NVIDIA.

NVIDIA BlueField Virtio-net v24.07

Introduction

Release Notes
Changes and New Features
Bug Fixes in This Version
Known Issues

Change Log History
Virtio-net Deployment
Configuration File
Virtnet CLI Commands

Feature Guidance
Counters
Jumbo MTU
Link Aggregation
Live Migration
Live Update
Mergeable Rx Buffer
Performance Tuning
Recovery
Transitional Device
VF Dynamic MSIX

Virtio-net Feature Bits

NVIDIA BlueField Virtio-net v24.07

Table of contents

12

13

39

49

97

97

106

108

109

118

120

125

127

129

132

140

Virt Queue Types 141

146
BlueField-3 Jumbo MTU Not Working 146
Failed to Start virtio-net-controller.service 148
Function Not Implemented Error When Creating VF 149
Guest OS Hangs When Creating VF 150
Hotplug Device Does Not Show Correctly in Guest OS 151
Hot-unplug Devices with Heavy Self-traffic, Guest OS Gets Call Trace 155
Ubuntu Guest OS Hangs with Kernel 5.15.0-88/89-generic 158

162

NVIDIA BlueField Virtio-net v24.07 2

About This Document

This document describes NVIDIA® BlueField® virtio-net PCle devices.

Audience

This manual is intended for system administrators and developers.

Technical Support

Customers who purchased NVIDIA products directly from NVIDIA are invited to contact
our support through the following methods:

e E-mail: enterprisesupport@nvidia.com
e Enterprise Support page: https://www.nvidia.com/en-us/support/enterprise

Customers who purchased NVIDIA M-1 Global Support Services, please see your contract
for details regarding technical support.

Customers who purchased NVIDIA products through an NVIDIA-approved reseller should
first seek assistance through their reseller.

Glossary

Term Description

AARFS Accelerated receive flow steering
CLI Command line interface

BFB BlueField bootstream

DMA Direct memory access

RDMA Remote direct memory access

NVIDIA BlueField Virtio-net v24.07 3

mailto:Enterprisesupport@nvidia.com
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nvidia.com%2Fen-us%2Fsupport%2Fenterprise&data=05%7C01%7Camirn%40nvidia.com%7C1123aef1cfaf4fd44e7f08da4472ff5a%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C637897557943988355%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=B55X06j66qptTA1ycMKbW3PMUw5pdNTZUd40nW8jKPA%3D&reserved=0

Term Description

DPA Data path accelerator
ETH Ethernet

FW Firmware

170 Input/output

IB InfiniBand

0S Operating system

PF Physical function

RPC Remote procedure call
SF Scalable function

VF Virtual function

Related Documents

Title

NVIDIA DOCA

NVIDIA BlueField
DPU BSP

NVIDIA BlueField
BMC Software

NVIDIA BlueField-
3 SNAP for NVMe
and Virtio-blk

BlueField DPU
Hardware User
Manual

Description

NVIDIA DOCA™ SDK enables developers to rapidly create
applications and services on top of NVIDIA® BlueField® networking
platform, leveraging industry-standard APIs

This guide provides product release notes as well as information on
the BSP and how to develop and/or customize applications, system
software, and file system images for the BlueField platform

This guide provides general information concerning the BMC on the
NVIDIA® BlueField® DPUs and is intended for those who want to
familiarize themselves with the functionality provided by the BMC

This document describes the configuration parameters of NVIDIA®
BlueField®-3 SNAP and virtio-blk SNAP in detail

This document provides details as to the interfaces of the BlueField
DPU, specifications, required software and firmware for operating
the device, and a step-by-step plan for bringing the DPU up

NVIDIA BlueField Virtio-net v24.07

https://docs.nvidia.com/doca/sdk/index.html
https://docs.nvidia.com/networking/display/bluefielddpuos
https://docs.nvidia.com/networking/display/bluefielddpuos
https://docs.nvidia.com/networking/display/bluefieldbmc
https://docs.nvidia.com/networking/display/bluefieldbmc
https://docs.nvidia.com/networking/display/bluefield3snap
https://docs.nvidia.com/networking/display/bluefield3snap
https://docs.nvidia.com/networking/display/bluefield3snap
https://docs.mellanox.com/category/bluefieldsnic
https://docs.mellanox.com/category/bluefieldsnic
https://docs.mellanox.com/category/bluefieldsnic

Introduction

NVIDIA® BlueField® virtio-net enables users to create virtio-net PCle devices in the
system where the BlueField is connected. In a traditional virtualization environment,
virtio-net devices can be emulated by QEMU from the hypervisor, or offloading part of
the work (e.g., dataplane) to the NIC (e.g., vDPA). Compared to those solutions, virtio-net
PCle devices offload both data and control plane to the BlueField networking device. The
PCle virtio-net devices exposed to the hypervisor do not depend on QEMU or other
software emulators/vendor drivers from the guest OS.

The solution is based on BlueField family technology on top of Virtual Switch and OVS, so
that virtio-net devices can benefit from the full SDN and hardware offload methodologies.

. VM {0..num_vm}
Bare-metal/Hypervisor server

VirtlO PCle

VirtlO VF {0..num_vf}

PCle PF
{0..num_pf}

virtio-net SF {1000..n}

controller

ConnectX Embedded Datapath 10
switch processor

DPU

Virtio-net Controller SystembD Service

NVIDIA BlueField Virtio-net v24.07 5

https://docs.nvidia.com/networking/display/bluefielddpuos/virtual+switch+on+dpu

Virtio-net-controller is a systemd service which runs the BlueField with a Command Line
Interface (CLI) frontend to communicate with the service running in the background. The
controller systemd service is enabled by default and runs automatically after certain
firmware configurations are deployed. Please refer to "Virtio-net Deployment" for more
information.

A separate process called virtio_net_manager is created to manage the Live Update process
which does not interact with other virtnet CLI commands.

A
Control Plane |

SIowIPath

NVIDIA BlueField Virtio-net v24.07 6

file:///networking/display/bluefieldvirtionetv2407/Virtnet+CLI+Commands
file:///networking/display/bluefieldvirtionetv2407/Virtnet+CLI+Commands
file:///networking/display/bluefieldvirtionetv2407/Virtio-net+Deployment
file:///networking/display/bluefieldvirtionetv2407/Live+Update

Release Notes

The release note pages provide information for NVIDIA® BlueField® virtio-net software
such as changes and new features, software known issues, and bug fixes.

e Changes and New Features
e Bug Fixes in This Version
e Known Issues

e Change Log History

Changes and New Features in v24.07

Added new command to query packet stats
e Added auto-AARFS (a ccelerated receive flow steering) support to PFs
¢ Increased BlueField-3 max number of queues from 64 to 256

e Added a new dedicated mlxconfig entry for VF number of msix,
VIRTIO_NET_EMULATION_NUM_VF_MSIX

e Virtnet CLI changes in this release

CLI Command Entry inv1.9 Entry in v24.07
Virtnet hotplug --max_queues --num_queues
Virtnet list max_queues num_queues
Virtnet list bdf pci_bdf

Virtnet list/query net_mac mac

NVIDIA BlueField Virtio-net v24.07

file:///networking/display/bluefieldvirtionetv2407/Changes+and+New+Features
file:///networking/display/bluefieldvirtionetv2407/Bug+Fixes+in+This+Version
file:///networking/display/bluefieldvirtionetv2407/Known+Issues
file:///networking/display/bluefieldvirtionetv2407/Change+Log+History

CLI Command Entry inv1.9 Entry in v24.07
Virtnet list/query net_link_status link_status
Virtnet list/query net_max_queue_pairs max_queue_pairs
Virtnet list/query net_mtu mtu

Bug Fixes in This Version

Ref

4 Issue Description

Description: After changing uplink MTU to more than 1500, errors are printed
from the virtio-net-controller side when using the vHost Acceleration Software
3936 | Stack.

