:

This content can be modified during BFB installation using bf.cfg. For example:

<BF_INST_DIR>/sample/install.bfb

cat /var/lib/cloud/seed/nocloud-net/network-config
version: 2
renderer: NetworkManager
ethernets:
  tmfifo_net0:
    dhcp4: false
    addresses:
      - 192.168.100.2/30
    nameservers:
      addresses: [192.168.100.1]
    routes:
    - to: 0.0.0.0/0
      via: 192.168.100.1
      metric: 1025
  oob_net0:
    dhcp4: true

cat bf.cfg
bfb_modify_os()
{
        sed -i -e '/oob_net0/,+1d' /mnt/var/lib/cloud/seed/nocloud-net/network-config
cat >> /mnt/var/lib/cloud/seed/nocloud-net/network-config << EOF
  oob_net0:

NVIDIA BlueField DPU BSP v4.7.0 485

Sanitizing DPU eMMC and SSD Storage

During the BFB installation process, DPU storage can be securely sanitized either using
the shred or the mmc and nvme utilities in the bf.cfg configuration file as illustrated in the
following subsections.

Using shred Utility

    dhcp4: false
    addresses:
      - 10.0.0.1/24
EOF
}

bfb-install  -c bf.cfg -r rshim0 -b <BFB>

Note

Using the same technique, any configuration file on the BlueField
DPU side can be updated during the BFB installation process.

Note

By default, only the installation target storage is formatted using the
Linux mkfs utility.

cat bf.cfg
SANITIZE_DONE=${SANITIZE_DONE:-0}
export SANITIZE_DONE
if [$SANITIZE_DONE -eq 0]; then

NVIDIA BlueField DPU BSP v4.7.0 486

Using mmc and nvme Utilities

sleep 3m
/sbin/modprobe nvme

if [-e /dev/mmcblk0]; then
echo Sanitizing /dev/mmcblk0 | tee /dev/kmsg
echo Sanitizing /dev/mmcblk0 > /tmp/sanitize.emmc.log
mmc sanitize /dev/mmcblk0 >> /tmp/sanitize.emmc.log 2>&1
fi
if [-e /dev/nvme0n1]; then
echo Sanitizing /dev/nvme0n1 | tee /dev/kmsg
echo Sanitizing /dev/nvme0n1 > /tmp/sanitize.ssd.log
nvme sanitize /dev/nvme0n1 -a 2 >> /tmp/sanitize.ssd.log 2>&1
nvme sanitize-log /dev/nvme0n1 >> /tmp/sanitize.ssd.log 2>&1
fi
SANITIZE_DONE=1
echo ===================== sanitize.log ===================== | tee
/dev/kmsg
cat /tmp/sanitize.*.log | tee /dev/kmsg
sync
fi
bfb_modify_os()
{
echo ===================== bfb_modify_os ===================== | tee
/dev/kmsg
if (/bin/ls -1 /tmp/sanitize.*.log > /dev/null 2>&1); then
cat /tmp/sanitize.*.log > /mnt/root/sanitize.log
fi
}

cat bf.cfg
SANITIZE_DONE=${SANITIZE_DONE:-0}
export SANITIZE_DONE

NVIDIA BlueField DPU BSP v4.7.0 487

if [$SANITIZE_DONE -eq 0]; then
sleep 3m
/sbin/modprobe nvme

if [-e /dev/mmcblk0]; then
echo Sanitizing /dev/mmcblk0 | tee /dev/kmsg
echo Sanitizing /dev/mmcblk0 > /tmp/sanitize.emmc.log
mmc sanitize /dev/mmcblk0 >> /tmp/sanitize.emmc.log 2>&1
fi
if [-e /dev/nvme0n1]; then
echo Sanitizing /dev/nvme0n1 | tee /dev/kmsg
echo Sanitizing /dev/nvme0n1 > /tmp/sanitize.ssd.log
nvme sanitize /dev/nvme0n1 -a 2 >> /tmp/sanitize.ssd.log 2>&1
nvme sanitize-log /dev/nvme0n1 >> /tmp/sanitize.ssd.log 2>&1
fi
SANITIZE_DONE=1
echo ===================== sanitize.log ===================== | tee
/dev/kmsg
cat /tmp/sanitize.*.log | tee /dev/kmsg
sync
fi
bfb_modify_os()
{
echo ===================== bfb_modify_os ===================== | tee
/dev/kmsg
if (/bin/ls -1 /tmp/sanitize.*.log > /dev/null 2>&1); then
cat /tmp/sanitize.*.log > /mnt/root/sanitize.log
fi
}

NVIDIA BlueField DPU BSP v4.7.0 488

Windows Support
Network Drivers

BlueField Windows support from the host-side is facilitated by the WinOF-2 driver. For
more information on WinOF-2 (including installation), please refer to the WinOF-2
Documentation.

RShim Drivers

RShim drivers provide functionalities like resetting the Arm cores, pushing a bootstream
image, as well as some networking and console functionalities.

Verifying RShim Drivers Installation

1. Open the Device Manager when no drivers are installed to make sure a new PCIe
device is available as below.

https://docs.mellanox.com/category/winof2
https://docs.mellanox.com/category/winof2

NVIDIA BlueField DPU BSP v4.7.0 489

2. Run the installer to install all 3 drivers (MlxRshimBus.sys, MlxRshimCom.sys, and
MlxRshimEth.sys).

3. Make sure the Bus driver created 2 child devices after the installation (Com port and
the Ethernet adapter).

At this time, PuTTY application or any other network utility can be used to communicate
with DPU via Virtual Com Port or Virtual Ethernet Adapter (ssh). The Com Port can be
used using the 9600 baud-rate and default settings.

Note

NVIDIA BlueField DPU BSP v4.7.0 490

Accessing BlueField DPU From Host

The BlueField DPU can be accessed via PuTTY or any other network utility application to
communicate via virtual COM or virtual Ethernet adapter. To use COM:

1. Open Putty.

2. Change connection type to Serial.

3. Run the following command in order to know what to set the "Serial line" field to:

In this case use COM3. This name can also be found via Device Manager under
"Ports (Com & LPT)".

RShim drivers can be connect via PCIe (the drivers we are providing)
or via USB (external connection) but not both at the same time. So
when the bus driver detects that an external USB is already attached,
it will not create the child virtual devices for data access. Access via
PCIe is available once the USB connection is removed.

C:\Users\username\Desktop> reg query
HKLM\HARDWARE\DEVICEMAP\SERIALCOMM | findstr MlxRshim
\MlxRshim\COM3 REG-SZ COM3

NVIDIA BlueField DPU BSP v4.7.0 491

4. Press Open and hit Enter.

NVIDIA BlueField DPU BSP v4.7.0 492

To access via BlueField management network adapter, configure an IP address as shown
in the example below and run a ping test to confirm configuration.

NVIDIA BlueField DPU BSP v4.7.0 493

RShim Ethernet Driver

The device does not support any type of stateful or stateless offloads. This is indicated to
the Operating System accordingly when the driver loads. The MAC address is a pre-
defined MAC address (CA-FE-01-CA-FE-02). The following registry keys can be used to
change basic settings such as MAC address.

Registry Name Description Valid Values

HKLM\SYSTEM\CurrentControlSe
t\Control\Class\{4d36e972-e325-
11ce-bfc1-08002be10318}\
<nn>*JumboPacket

The size, in bytes, of the largest
supported Jumbo Packet (an
Ethernet frame that is greater
than 1514 bytes) that the
hardware can support.

1514 (default) -
2048

HKLM\SYSTEM\CurrentControlSe
t\Control\Class\{4d36e972-e325-
11ce-bfc1-08002be10318}\
<nn>*NetworkAddress

The network address of the
device. The format for a MAC
address is: XX-XX-XX-XX-XX-XX.

CA-FE-01-CA-FE-
02 (default)

HKLM\SYSTEM\CurrentControlSe
t\Control\Class\{4d36e972-e325-

The number of receive descriptors
used by the miniport adapter.

16 – 64 (Default)

NVIDIA BlueField DPU BSP v4.7.0 494

Registry Name Description Valid Values

11ce-bfc1-08002be10318}\
<nn>\ReceiveBuffers

For instructions on how to find interface index in the registry (nn), please refer to section
"Finding the Index Value of the Network Interface" in the WinOF-2 User Manual under
Features Overview and Configuration > Configuring the Driver Registry Keys.

MlxRshimBus Driver

This driver does all the read/write work to the hardware registers. User space application
can send down IOCTL’s to restart the system on chip or to push a new BlueField boot
stream image.

RshimCmd Tool

RshimCmd is a command line tool that enables the user to:

Restart the DPU.

Push a boot stream file (.bfb). A BFB file is a generated BlueField boot stream file that
contains Linux operating system image that runs on the DPU. BFB files can be
downloaded from the NVIDIA DOCA SDK webpage.