435 Keyword: Virtio-net; vhost; live migration

Reported in version: 1.9.0

Description: When FLR times out, virtnet commands begin to hang and not
3933 return.

592 | Keyword: FLR; commands

Reported in version: 1.9.0

Known Issues

The following are known limitations of this NVIDIA® BlueField® virtio-net software
version.

Ref

Issue
#

394 | Description: Host OS kernel <3.19 does not support 31 hotplug devices.

390

5 Workaround: Avoid hotplugging more than 20 devices if host OS kernel is <3.19, or

upgrade the kernel to 23.19.

Keyword: Host OS; kernel; hotplug

NVIDIA BlueField Virtio-net v24.07 8

Ref

397
489

402
216

400
126

396
559

396
195

Issue

Reported in version: 24.07

Description: VLAN traffic does not work in virtio interface because
rq_attr.vlan_strip_disable is set to 0 by default, stripping the VLAN tag a packet arrives
at the virtio RQ.

Workaround: N/A
Keyword: VLAN
Reported in version: 24.07

Description: Feature bit VIRTIO_NET_F_CTRL_VLAN is not supported. Enabling it from
the hotplug device may results in anomalous behavior.

Workaround: Disable VIRTIO_NET_F_CTRL_VLAN.
Keyword: Feature bit
Reported in version: 24.07

Description: The virtnet.conf file does not check invalid values such as negative
numbers or 0.

Workaround: N/A
Keyword: Virtnet; config; invalid value
Reported in version: 24.07

Description: Admin-VQ-based transitional VF show a vf_get error when the
controller is restarted. However, VF functionality is not affected.

Workaround: N/A
Keyword: Admin VQ; transitional device
Reported in version: 24.07

Description: Out-of-memory call trace occurs when creating many (>300) VFs on a
BlueField running OpenEuler or CentOS 7.6.

Workaround: Update the kernel to support shared RQ.
Keyword: OOM; OpenEuler; CentOS 7.6; virtual function

Reported in version: 24.07

NVIDIA BlueField Virtio-net v24.07

Ref

386
268

368
380

371
452

369
440

363
345

302
196

Issue

Description: Creating VFs and hotplug PFs in parallel can lead to controller crash.
Workaround: Create VFs followed by hotplug PF or vice versa.

Keyword: Virtio-net emulation

Reported in version: 1.9.0

Description: Starting from kernel 5.14, the virtio-net TX path has a logic which may
trigger infinite loop when vq is broken (e.g., device is removed) under heavy traffic.

Workaround: N/A
Keyword: Virtio-net
Reported in version: 1.8.0

Description: When creating/destroying VFs back to back, make sure the virtio-net
controller side does not see any alive VF before recreating them from the guest
OS (i.e., virtnet query).

Workaround: N/A
Keyword: Virtio-net; VFs
Reported in version: 1.8.0

Description: When restarting the virtio-net-controller from the DPU while the
guest OS is booting, the guest OS may see kernel call trace while the controller is
preparing the device. It recovers once the controller starts.

Workaround: N/A
Keyword: Virtio-net; hotplug; restart
Reported in version: 1.8.0

Description: Jumbo MTU is only supported on a guest OS with kernel 4.11 and
above.

Workaround: N/A
Keyword: Virtio-net; jumbo MTU
Reported in version: 1.7.0

Description: When rebooting a DPU with a large number of VFs created on host,
VF recovery may fail due to timeout.

NVIDIA BlueField Virtio-net v24.07 10

Ref
#

323
244

280
178

287
021

268
519

270
239

Issue

Workaround: Restart the driver on the host after the DPU is up.
Keyword: Reboot; VFs
Reported in version: 1.7.0

Description: After live migration of virtio-net devices using the VFE driver, the
max_queues_size output from the virtnet list may be wrong. This does not affect the
actual value.

Workaround: N/A
Keywords: Virtio-net; live migration
Reported in version: 1.4.0

Description: When running virtio-net-controller with host kernel older than 3.10.0-
1160.el7, host virtio driver may get error (Unexpected TXQ (13) queue failure: -28) from
dmesg in traffic stress test.

Workaround: N/A
Keywords: Virtio-net; error
Reported in version: 1.2.0

Description: Servers do not recover after configuring
PCI_SWITCH_EMULATION_NUM_PORT to 32 followed by power cycle.

Workaround: Clear NVRAM and reset mixconfig to default
Keywords: VirtlO-net; power cycle
Reported in version: 1.2.0

Description: Once Virtio-net is enabled, the mIx5 Windows VF becomes
unavailable.

Workaround: N/A
Keywords: Virtio-net; virtual function; WinOF-2
Reported in version: 1.2.0

Description: When a device is hot-plugged from the virtio-net controller, the host
OS may hang when warm reboot is performed on the host and Arm at the same
time.

NVIDIA BlueField Virtio-net v24.07 11

Ref

Issue

Workaround: Reboot the host OS first and only then reboot DPU.

Keywords: Virtio-net controller; hot-plug; reboot

Reported in version: 1.2.0

Change Log History

Changes and New Features in v1.9.0

Added support for virtio feature bit VIRTIO_NET_F_HOST_USO
Added support for virtio feature bit VIRTIO_NET_F_CTRL_GUEST_OFFLOADS
Added support for virtio feature bit VIRTIO_NET_F_GUEST_ANNOUNCE

Added support for virtio feature bit VIRTIO_F_MRG_RX_BUFFER; must enable from config
file

Added support for packed VQ at beta level; must enable from config file

NVIDIA BlueField Virtio-net v24.07 12

Virtio-net Deployment

Updating OS Image on BlueField

To install the BFB bundle on the NVIDIA® BlueField®, run the following command from
the Linux hypervisor:

[host]# sudo bfb-install --rshim <rshimN> --bfb <image_path.bfb>

For more information, refer to section "Deploying BlueField Software Using BFB from
Host" in the NVIDIA BlueField DPU BSP documentation.

Updating NIC Firmware

From the BlueField networking platform, run:
[dpul# sudo /opt/mellanox/minx-fw-updater/minx_fw_updater.pl --force-fw-update

For more information, refer to section "Upgrading Firmware" in the NVIDIA DOCA
Installation Guide for Linux.

Configuring NIC Firmware

As default, DPU should be configured in DPU mode. A simple way to confirm DPU is
running at DPU mode is to log into the BlueField Arm system and check if po and pfohpf
both exists by running command below.

[dpul# ip link show

NVIDIA BlueField Virtio-net v24.07

13

https://docs.nvidia.com/networking/display/bluefielddpuos/deploying+bluefield+software+using+bfb+from+host
https://docs.nvidia.com/networking/display/bluefielddpuos/deploying+bluefield+software+using+bfb+from+host
https://docs.nvidia.com/doca/sdk/nvidia+doca+installation+guide+for+linux/index.html#src-2571330368_NVIDIADOCAInstallationGuideforLinux-UpgradingFirmware

Virtio-net full emulation only works in DPU mode. For more information about DPU mode

configuration, please refer to page "Mode of Operation" in the NVIDIA BlueField DPU BSP
documentation.

Before enabling the virtio-net service, configure firmware via mixconfig tool is required.
There are examples on typical configurations, the table listed relevant mixconfig entry
descriptions.

(D) Note

For mixconfig configuration changes to take effect, perform a BlueField
system-level reset.

MlIxconf
ig Description
Entries

VIRTIO_N
ET_EMUL
ATION_E
NABLE

Must be set to TRUE, for virtio-net to be enabled

VIRTION /' Total number of PCle functions (PFs) exposed by the device for virtio-net

ET_EMUL . . : : :
ATION N emulation. Those functions are persistent along with host/BlueField power
um_pr | Cycle.

VIRTIO_N

ET_EMUL | The max number of virtual functions (VFs) that can be supported for each

ATION_N | virtio-net PF
UM_VF

VIRTIO_N
ET_EMUL | Number of MSI-X vectors assigned for each PF of the virtio-net emulation

ATION_N | device, minimal is 4.
UM_MSIX

VIRTIO_N
ET_EMUL
ATION_N

UM_VF_M
SIX

Number of MSI-X vectors assigned for each VF of the virtio-net emulation
device, minimal is 4. Relevant for BlueField-3 devices only.

NVIDIA BlueField Virtio-net v24.07

14

https://docs.nvidia.com/networking/display/bluefielddpuos/modes+of+operation
https://docs.nvidia.com/networking/display/bluefielddpuos/nvidia+bluefield+reset+and+reboot+procedures#src-2821766774_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystem-levelReset
https://docs.nvidia.com/networking/display/bluefielddpuos/nvidia+bluefield+reset+and+reboot+procedures#src-2821766774_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystem-levelReset

MIxconf
ig Description
Entries

When TRUE, the device exposes a PCle switch. All PF configurations are applied
PCLSWIT | o1 the switch downstream ports. In such case, each PF gets a different PCle
CH_EMUL . , : , : .
ATION E device on the emulated switch. This configuration allows exposing extra
NABLE | network PFs toward the host which can be enabled for virtio-net hot-plug

devices.

The maximum number of emulated switch ports. Each port can hold a single
PCle device (emulated or not). This determines the supported maximum
number of hot-plug virtio-net devices. The maximum number depends on
hypervisor PCle resource, and cannot exceed 31.

PCI_SWIT

CH_EMUL @ Note

ATION_N , , ,
UM_PORT Check system PCle resource. Changing this entry to a big

number may results in the host not booting up, which
would necessitate disabling the BlueField device and
clearing the host NVRAM.

PER_PF_N | When TRUE, the SFs configuration is defined by TOTAL_SF and SF_BAR_SIZE for
UM_SF each PF individually. If they are not defined for a PF, device defaults are used.

PF_TOTAL | The total number of scalable function (SF) partitions that can be supported for

-SF the current PF. Valid only when PER_PF_NUM_SF is set to TRUE. This number
should be greater than the total number of virtio-net PFs (both static and
hotplug) and VFs.

() Note

This entry differs between the BlueField and host side
mixconfig. It is also a system wide value, which is shared by
virtio-net and other users. The DPU normally creates 1 SF

NVIDIA BlueField Virtio-net v24.07 15

MIxconf
ig
Entries

PF_SF_BA
R_SIZE

PF_BAR2_
ENABLE

SRIOV_EN

EXP_ROM
_VIRTIO_N
ET_PXE_E
NABLE

EXP_ROM

_VIRTIO_N
ET_UEFI_A
RM_ENAB

LE

EXP_ROM

_VIRTIO_N
ET_UEFI_x
86_ENABL
E

Description

as default per port. Consider this default SF into account
when reserving the PF_TOTAL_SF.

Log (base 2) of the BAR size of a single SF, given in KB. Valid only when
PF_TOTAL_SF is non-zero and PER_PF_NUM_SF is set to TRUE.

When TRUE, BAR2 is exposed on all external host PFs (but not on the

embedded Arm PFs/ECPFs). The BAR2 size is defined by the log_pf_bar2_size.

Enable single-root 1/0O virtualization (SR-IOV) for virtio-net and native PFs

Enable expansion ROM option for PXE for virtio-net functions

(i) Note

All virtio Exp_ROM options should be configured from host
side other than the BlueField platform's side, only static
PF is supported.

Enable expansion ROM option for UEFI for Arm based host for virtio-net
functions

Enable expansion ROM option for UEFI for x86 based host for virtio-net
functions

The maximum number of supported devices is listed below. It does not apply when there
are hot-plug and VF created at the same time.

NVIDIA BlueField Virtio-net v24.07

16

Static PF Hot-plug PF VF
31 31 1008

Static PF

Static PF is defined as virtio-net PFs which are persistent even after DPU or host power
cycle. It also supports creating SR-IOV VFs.

The following is an example for enabling the system with 4 static PFs
(VIRTIO_NET_EMULATION_NUM_PF) only:

(D Info

10 SFs (PF_TOTAL_SF) are reserved to take into account other
application using the SFs.

[dpul# mixconfig -d 03:00.0 s \
VIRTIO_NET_EMULATION_ENABLE=1 \
VIRTIO_NET_EMULATION_NUM_PF=4\
VIRTIO_NET_EMULATION_NUM_VF=0\
VIRTIO_NET_EMULATION_NUM_MSIX=64 \
PCI_SWITCH_EMULATION_ENABLE=0 \
PCI_SWITCH_EMULATION_NUM_PORT=0\
PER_PF_NUM_SF=1\

PF_TOTAL_SF=64\

PF_BAR2_ENABLE=0\

PF_SF_BAR_SIZE=8\

SRIOV_EN=0

Hotplug PF

Hotplug PF is defined as virtio-net PFs which can be hotplugged or unplugged dynamically
after the system comes up.

NVIDIA BlueField Virtio-net v24.07 17

() Note

Hotplug PF does not support creating SR-IOV VFs.

The following is an example for enabling 16 hotplug PFs (PCI_SWITCH_EMULATION_NUM_PORT):

[dpul# mixconfig -d 03:00.0 s \
VIRTIO_NET_EMULATION_ENABLE=1 \
VIRTIO_NET_EMULATION_NUM_PF=0\
VIRTIO_NET_EMULATION_NUM_VF=0\
VIRTIO_NET_EMULATION_NUM_MSIX=64\
PCI_SWITCH_EMULATION_ENABLE=1 \
PCI_SWITCH_EMULATION_NUM_PORT=16\
PER_PF_NUM_SF=1\

PF_TOTAL_SF=64\

PF_BAR2_ENABLE=0\

PF_SF_BAR_SIZE=8\

SRIOV_EN=0

SR-IOV VF

SR-I0OV VF is defined as virtio-net VFs created on top of PFs. Each VF gets an individual
virtio-net PCle devices.