Usage

Example

Note

Update the MAC address manually using registry key if there are
more than one BlueField DPU in the system.

RshimCmd -RestartSmartNic <Option> -BusNum <BusNum>

RshimCmd -EnumDevices
RshimCmd -PushImage c:\bin\MlnxBootImage.bfb -BusNum 11

https://docs.mellanox.com/category/winof2
https://developer.nvidia.com/networking/doca

NVIDIA BlueField DPU BSP v4.7.0 495

Detailed Usage

BlueField UEFI System Boot Customizations during
Installation

Bluefield's UEFI system boot options and more can be customized during the BFB
Installation through the use of configuration parameters in the bf.cfg file. For further
information on the bf.cfg file, refer to the BlueField Documentation.

To include the bf.cfg file into the BFB installation, append the file to BFB file as described
below:

1. Copy the BFB file to a local folder. For example:

2. Append the bf.cfg file into the BFB file.

RshimCmd -RestartSmartNic 1 -BusNum 11

RshimCmd -h

Note

The BFB image can be either CentOS or Ubuntu. Ubuntu credentials
are: ubuntu/ubuntu and for Centos credentials are: root/centos, IP
address of RShim Ethernet component (called tmfifo_net0) on the
BlueField side is 192.168.100.2/30 by default. Please set IP address on
the Windows side accordingly to be able to communicate via SSH.

Copy <path>\DOCA_1.4.0_BSP_3.9.2_Ubuntu_20.04-5.20220707.bfb
c:\bf\MlnxBootImage.bfb

Cd c:\bf
Copy /b MlnxBootImage.bfb + bf.cfg MlnxBootImage_with_bf_cfg.bfb

https://docs.nvidia.com/networking/display/BlueFieldDPUOSLatest

NVIDIA BlueField DPU BSP v4.7.0 496

3. Download the BFB image.

As the bf.cfg is intended for Linux OSes, it should be created according to Linux rules. For
example, the lines of this text file should end in LF and not in CR/LF as accepted in
Windows.

All the syntax should be as the accepted by the OS expects. For example, there should be
no spaces in the middle of "set" statements: NET_RSHIM_MAC=00:1a:ca:ff:ff:05.

EventLogs and Driver Logging

All driver logging is part of the Mellanox-WinOF2-Kernel trace session that comes with the
network drivers installation. The default location to the trace is at
%SystemRoot%\system32\LogFiles\Mlnx\Mellanox-WinOF2-System.etl.

The following are the Event logs RShim drivers generate:

MlxRShimBus Driver

Even
t ID

Severit
y

Message

2
Inform
ational

RShim Bus driver loaded successfully

3
Inform
ational

Device successfully stopped

4 Error
The SmartNIC seems to be stuck as the boot FIFO data is not being
drained.

5 Error Driver startup failed due to failure in creation of the child device.

6 Error
SmartNIC is in a bad state. Please restart SmartNIC and reload bus
drivers. Please refer to user manual on how to restart SmartNIC.

7
Warnin
g

SmartNIC is in LiveFish mode

8 Warnin Failed creating child virtual devices as a backend USB device is attached

RshimCmd -PushImage c:\bf\MlnxBootImage_with_bf_cfg.bfb -BusNum 11

NVIDIA BlueField DPU BSP v4.7.0 497

Even
t ID

Severit
y

Message

g and accessing RShim FIFO. Please refer to user manual for more details.

MlxRShim Serial Driver

Event ID Severity Message

2 Informational RShim serial driver loaded successfully

3 Informational device successfully stopped

MlxRShim Ethernet Driver

Event
ID

Severity Message

2 Error
MAC address read from registry is not supported. Please set valid
unicast address.

3
Informatio
nal

Device is successfully stopped

4 Warning Value read from registry is invalid. Therefore use the default value.

5 Error SmartNIC seems stuck as transmit packets are not being drained.

6
Informatio
nal

RShim Ethernet driver loaded successfully

NVIDIA BlueField DPU BSP v4.7.0 498

Document Revision History
Rev 4.7.0 – May 06, 2024

Added:

Section "UEFI Menu"

Section "Redfish"

Section "BlueField SR-IOV"

Section "NVIDIA BlueField Reset and Reboot Procedures" and updated graceful
shutdown guidance with pointers to this section

Updated:

Section "Software Installation and Upgrade" with bf-fwbundle-<version>.prod.bfb

information

Section "BFB Installation"