() Note

VFs cannot be dynamically created or destroyed, they can only
change from X to 0, or from 0 to X.

() Note

NVIDIA BlueField Virtio-net v24.07 18

VFs will be destroyed when reboot host or unbind PF from virtio-net
kernel driver.

The following is an example for enabling 126 VFs per static PF—504 (4 PF x 126) VFs in
total:

[dpul# mixconfig -d 03:00.0 s \
VIRTIO_NET_EMULATION_ENABLE=1 \
VIRTIO_NET_EMULATION_NUM_PF=4\
VIRTIO_NET_EMULATION_NUM_VF=126\
VIRTIO_NET_EMULATION_NUM_MSIX=64\
VIRTIO_NET_EMULATION_NUM_VF_MSIX=64 \
PCI_SWITCH_EMULATION_ENABLE=0 \
PCI_SWITCH_EMULATION_NUM_PORT=0\
PER_PF_NUM_SF=1\

PF_TOTAL_SF=512\

PF_BAR2_ENABLE=0\

PF_SF_BAR_SIZE=8 \

NUM_VF_MSIX=0\

SRIOV_EN=1

PF/VF Combinations

Creating static/hotplug PFs and VFs at the same time is supported.
The total sum of PCle functions to the external host must not exceed 256. For example:

e |fthere are 2 PFs with no VFs (NUM_OF_VFs=0) and there is 1 RShim, then the
remaining static functions is 253 (256-3).

e |f 1 virtio-net PF is configured (VIRTIO_NET_EMULATION_NUM_PF=1), then up to 252 virtio-
net VFs can be configured (VIRTIO_NET_EMULATION_NUM_VF=252)

e |f 2 virtio-net PF (VIRTIO_NET_EMULATION_NUM_PF=2), then up to 125 virtio-net VFs can be
configured (VIRTIO_NET_EMULATION_NUM_VF=125)

NVIDIA BlueField Virtio-net v24.07 19

The following is an example for enabling 15 hotplug PFs, 2 static PFs, and 200 VFs (2 PFs x
100):

[dpul# mixconfig -d 03:00.0 s \
VIRTIO_NET_EMULATION_ENABLE=1 \
VIRTIO_NET_EMULATION_NUM_PF=2\
VIRTIO_NET_EMULATION_NUM_VF=100 \
VIRTIO_NET_EMULATION_NUM_MSIX=10\
VIRTIO_NET_EMULATION_NUM_VF_MSIX=64 \
PCI_SWITCH_EMULATION_ENABLE=1 \
PCI_SWITCH_EMULATION_NUM_PORT=15\
PER_PF_NUM_SF=1\

PF_TOTAL_SF=256\

PF_BAR2_ENABLE=0\

PF_SF_BAR_SIZE=8 \

NUM_VF_MSIX=0\

SRIOV_EN=1

() Note

In hotplug virtio-net PFs and virtio-net SR-IOV VFs setups, only up to
15 hotplug devices are supported.

System Configuration

Host System Configuration

For hotplug device configuration, it is recommended to modify the hypervisor OS kernel
boot parameters and add the options below:

pci=realloc

NVIDIA BlueField Virtio-net v24.07 20

For SR-IOV configuration, first enable SR-IOV from the host.

(D Info

Refer to MLNX_OFED documentation under Features Overview and
Configuration > Virtualization > Single Root |0 Virtualization (SR-IOV) >
Setting Up SR-10QV for instructions on how to do that.

Make sure to add the following options to Linux boot parameter.

intel_iommu=on iommu=pt

(D) Note

Add pci=assign-busses to the boot command line when creating more
than 127 VFs. Without this option, the following errors may trigger
from the host and the virtio driver would not probe those devices.

pci 0000:84:00.0: [1af4:1041] type 7f class Oxffffff
pci 0000:84:00.0: unknown header type 7f, ignoring device

(D) Note

Because the controller from the BlueField side provides hardware
resources and acknowledges (ACKs) the request from the host's
virtio-net driver, it is mandatory to reboot the host OS first and the
BlueField afterwards. This also applies to reconfiguring a controller

NVIDIA BlueField Virtio-net v24.07 21

https://docs.mellanox.com/category/mlnxofedib

from the BlueField platform (e.g., reconfiguring LAG). Unloading the
virtio-net driver from host OS side is recommended.

BlueField System Configuration

Virtio-net full emulation is based on ASAPA2. For each virtio-net device created from host
side, there is an SF representor created to represent the device from the BlueField side. It
is necessary to have the SF representor in the same OVS bridge of the uplink representor.

The SF representor name is designed in a fixed pattern to map different type of devices.

Static PF Hotplug PF SR-IOV VF
SF Range 1000-1999 2000-2999 3000 and above

For example, the first static PF gets the SF representor of en3fopfosf1000 and the second
hotplug PF gets the SF representor of en3fopfosf2001. It is recommended to verify the name
of the SF representor from the sf_rep_net_device field in the output of virtnet list.

[dpul# virtnet list
{

"devices": [
{

"pf_id": O,
"function_type": "static PF",
"transitional": 0,
"vuid": "MT2151X03152VNETSODOF2",
"pci_bdf": "14:00.2",
"pci_vhca_id": "0Ox2",
"pci_max_vfs": "0",
"enabled_vfs": "0",
"msix_num_pool_size": 0,
"min_msix_num": O,
"max_msix_num": 32,
"min_num_of_qgp": 0,
"max_num_of_gp": 15,

NVIDIA BlueField Virtio-net v24.07 22

https://docs.nvidia.com/networking/display/mlnxofedv23102131lts/ovs+offload+using+asap%C2%B2+direct

"gp_pool_size": 0,

"num_msix": "64",
"num_qgueues™: "8",
"enabled_queues": "7",
"max_queue_size": "256",
"msix_config_vector": "0x0",
"mac"; "D6:67:E7:09:47.D5",
"link_status": "1",
"max_queue_pairs": "3",

"mtu": "1500",

"speed": "25000",
"rss_max_key_size": "0",
"supported_hash_types": "0x0",
"ctrl_mac": "D6:67:E7:09:47:D5",
"ctrl_mqg": "3",

"sf num": 1000,
"sf_parent_device": "mIx5_0",
"sf_parent_device_pci_addr": "0000:03:00.0",
"sf_rep_net_device": "en3f0pf0sf1000",
"sf_rep_net_ifindex": 15,
"sf_rdma_device": "mlix5_4",
"sf_cross_mkey": "0x18A42",
"sf_vhca_id": "0x8C",
"sf_rgt_num": "0xQ",

"aarfs"; "disabled"

Once SF representor name is located, add it to the same OVS bridge of the corresponding

uplink representor and make sure the SF representor is up:

[dpul# ovs-vsctl show
f2c431e5-f8df-4f37-95ce-aa0c7da738e0
Bridge ovsbr1
Port ovsbr1
Interface ovsbr1
type: internal
Port en3fOpf0sfO
Interface en3fOpf0sf0
Port p0

NVIDIA BlueField Virtio-net v24.07

23

Interface pO
[dpul# ovs-vsctl add-port ovsbr1 en3fOpf0sf1000
[dpul# ovs-vsctl show
f2c431e5-f8df-4f37-95ce-aalc7da738e0
Bridge ovsbr1
Port ovsbr1
Interface ovsbr1
type: internal
Port en3fOpf0sfO
Interface en3f0pf0sf0
Port en3fOpf0sf1000
Interface en3f0pf0sf1000
Port p0
Interface pO
[dpul# ip link set dev en3f0pf0sf1000 up

Usage

After firmware/system configuration and after system power cycle, the virtio-net devices

should be ready to deploy.