Section "Changing Default Credentials Using bf.cfg"

Section "Configuring NIC Mode on BlueField-3 Using Redfish"

Rev 4.6.0 – February 08, 2024

Added:

Page "Default Passwords and Policies"

Section "VF Msix_num/Queue Requirement"

Updated:

Section "Customization of BFB Installation Using bf.cfg"

https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Menu
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Redfish
https://docs.nvidia.com//networking/display/bluefielddpuosv470/BlueField+SR-IOV
https://docs.nvidia.com//networking/display/bluefielddpuosv470/NVIDIA+BlueField+Reset+and+Reboot+Procedures
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Software+Installation+and+Upgrade
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-BFBInstallation
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-ChangingDefaultCredentialsUsingbf.cfg
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-ConfiguringNICModeonBlueField-3UsingRedfish
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Default+Passwords+and+Policies
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_safe-id-VmlydGlvbmV0RW11bGF0ZWREZXZpY2VzLVZGTXNpeF9udW0vUXVldWVSZXF1aXJlbWVudA
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-CustomizationofBFBInstallationUsingbf.cfg

NVIDIA BlueField DPU BSP v4.7.0 499

Section "bf.cfg Parameters"

Section "Configuring NIC Mode on BlueField-3 Using Redfish"

Section "Configuring NIC Mode on BlueField-3 from UEFI"

Section "NIC Mode for BlueField-2"

Section "Default Ports and OVS Configuration"

Section "SystemD Service"

Rev 4.5.0 – December 12, 2023

Added:

Section "Updating Software Using Redfish"

Section "Sanitizing DPU eMMC and SSD Storage"

Section "How to perform graceful shutdown"

Section "BFB installation monitoring"

Updated:

Page "Updating DPU Software Packages Using Standard Linux Tools"

Section "RShim Logging"

Section "NIC Mode"

Section "Enabling OVS-DPDK Hardware Offload"

Section "Enabling IPsec Packet Offload"

Section "Setting IPSec Packet Offload Using strongSwan"

Section "Running strongSwan Example"

Section "Building strongSwan"

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-bf.cfgParameters
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-DefaultPortsandOVSConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-SystemDService
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+with+PXE#src-2821766652_DeployingBlueFieldSoftwareUsingBFBwithPXE-UpdatingSoftwareUsingRedfish
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-SanitizingDPUeMMCandSSDStorage
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-Howtoperformgracefulshutdown
https://docs.nvidia.com//networking/display/bluefielddpuosv470/RShim+Troubleshooting+and+How-Tos#src-2821766775_RShimTroubleshootingandHowTos-BFBinstallationmonitoring
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Updating+DPU+Software+Packages+Using+Standard+Linux+Tools
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Logging#src-2821766673_Logging-RShimLogging
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-NICMode
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtual+Switch+on+DPU#src-2821766711_VirtualSwitchonDPU-EnablingOVS-DPDKHardwareOffload
https://docs.nvidia.com//networking/display/bluefielddpuosv470/IPsec+Functionality#src-2821766749_IPsecFunctionality-EnablingIPsecPacketOffload
https://docs.nvidia.com//networking/display/bluefielddpuosv470/IPsec+Functionality#src-2821766749_IPsecFunctionality-SettingIPSecPacketOffloadUsingstrongSwan
https://docs.nvidia.com//networking/display/bluefielddpuosv470/IPsec+Functionality#src-2821766749_IPsecFunctionality-RunningstrongSwanExample
https://docs.nvidia.com//networking/display/bluefielddpuosv470/IPsec+Functionality#src-2821766749_IPsecFunctionality-BuildingstrongSwan

NVIDIA BlueField DPU BSP v4.7.0 500

Section "IPsec Packet Offload and OVS Offload"

Rev 4.2.2 – October 24, 2023

Updated:

Section "NIC Mode"

Rev 4.2.0 – August 10, 2023

Updated:

Step 3 under section "PXE Server Preparations"

Section "Removing Previously Installed DOCA Runtime Packages"

Section "NIC Mode"

Sections "Connection Tracking With NAT" and "Querying Connection Tracking
Offload Status" with conntack command for Ubuntu 22.04 kernels

Section "LAG Configuration"

Section "SystemD Service"

Page "QoS Configuration"

Section "bf.cfg Parameters"

Rev 4.0.2 – May 08, 2023

Added:

Page "SoC Management Interface"

Page "Legal Notices and 3rd Party Licenses"

Section "Unable to load BL2, BL2R, or PSC image"

Updated:

https://docs.nvidia.com//networking/display/bluefielddpuosv470/IPsec+Functionality#src-2821766749_IPsecFunctionality-IPsecPacketOffloadandOVSOffload
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-NICMode
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+with+PXE#src-2821766652_DeployingBlueFieldSoftwareUsingBFBwithPXE-PXEServerPreparations
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installing+Repo+Package+on+Host+Side#src-2821766657_InstallingRepoPackageonHostSide-RemovingPreviouslyInstalledDOCARuntimePackages
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-NICMode
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtual+Switch+on+DPU#src-2821766711_VirtualSwitchonDPU-ConnectionTrackingWithNAT
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtual+Switch+on+DPU#src-2821766711_VirtualSwitchonDPU-QueryingConnectionTrackingOffloadStatus
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtual+Switch+on+DPU#src-2821766711_VirtualSwitchonDPU-QueryingConnectionTrackingOffloadStatus
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Link+Aggregation#src-2821766734_LinkAggregation-LAGConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-SystemDService
https://docs.nvidia.com//networking/display/bluefielddpuosv470/QoS+Configuration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-bf.cfgParameters
https://docs.nvidia.com//networking/display/bluefielddpuosv470/SoC+Management+Interface
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Legal+Notices+and+3rd+Party+Licenses
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_safe-id-SW5zdGFsbGF0aW9uVHJvdWJsZXNob290aW5nYW5kSG93VG9zLVVuYWJsZXRvbG9hZEJMMixCTDJSLG9yUFNDaW1hZ2U

NVIDIA BlueField DPU BSP v4.7.0 501

Section "Default Ports and OVS Configuration" with new step 2

Section "BlueField Linux Drivers" with gpio-mlxbf3, mlxbf-ptm, pwr-mlxbf, and pinctrl-mlxbf

Page "Updating DPU Software Packages Using Standard Linux Tools"

Page "UEFI Secure Boot"

Section "IPsec Hardware Offload: Full Offload" with Canonical note

Section "How to upgrade ConnectX firmware from Arm side"

Section "VirtIO-net PF Device Configuration" by removing ECPF_ESWITCH_MANAGER and
ECPF_PAGE_SUPPLIER from step 4

Section "Virtio-net SR-IOV VF Device Configuration" by removing
ECPF_ESWITCH_MANAGER and ECPF_PAGE_SUPPLIER from step 7.b

Section "vDPA over VirtIO Full Emulation"

Rev 3.9.3 – November 02, 2022

Added:

Section "DHCP Client Configuration"

Section "Updating DPU Software Packages Using Standard Linux Tools"

Section "Creating Transitional Hotplug VirtIO-net PF Device"

Section "Transitional VirtIO-net VF Device Support"

Updated:

Section "Upgrading Boot Software" by specifying that the "Reset EFI Variables"
action also wipes the BOOT option variables and secure boot keys

Section "BlueField Linux Drivers"

Section "Configuring Uplink MTU"

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-DefaultPortsandOVSConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installing+Popular+Linux+Distributions+on+BlueField#src-2821766660_InstallingPopularLinuxDistributionsonBlueField-BlueFieldLinuxDrivers
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Updating+DPU+Software+Packages+Using+Standard+Linux+Tools
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Secure+Boot
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-HowToupgradeConnectXfirmwarefromArmside
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-VirtIO-netPFDeviceConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-Virtio-netSR-IOVVFDeviceConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-vDPAoverVirtIOFullEmulation
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-DHCPClientConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Updating+DPU+Software+Packages+Using+Standard+Linux+Tools
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-TransitionalVirtIO-netPFDeviceSupport
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-TransitionalVirtIO-netVFDeviceSupport
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Upgrading+Boot+Software
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installing+Popular+Linux+Distributions+on+BlueField#src-2821766660_InstallingPopularLinuxDistributionsonBlueField-BlueFieldLinuxDrivers
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Configuring+Uplink+MTU

NVIDIA BlueField DPU BSP v4.7.0 502

Section "Disabling Host Networking PFs" by adding instructions for reactivating host
networking for single-port DPUs

Section "Configuring RegEx Acceleration on BlueField-2"

Section "Virtio-net SR-IOV VF Device Configuration"

PXE_DHCP_CLASS_ID in section "bf.cfg Parameters"

Removed:

Step 7 in section "Configuring Host Server Side"

Separated Mode from "Modes of Operation"

Rev 3.9.2 – August 02, 2022

Added:

Section "Updating NVConfig Params"

Page "System Configuration and Services"

Section "Enrolling New NVIDIA Certificates"

Section "bf.cfg Parameters"

Support for OpenSSL version 3.0.2 in section "PKA Use Cases"

Section "How to change the default network configuration during BFB installation"

Updated:

Section "Firmware Upgrade"

Section "Customizations During BFB Installation"

Section "UEFI System Configuration"

Page "Host-side Interface Configuration"

Section "Enrolling Certificates Using Capsule"

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Controlling+Host+PF+and+VF+Parameters#src-2821766742_ControllingHostPFandVFParameters-DisablingHostNetworkingPhysicalFunctions
https://docs.nvidia.com//pages/createpage.action?spaceKey=bluefielddpuosv470&title=RegEx+Acceleration&linkCreation=true&fromPageId=2821766791
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-CreatingHotplugVirtIO-netVFDevice
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-bf.cfgParameters
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Host-side+Interface+Configuration#src-2821766582_HostsideInterfaceConfiguration-ConfiguringHostServerSide
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-UpdatingNVConfigParams
https://docs.nvidia.com//networking/display/bluefielddpuosv470/System+Configuration+and+Services
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Secure+Boot#src-2821766592_UEFISecureBoot-EnrollingNewNVIDIACertificates
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-bf.cfgParameters
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Public+Key+Acceleration#src-2821766748_PublicKeyAcceleration-PKAUseCases
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installation+Troubleshooting+and+How-Tos#src-2821766783_InstallationTroubleshootingandHowTos-HowtochangethedefaultnetworkconfigurationduringBFBinstallation
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-FirmwareUpgrade
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-CustomizationsDuringBFBInstallation
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Upgrading+Boot+Software#src-2821766662_UpgradingBootSoftware-UEFISystemConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Host-side+Interface+Configuration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Secure+Boot#src-2821766592_UEFISecureBoot-EnrollingCertificatesUsingCapsule

NVIDIA BlueField DPU BSP v4.7.0 503

Section "NIC Mode" with supported MLNX_OFED versions

Section "PKA Use Cases" with support for OpenSSL version 3.0.2

Rev 3.9 – May 03, 2022

Added:

Section "GRUB Password Protection"

New note under step 2 in section "Default Ports and OVS Configuration"

Section "BlueField Linux Drivers"

Canonical db certificate to section "Existing DPU Certificates"

New note under section "Enrolling Certificates Using Capsule"

New power cycle note under section "Enabling Host Restriction"

New power cycle note under section "Disabling Host Restriction"

Section "NIC Mode"

Section "LAG on Multi-host"

New power cycle note under section "Disabling Host Networking PFs"

Section "PKA Prerequisites"

Section "OVS IPsec"

Section "Rate Limiting VF Group"

Note to section "User Frontend"

Section "Controller Live Update"

Updated:

Code block in section "Customizations During BFB Installation"

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-NICMod
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Public+Key+Acceleration#src-2821766748_PublicKeyAcceleration-PKAUseCases
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-GRUBPasswordProtection
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Deploying+BlueField+Software+Using+BFB+from+Host#src-2821766645_DeployingBlueFieldSoftwareUsingBFBfromHost-DefaultPortsandOVSConfiguration
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installing+Popular+Linux+Distributions+on+BlueField#src-2821766660_InstallingPopularLinuxDistributionsonBlueField-BlueFieldLinuxDrivers
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Secure+Boot#src-2821766592_UEFISecureBoot-ExistingDPUCertificates
https://docs.nvidia.com//networking/display/bluefielddpuosv470/UEFI+Secure+Boot#src-2821766592_UEFISecureBoot-EnrollingCertificatesUsingCapsule
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-EnablingHostRestriction
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-EnablingHostRestriction
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Modes+of+Operation#src-2821766680_ModesofOperation-NICMode
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Link+Aggregation#src-2821766734_LinkAggregation-LAGonMulti-host
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Controlling+Host+PF+and+VF+Parameters#src-2821766742_ControllingHostPFandVFParameters-DisablingHostNetworkingPhysicalFunctions
https://docs.nvidia.com//pages/createpage.action?spaceKey=bluefielddpuosv470&title=.Public+Key+Acceleration+v3.9&linkCreation=true&fromPageId=2821766791
https://docs.nvidia.com//networking/display/bluefielddpuosv470/IPsec+Functionality#src-2821766749_IPsecFunctionality-OVSIPsec
https://docs.nvidia.com//networking/display/bluefielddpuosv470/QoS+Configuration#src-2821766762_QoSConfiguration-RateLimitingVFGroup
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-UserFrontend
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtio-net+Emulated+Devices#src-2821766763_VirtionetEmulatedDevices-ControllerLiveUpdate
https://docs.nvidia.com//pages/createpage.action?spaceKey=bluefielddpuosv470&title=.Deploying+DPU+OS+Using+BFB+from+Host+v3.9&linkCreation=true&fromPageId=2821766791