First, make sure that mixconfig options take effect correctly by issuing the following

command:

(D Info

The output has a list with 3 columns: default configuration, current
configuration, and next-boot configuration. Verify that the values under

the 2nd column match the expected configuration.

[dpul# mixconfig -d 03:00.0 -e q | grep -i *

* PER_PF_NUM_SF False(0) True(1) True(1)
* NUM_OF_VFS 16 0 0

* PF_BAR2_ENABLE True(1) False(0) False(0)
* PCI_SWITCH_EMULATION_NUM_PORT 0 8 8

NVIDIA BlueField Virtio-net v24.07

24

* PCI_SWITCH_EMULATION_ENABLE False(0) True(1) True(1)

* VIRTIO_NET_EMULATION_ENABLE False(0) True(1) True(1)
* VIRTIO_NET_EMULATION_NUM_VF 0 126 126

* VIRTIO_NET_EMULATION_NUM_PF 0 1 1

* VIRTIO_NET_EMULATION_NUM_MSIX 2 64 64

* VIRTIO_NET_EMULATION_NUM_VF_MSIX 0 64 64

* PF_TOTAL_SF 0 508 508

* PF_SF_BAR_SIZE 0 8 8

If the system is configured correctly, virtio-net-controller service should be up and
running. If the service does not appear as active, double check the firmware/system

configurations above.

[dpul# systemctl status virtio-net-controller.service
virtio-net-controller.service - Nvidia VirtlO Net Controller Daemon

Loaded: loaded (/etc/systemd/system/virtio-net-controller.service; enabled; vendor preset: disabled)

Active: active (running)
Docs: file:/opt/mellanox/minx_virtnet/README.md
Main PID: 30715 (virtio_net_mana)

Tasks: 55

Memory: 11.7M

CGroup: /system.slice/virtio-net-controller.service
30715 /usr/sbin/virtio_net_manager
30859 virtio_net_controller

To reload or restart the service, run:

[dpul# systemctl restart virtio-net-controller.service

Hotplug PF Devices

Creating PF Devices

1. To create a hotplug virtio-net device, run:

NVIDIA BlueField Virtio-net v24.07

[dpul# virtnet hotplug -i mIx5_0 -f 0x0 -m 0C:C4:7A:FF:22:93 -t 1500 -n 3 -s 1024

(D Info

Refer to "Virtnet CLI Commands" for full usage.

This command creates one hotplug virtio-net device with MAC address
0C:C4:7A:FF:22:93, MTU 1500, and 3 virtio queues with a depth of 1024 entries. The
device is created on the physical port of mix5_0. The device is uniquely identified by

its index. This index is used to query and update device attributes. If the device is
created successfully, an output similar to the following appears:

{
"bdf": "15:00.0",
"vuid": "MT2151X03152VNETS1DOF0",
"id": 0,

"transitional": 0,

"sf_rep_net_device": "en3f0pf0sf2000",
"mac": "0C:C4:7A:FF:22:93",

"errno": O,

"errstr": "Success"

}

2. Add the representor port of the device to the OVS bridge and bring it up. Run:

[dpul# ovs-vsctl add-port <bridge> en3fOpf0sf2000
[dpul# ip link set dev en3f0pf0sf2000 up

Once steps 1-2 are completed, the virtio-net PCle device should be available from
hypervisor OS with the same PCle BDF.

NVIDIA BlueField Virtio-net v24.07 26

file:///networking/display/bluefieldvirtionetv2407/Virtnet+CLI+Commands

[host]# Ispci | grep -i virtio
15:00.0 Ethernet controller: Red Hat, Inc. Virtio network device (rev 01)

3. Probe virtio-net driver (e.g., kernel driver):

[host]# modprobe -v virtio-pci && modprobe -v virtio-net

4. The virtio-net device should be created. There are two ways to locate the net device:

o Check the dmesg from the host side for the corresponding PCle BDF:

[host]# dmesg | tail -20 | grep 15:00.0 -A 10 | grep virtio_net
[3908051.494493] virtio_net virtio2 ens2f0: renamed from eth0

o Check all net devices and find the corresponding MAC address:

[hostl# ip link show | grep -i "Oc:c4:7a:ff:22:93" -B 1
31: ens2f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP
mode DEFAULT group default glen 1000

link/ether Oc:c4:7a:ff:22:93 brd ff:ff:ff.ff:ff.ff

5. Check that the probed driver and its BDF match the output of the hotplug device:

[host]# ethtool -i ens2f0
driver: virtio_net

version: 1.0.0
firmware-version:
expansion-rom-version:
bus-info: 0000:15:00.0
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: no

NVIDIA BlueField Virtio-net v24.07

27

supports-priv-flags: no

Now the hotplug virtio-net device is ready to use as a common network device.

Destroying PF Devices

To hot-unplug a virtio-net device, run:
[dpul# virtnet unplug -p 0
{id": '0x1"}

{

"errno": 0,
"errstr": "Success"

}

The hotplug device and its representor are destroyed.

SR-IOV VF Devices

Creating SR-IOV VF Devices

After configuring the firmware and BlueField/host system with correct configuration,
users can create SR-IOV VFs.

The following procedure provides an example of creating one VF on top of one static PF:

1. Locate the virtio-net PFs exposed to the host side:

[host]# Ispci | grep -i virtio
14:00.2 Network controller: Red Hat, Inc. Virtio network device

NVIDIA BlueField Virtio-net v24.07

28

2. Verify that the PCle BDF matches the backend device from the BlueField side:

[dpul# virtnet list
{

"devices": [

{
"pf_id": O,
"function_type": "static PF",
"transitional": 0,
"vuid": "MT2151X03152VNETSODOF2",
"pci_bdf"; "14:00.2",
"pci_vhca_id": "0x2",
"pci_max_vfs": "0",
"enabled_vfs": "0",
"msix_num_pool_size": 0,
"min_msix_num": O,
"max_msix_num": 32,
"min_num_of_qgp": 0,
"max_num_of_gp": 15,
"gp_pool_size": 0,
"num_mesix": "64",
"num_queues™: "8",
"enabled_queues": "7",
"max_queue_size": "256",
"msix_config_vector": "0x0",
"mac": "D6:67:E7:09:47:D5",
"link_status": "1",
"max_queue_pairs": "3",
"mtu": "1500",
"speed": "25000",
"rss_max_key_size": "0",
"supported_hash_types": "0x0",
"ctrl_mac": "D6:67:E7:09:47:D5",
"ctrl_mqg": "3",
"sf num": 1000,
"sf_parent_device": "mIx5_0",
"sf_parent_device_pci_addr": "0000:03:00.0",
"sf_rep_net_device": "en3f0pf0sf1000",
"sf_rep_net_ifindex": 15,
"sf_rdma_device": "mlIx5_4",
"sf_cross_mkey": "0x18A42",
"sf vhca_id": "0x8C",

NVIDIA BlueField Virtio-net v24.07

"sf_rgt_num": "0xQ",
"aarfs": "disabled"
}
]
}

3. Probe virtio_pci and virtio_net modules from the host:

[host]# modprobe -v virtio-pci && modprobe -v virtio-net

The PF net device should be created.

[host]# ip link show | grep -i "4A:82:E3:2E:96:AB" -B 1
21: ens2f2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode
DEFAULT group default glen 1000

link/ether 4a:82:e3:2e:96:ab brd ff:ff:ff:ff:ff:ff

The MAC address and PCle BDF should match between the BlueField side (virtnet list)
and host side (ethtool).

[host]# ethtool -i ens2f2
driver: virtio_net

version: 1.0.0
firmware-version:
expansion-rom-version:
bus-info: 0000:14:00.2
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: no
supports-priv-flags: no

4. To create SR-IOV VF devices on the host, run the following command with the PF
PCle BDF (0000:14:00.2 in this example):

NVIDIA BlueField Virtio-net v24.07 30

[host]# echo 1 > /sys/bus/pci/drivers/virtio-pci/0000\:14\:00.2/sriov_numvfs

1 extra virtio-net device is created from the host:

[host]# Ispci | grep -i virtio
14:00.2 Ethernet controller: Red Hat, Inc. Virtio network device (rev 01)
14:00.4 Ethernet controller: Red Hat, Inc. Virtio network device (rev 01)

The BlueField side shows the VF information from virtnet list as well:

[dpul# virtnet list

"vf_id": 0,

"parent_pf_id": 0,
"function_type": "VF",
"transitional": 0,

"vuid": "MT2151X03152VNETSODOF2VF1",
"pci_bdf"; "14:00.4",
"pci_vhca_id": "0xD",
"pci_max_vfs": "0",
"enabled_vfs": "0",
"num_msix": "12",
"num_queues™: "8",
"enabled_queues": "7",
"max_queue_size": "256",
"msix_config_vector": "0x0",
"mac"; "16:FF:A2:6E.:6D:A9",
"link_status": "1",
"max_queue_pairs": "3",

"mtu": "1500",

"speed": "25000",
"rss_max_key_size": "0",
"supported_hash_types": "0x0",
"ctrl_mac"; "16:FF:A2:6E:6D:A9",
"ctrl_mqg": "3",

"sf_num": 3000,
"sf_parent_device": "mIx5_0",

NVIDIA BlueField Virtio-net v24.07

31

"sf_parent_device_pci_addr": "0000:03:00.0",
"sf_rep_net_device": "en3f0pf0sf3000",
"sf_rep_net_ifindex": 18,

"sf rdma_device": "mIx5_5",
"sf_cross_mkey": "Ox58A42",

"sf vhca_id": "Ox8D",

"sf_rgt_num"; "0x0",

"aarfs"; "disabled"

}

5. Add the corresponding SF representor to the OVS bridge as the virtio-net PF and
bring it up. Run:

[dpul# ovs-vsctl add-port <bridge> en3fOpf0sf3000
[dpul# ip link set dev en3f0pf0sf3000 up

Now the VF is functional.

() Note

00000191-539a-d31e-adf1-53bf61dc0000 00000191-539a-d31e-adf1-
53bf61dc0001

[host]# echo 0 > /sys/bus/pci/drivers/virtio-
pci/<virtio_pf_bdf>/sriov_drivers_autoprobe

[host]# echo <num_vfs> > /sys/bus/pci/drivers/virtio-
pci/<virtio_pf_bdf>/sriov_numvfs

Users can pass through the VFs directly to the VM after finishing. If
using the VFs inside the hypervisor OS is required, bind the VF PCle
BDF:

[host]# echo <virtio_vf_bdf> > /sys/bus/pci/drivers/virtio-pci/bind

NVIDIA BlueField Virtio-net v24.07 32

Keep in mind to reenable the autoprobe for other use cases:

[host]# echo 1 > /sys/bus/pci/drivers/virtio-
pci/<virtio_pf_bdf>/sriov_drivers_autoprobe

/\ Warning

Creating VFs for the same PF on different threads may cause the
hypervisor OS to hang.

Destroying SR-IOV VF Devices

To destroy SR-IOV VF devices on the host, run:

[host]# echo 0 > /sys/bus/pci/drivers/virtio-pci/<virtio_pf_bdf>/sriov_numvfs

() Note

When the echo command returns from the host OS, it does not
necessarily mean the BlueField side has finished its operations. To
verify that the BlueField is done and it is safe to recreate the VFs,

either:

e Check controller log from the BlueField and make sure you see
a log entry similar to the following:

[dpul# journalctl -u virtio-net-controller.service -n 3 -f

NVIDIA BlueField Virtio-net v24.07 33

virtio-net-controller[5602]: [INFO]
virtnet.c:675:virtnet_device_vfs_unload: static PF[0], Unload (1) VFs
finished

e Query the last VF from the BlueField side:

[dpul# virtnet query-p0-v 0 -b
{'all': '0x0', 'vf': '0x0', 'pf": '0x0', 'dbg_stats": '0x0', 'brief': '0x1',
'latency_stats'": '0x0', 'stats_clear": '0x0'}

{

"Error": "Device doesn't exist"

}

(D) Note

Once VFs are destroyed, SFs created for virtio-net from the BlueField
side are not destroyed but are saved into the SF pool for reuse later.

Assigning Virtio-net Device to VM

All virtio-net devices (static/hotplug PF and VF) support PCle passthrough to a VM. PCle
passthrough allows the device to get better performance in the VM.

Assigning a virtio-net device to a VM can be done via virt-manager Or virsh command.

Locating Virtio-net Devices

All virtio-net devices can be scanned by the PCle subsystem in hypervisor OS and
displayed as a standard PCle device. Run the following command to locate the virtio-net
devices devices with its PCle BDF.

NVIDIA BlueField Virtio-net v24.07 34

[host]# Ispci | grep 'Virtio network'
00:09.1 Ethernet controller: Red Hat, Inc. Virtio network device (rev 01)

Using virt-manager

Start virt-manager, run the following command:

[host]# virt-manager

() Note

Make sure your system has xterm enabled to show the virt-manager
GUL.

Double-click the virtual machine and open its Properties. Navigate to Details
hardware PCle host device.

NVIDIA BlueField Virtio-net v24.07

Add

35

— uesll Virtual Machins
Fle Virtual Maching iew Send Key

- 0y @~ &
- ; .;dd new I.|'|IIIJ..1 hl.rdwlrl- =l =
_LT.I Oy
Ferfoimance = =
= ; Adding Virtual Hardware
L:E Processar
B Memary This assistant will guide you theough adding & new
O Boot Optiens piece of virtua hardware. Frst select what type

of hardware you wesh to add:
Wirtlo Desk 1

DE COROM 1 Hardware type: || Storage
W NIC :D6:fe:35 . Metwodk
! Mause ! Inpait
B owsplay 0 & Graphics
b Sound: ac97 b Sound
idy Sens 0 =4 Seral
PCi 0003:09:001 | é Parabel
B video Q- Physical Host Device
& wdeo

B watchdog

& Cancel & Forward |

s Add Hardware = REmove I

Choose a virtio-net device virtual function according to its PCle device (e.g., 00:09.1),
reboot or start the VM.