NVIDIA BlueField DPU BSP v4.7.0 504

Section "Building Your Own BFB Installation Image"

Section "Configuring VXLAN Tunnel"

Step 2 in section "Prerequisites"

Section "Enabling IPsec Full Offload"

Code block under step 1 in section "LAG Configuration"

Rev 3.8.5 – January 19, 2022

Added:

Section "Another backend already attached"

Updated:

Section "Ensure RShim Running on Host"

https://docs.nvidia.com//networking/display/bluefielddpuosv470/Installing+Popular+Linux+Distributions+on+BlueField#src-2821766660_InstallingPopularLinuxDistributionsonBlueField-BuildingYourOwnCentOSBFB
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Virtual+Switch+on+DPU#src-2821766711_VirtualSwitchonDPU-ConfiguringVXLANTunnel
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Link+Aggregation#src-2821766734_LinkAggregation-Prerequisites
https://docs.nvidia.com//pages/createpage.action?spaceKey=bluefielddpuosv470&title=.IPsec+Functionality+v3.9&linkCreation=true&fromPageId=2821766791
https://docs.nvidia.com//networking/display/bluefielddpuosv470/Link+Aggregation#src-2821766734_LinkAggregation-BFLAGconfig
https://docs.nvidia.com//pages/createpage.action?spaceKey=bluefielddpuosv470&title=.RShim+Troubleshooting+and+How-Tos+v3.8.5&linkCreation=true&fromPageId=2821766791
https://docs.nvidia.com//pages/createpage.action?spaceKey=bluefielddpuosv470&title=.Deploying+DPU+OS+Using+BFB+from+Host+v3.9&linkCreation=true&fromPageId=2821766791

NVIDIA BlueField DPU BSP v4.7.0 505

Legal Notices and 3rd Party
Licenses

BlueField Software Components Version
3rd Party
Components
and Licenses

DOCA SDK

2.7.0

Link

DOCA SDK 3rd Party Notice Link

DOCA SDK 3rd Party Unify Notice Link

SoC OS Linux Ubuntu 22.04 Distro
5.15.0-1042-
bluefield

Link

SoC OS Linux Ubuntu 20.04 Distro
5.4.0-1084-
bluefield

Link

BSP – ATF

4.7.0

Link

BSP – ATF 3rd Party Notice Link

BSP – ATF 3rd Party Unify Notice Link

BSP – UEFI (EDK2)

4.7.0

Link

BlueField UEFI (EDK2) 3rd Party Notice Link

BlueField UEFI (EDK2) 3rd Party Unify Notice Link

BlueField BMC

24.04

Link

BlueField BMC 3rd Party Notice Link

BlueField BMC 3rd Party Unify Notice Link

Virtio Network Controller 1.9.12 Link

Virtio Network Controller 3rd Party Notice Link

https://storage.googleapis.com/mlnxwwstor/Legal/license_DOCA_doca_2.7.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyNotice_DOCA_doca_2.7.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyUnifyNotice_DOCA_doca_2.7.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/bf-bundle-2.7.0-33_24.04_ubuntu-22.04_prod.copyright.zip
https://storage.googleapis.com/mlnxwwstor/Legal/bf-bundle-2.7.0-31_24.04_ubuntu-20.04_prod.copyright.zip
https://storage.googleapis.com/mlnxwwstor/Legal/license_BlueField-ATF_4.7.0.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyNotice_BlueField-ATF_4.7.0.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyUnifyNotice_BlueField-ATF_4.7.0.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/license_BlueField-EDK2_4.7.0.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyNotice_BlueField-EDK2_4.7.0.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyUnifyNotice_BlueField-EDK2_4.5.1.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyUnifyNotice_BlueField-EDK2_4.7.0.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/license_BF_PLATFORM_BMC_BF-24.04-bin.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyNotice_BF_PLATFORM_BMC_BF-24.04-bin.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyUnifyNotice_BF_PLATFORM_BMC_BF-24.04-bin.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/license_virtio-net-controller_v1.9.12.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyNotice_virtio-net-controller_v1.9.12.pdf