Using virsh Command

1. Run the following command to get the VM list and select the target VM by Name
field:

[host]# virsh list --all
Id Name State

1 host-101-CentOS-8.5 running

2. Edit the VMs XML file, run:

NVIDIA BlueField Virtio-net v24.07

[host]# virsh edit <VM_NAME>

3. Assign the target virtio-net device PCle BDF to the VM, using vfio as driver, replace
BUS/SLOT/FUNCTION/BUS_IN_VM/SLOT_IN_VM/FUNCTION_IN_VM with corresponding settings.

<hostdev mode='subsystem' type='pci' managed='no">
<driver name="vfio'/>
<source>
<address domain='0x0000' bus='<#BUS>' slot="<#SLOT>' function='<#FUNCTION>'/>
</source>
<address type='pci' domain='0x0000' bus='<#BUS_IN_VM>' slot="<#SLOT_IN_VM>"'
function="<#FUNCTION_IN_VM>'/>
</hostdev>

For example, assign target device 00.09.1 to the VM and its PCle BDF within the VM is
01:00.0:

<hostdev mode='subsystem' type='pci' managed='no">
<driver name='vfio'/>

<source>
<address domain='0x0000" bus='0x00' slot='"0x09' function='0x1'/>
</source>
<address type='pci' domain='0x0000' bus='0x01" slot='"0x00' function='0x0'/>
</hostdev>

4. Destroy the VM if it is already started:

[host]# virsh destory <VM_NAME>

5. Start the VM with new XML configuration:

[host]# virsh start <VM_NAME>

NVIDIA BlueField Virtio-net v24.07 37

NVIDIA BlueField Virtio-net v24.07

38

Configuration File

Configuration File Options

The controller service has an optional JSON format configuration file which allows users
to customize several parameters. The configuration file should be defined on the DPU at
/opt/mellanox/minx_virtnet/virtnet.conf. This file is read every time the controller starts.

() Note

Controller systemd service should be restarted when there is
configuration file change. Dynamic change of virtnet.conf is not

supported.
Def
Par | aul
Ty .
ame |t o Description
ter |Val P
ue
St . . .
ib_de | mlix inr RDMA device (e.g., mix5_0) used to create SF on port 0. This port is the
v_p0 |50 g EMU manager when is_lag is O.
b g | Str
1/516 r5n1x in | RDMA device (e.g., mix5_1) used to create SF on port 1
8
ib_de Str
v_for | mix |. . . e .
stati | 5.0 in | The RDMA device (e.g., mix5_0) which the static virtio PF is created on

c_pf 24

ib_de | Null | Str | RDMA LAG device (e.g., mix5_bond_0) used to create SF on LAG. Default
vlag in | value is mix5_bond_0. This port is EMU manager when is_lag is 1. ib_dev_lag

NVIDIA BlueField Virtio-net v24.07 39

Def
Par |aul
Ty .
ame |t o Description
ter |Val
ue

g | and ib_dev_p0/ib_dev_p1 cannot be configured simultaneously.

static | N/A | Lis | The following sub-parameters can be used to configure the static PF:

_pf t

Sub | Def
- aul

T
par ﬁ
am | Val P
eter ue
mac |y | St
_bas | N
€ g

NVIDIA BlueField Virtio-net v24.07

Description

Base MAC address for static PFs. MACs are

automatically assigned with the following pattern:

mac_base pf 0, mac_base +1 pf_1, etc.

() Note

Controller does not validate the
MAC address (other than its
length). The user must ensure the
MAC is valid and unique.

40

Def

Par |aul
Ty L
ame |t Description
ter |Val
ue
Sub | Def
- aul
T _
par |t)é Description
am | Val P
eter ' ue
Virtio spec-defined feature bits for static PFs.
(D) Note
N If unsure, leave features out of the
Aut . JSON file and a default value is
feat | AULIM automatically assigned. The default
ures o | be . . .
value is determined dynamically
r when controller starts. Refer to the
"Feature Bits" page for more
information.
Specifies whether LAG is used
Nu
o m (i) Note
>-198 be If LAG is used, make sure to use the correct IB dev
r for static PF
. Nu
Z'ng; , M Specifies whether the DPU is a single port device. Itis mutually exclusive
-P be |with is_lag.

rt
r

NVIDIA BlueField Virtio-net v24.07

41

file:///networking/display/bluefieldvirtionetv2407/Virtio-net+Feature+Bits

Par | aul
ame |t
ter |Val

recov
ery

sf_po
ol_pe |0
rcent

sf_po
ol_fo
rced |0
estro

pack
edv |0

mrg_
rxbuf

core_
start

Nu
m
be

Nu

be

Nu

be

Nu

be

Nu

be

Nu

Description

Specifies whether recovery is enabled. If unspecified, recovery is
enabled by default. To disable it, set recovery to 0. Refer to the "Recovery"
page for the items which are recovered and more information.

Determines the initial SF pool size as the percentage of PF_TOTAL_SF of
mixconfig. Valid range: [0, 100]. For instance, if the value is 5, an SF pool
with 5% of PF_TOTAL_SF is created. O indicates that no SF pool is reserved
beforehand (default).

() Note

PF_TOTAL_SF is shared by all applications. The user
must ensure that the percent request is guaranteed,
or else the controller would not be able to reserve
the requested SFs resulting in failure.

Specifies whether to destroy the SF pool. When set to 1, the controller
destroys the SF pool when stopped/restarted (and the SF pool is
recreated if sf_pool_percent is not 0 when starting). Otherwise, it does not.
Default value is 0.

Specifies whether packed VQ mode is enabled. If unspecified, packed VQ
is disabled by default. To enable, set packed_vq to 1. For VQ types, refer to
the "Virt Queue Types" page.

When enabled, the mergeable buffers feature is negotiated with the
host driver. This feature allows the guest driver to use multiple RX
descriptor chains to receive a single receive packet, hence increase
bandwidth.

Specifies the start DPA core for virtnet application. Valid only for
NVIDIA® BlueField®-3 and up. Value must be greater than 0 and less

NVIDIA BlueField Virtio-net v24.07 42

file:///networking/display/bluefieldvirtionetv2407/Virt+Queue+Types

Def
Par | aul

T L
ame |t Y Description
ter |Val
ue
be |than 11. Together with dpa_core_end, dpa_core_start defines how many DPA
r |cores are used for the virtio-net data plane.
() Note
This is advanced options when there are multiple
DPA applications running at the same time. Regular
user should keep this option as default.
dpa_ - Specifies the end DPA core for virtnet application. Valid only for
core_ |10 BlueField-3 and up. Value must be greater than dpa_core_start and less
d be
en) than 11.

vf N/A | Lis | The following sub-parameters can be used to configure the VF:
t

NVIDIA BlueField Virtio-net v24.07

43

Def
Par |aul
Ty .
ame |t Description
ter |Val

ue
Sub | Def
- I
au T
par o
am | Val P
eter ue
mac |y oY
_bas | 1g]
€ g
Nu
feat | Aut ' m

ures | o be
r

NVIDIA BlueField Virtio-net v24.07

Description

Base MAC address for VFs. MACs are automatically
assigned with the following pattern: mac_base vf_0,
mac_base + 1 vf_1, etc.