NVIDIA BlueField DPU BSP v4.7.0 506

BlueField Software Components Version
3rd Party
Components
and Licenses

Virtio Network Controller 3rd Party Unify
Notice

Link

MLNX LibSnap and virtio-blk

1.6.0-1

Link

MLNX LibSnap and virtio-blk 3rd Party
Notice

Link

MLNX SNAP and SPDK
3.8.0-1

Link

MLNX SNAP and SPDK 3rd Party Notice Link

NVIDIA MLNX_OFED License
24.04-0

Link

NVIDIA MLNX_OFED 3rd Party Unify Notice Link

NVIDIA MFT License
4.28.0

Link

NVIDIA MFT 3rd Party Notice Link

NVIDIA MLNX_DPDK

22.11.2404.1.0

Link

NVIDIA MLNX_DPDK 3rd Party Notice Link

NVIDIA MLNX_DPDK 3rd Party Unify Notice Link
© Copyright 2024, NVIDIA. PDF Generated on 06/07/2024

https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyUnifyNotice_virtio-net-controller_v1.9.12.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/license_libsnap_1.6.0-1.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyNotice_libsnap_1.6.0-1.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/license_mlnx-snap_3.8.0-1.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyNotice_mlnx-snap_3.8.0-1.pdf
https://content.mellanox.com/Legal/MLNX_OFED/license_MLNX_OFED_24.04-0.pdf
https://content.mellanox.com/Legal/MLNX_OFED/3rdPartyUnifyNotice_MLNX_OFED_24.04-0.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/license_MFT_LINUX_mft-4.28.0.pdf
https://content.mellanox.com/Legal/MFT/3rdPartyUnifyNotice_MFT_LINUX_mft-4.28.0.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/license_DPDK_mlnx_dpdk_22.11%5B47%5D.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyNotice_DPDK_mlnx_dpdk_22.11.pdf
https://storage.googleapis.com/mlnxwwstor/Legal/3rdPartyUnifyNotice_DPDK_mlnx_dpdk_22.11.pdf

	Initial Configuration
	UEFI Menu
	System Configuration and Services
	Host-side Interface Configuration
	Secure Boot
	Default Passwords and Policies

	Release Notes
	Changes and New Features
	Supported Platforms and Interoperability
	Bug Fixes In This Version
	Known Issues
	Validated and Supported Cables and Modules
	Release Notes Change Log History
	Bug Fixes History

	BlueField Software Overview
	Software Installation and Upgrade
	Deploying BlueField Software Using BFB from Host
	Deploying BlueField Software Using BFB from BMC
	Deploying BlueField Software Using BFB with PXE
	Deploying NVIDIA Converged Accelerator
	Installing Repo Package on Host Side
	Installing Popular Linux Distributions on BlueField
	Updating DPU Software Packages Using Standard Linux Tools

	Management
	Performance Monitoring Counters
	Intelligent Platform Management Interface
	Redfish
	Logging
	SoC Management Interface
	BlueField OOB Ethernet Interface

	BlueField Operation
	Functional Diagram
	Modes of Operation
	Kernel Representors Model
	Multi-Host
	Virtual Switch on DPU
	Configuring Uplink MTU
	Link Aggregation
	Scalable Functions
	RDMA Stack Support on Host and Arm System
	Controlling Host PF and VF Parameters
	DPDK on BlueField DPU
	BlueField SNAP
	BlueField SR-IOV
	Compression Acceleration
	Public Key Acceleration
	IPsec Functionality
	fTPM over OP-TEE
	QoS Configuration
	Virtio-net Emulated Devices
	Shared RQ Mode

	Troubleshooting and How-Tos
	NVIDIA BlueField Reset and Reboot Procedures
	RShim Troubleshooting and How-Tos
	Connectivity Troubleshooting
	Performance Troubleshooting
	PCIe Troubleshooting and How-Tos
	SR-IOV Troubleshooting
	eSwitch Troubleshooting
	Isolated Mode Troubleshooting and How-Tos
	General Troubleshooting
	Installation Troubleshooting and How-Tos

	Windows Support
	Document Revision History
	Legal Notices and 3rd Party Licenses