() Note

Controller does not validate the
MAC address (other than its
length). The user must ensure the
MAC is valid and unique.

Virtio spec-defined feature bits for VFs.

(D) Note

If unsure, leave features out of the
JSON file and a default value is
automatically assigned. The default
value is determined dynamically
when controller starts. Refer to the
"Feature Bits" page for more
information.

44

file:///networking/display/bluefieldvirtionetv2407/Virtio-net+Feature+Bits

Def
Par |aul
Ty .
ame |t Description
ter |Val

ue
Sub | Def
- I

au T

par o

am | Val P
eter ue

Nu

vfs_p 0 m

er_pf be

Description

The number of VFs to create on each PF . For example:
if vfs_per_pf is 100, then vf_0 on pf_1 will use mac_base + 100
as its MAC.

() Note

vfs_per_pf <
VIRTIO_NET_EMULATION_NUM_VF in
mlxconfig.

() Note

User is responsible for ensuring, on
each static PF, that the created VFs

< vfs_per_pf.

() Note

This parameter is mandatory if
mac_base is specified.

max | Aut | Nu | Number of queue pairs to use. If not specified, default

NVIDIA BlueField Virtio-net v24.07

qgueue pair number is inherited from the parent PF.

45

Def

Par | aul
ame |t Y Description
ter |Val
ue
Sub | Def
- aul
Ty
par |t o
am | Val P
eter ue
ue_p be
airs r
max NU
_que |Aut|'m
ue_si| o be
e r
Nu
it 150 |mM
0 be

Description

Virtqueue size (i.e., vq depth) to use. If not specified,
default vq size is inherited from the parent PF.

Maximum transmission unit for the VF, can be < 9216.

Configuration File Examples

() Note

Validate the JSON format of the configuration file before restarting
the controller, especially the syntax and symbols. Otherwise, the
controller may fail to start.

Configuring LAG on Dual Port BlueField

Refer to the "Link Aggregation" page in NVIDIA BlueField BSP documentation for
information on configuring BlueField in LAG mode.

NVIDIA BlueField Virtio-net v24.07

46

https://docs.nvidia.com/networking/display/bluefielddpuos/link+aggregation

Refer to the "Link Aggregation" page for information on configuring virtio-net in LAG
mode.

Configuring Static PF on Dual Port BlueField

The following configures all static PFs to use mix5_0 (port 0) as the data path device in a
non-LAG configuration, and the default MAC and features for the PF:

"ib_dev_p0": "mIx5_0",
"ib_dev_p1": "mIx5_1",
"ib_dev_for_static_pf": "mix5_0",
"is_lag": 0,
"static_pf": {
"mac_base": "08:11:22:33:44:55",
"features": "0x230047082b"
}
}

Configuring VF Specific Options

The following configures VFs with default parameters. With this configuration, each PF
assigns the MAC based on mac_base up to 126 VFs. Each VF creates 4 queue pairs, with
each queue having a depth of 256.

() Note

If vfs_per_pf is less than the VIRTIO_NET_EMULATION_NUM_VF in mixconfig,
and more VFs are created, duplicated MACs would be assigned to
different VFs.

NVIDIA BlueField Virtio-net v24.07 47

file:///networking/display/bluefieldvirtionetv2407/Link+Aggregation

{
"vf": {
"mac_base": "06:11:22:33:44:55",
"features": "0x230047082b",
"vfs_per_pf": 126,
"max_queue_pairs™: 4,
"max_queue_size": 256

NVIDIA BlueField Virtio-net v24.07

48

Virtnet CLI Commands

User Front End CLI

To communicate with the virtio-net-controller backend service, a user frontend program,
virtnet, is installed on the BlueField which is based on r emote procedure call (RPC)
protocol with JSON format output. Run the following command to check its usage:

virtnet -h usage: virtnet [-h] [-v]
{hotplug,unplug,list,query,modify,log,version,validate,update,debug,stats} ...

NVIDIA virtio-net-controller command line interface v24.07.04
positional arguments:

{hotplug,unplug,list,query,modify,log,version,update,debug}
** Use -h for sub-command usage

hotplug hotplug virtnet device

unplug unplug virtnet device

list list all virtnet devices

query query all or individual virtnet device(s)
modify modify virtnet device

log set log level

version show virtio net controller version info
validate validate configurations

update update controller

debug For debug purpose, cmds can be changed without notice
stats stats of virtnet device

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit

Virtnet supports command line autocomplete by inputting one command with tab.

To check the currently running controller version:

NVIDIA BlueField Virtio-net v24.07 49

virtnet -v
v24.07.09

Hotplug

This command hotplugs a virtio-net PCle PF device exposed to the host side.

Syntax

virtnet hotplug -i IB_DEVICE -m MAC -t MTU -n MAX_QUEUES -s MAX_QUEUE_SIZE [-h] [-u SF_NUM] [-f
FEATURES] [-1]

. Argu | Re
Opti : _
on b | ment qui Description
br | Type | red

~help |-h |N/A | No | Show the help message and exit

RDMA device (e.g., mix5_0) of the physical port on top of which the
hotplug device is created.

B _ Options:
ib_ de |-i Strin Yes
vice g e mix5_0-port1
® mix5_1 - port 2
e mix5 bond 0 - LAG
Feature bits to be enabled in hex format. Refer to the "Virtio-net
Feature Bits" page.
- Hex () Note
zesatur f Ik\)lum No Note that some features are enabled by
er

default. Query the device to show the
supported bits.

NVIDIA BlueField Virtio-net v24.07 50

file:///networking/display/bluefieldvirtionetv2407/Virtio-net+Feature+Bits
file:///networking/display/bluefieldvirtionetv2407/Virtio-net+Feature+Bits

. |A | Argu
Opti 8
on b | ment

br Type
Num
--mMac | -m
ber
mtu | -t Num
ber
num_ | Num
queu ber
es
;nua;J - |Num
e_pair ae | ber
S
max_ Num
-S
queu ber
e_size
Num
sf nu | -u
m ber
- N/A

Re
qui
red

Yes

Yes

Yes

Yes

Yes

No

No

Description

MAC address of the virtio-net device.

() Note

Controller does not validate the MAC address
(other than its length). The user must ensure
MAC is valid and unique.

Maximum transmission unit (MTU) size of the virtio-net device. It
must be less than the uplink rep MTU size.

Mutually exclusive with max_queue_pairs.

Max number of virt queues could be created for the virtio-net
device. TX, RX, ctrl queues are counted separately (e.g., 3 has 1 TX
VQ, 1 RXVQ, 1 Ctrl VQ).

() Note

This option will be depreciated in the future.

Mutually exclusive with num_queues .

Number of data VQ pairs. One VQ pair has one TX queue and one
RX queue. It does not count control or admin VQ. From the host
side, it appears as Pre-set maximums->Combined in ethtool -| <virtio-dev>.

Maximum number of buffers in the virt queue, between 0x4 and
0x8000. Must be power of 2.

SF number to be used for this hotplug device, must between
2000 and 2999.

Create legacy (transitional) hotplug device

NVIDIA BlueField Virtio-net v24.07 51

Ooti A Argu Re
or? b | ment qui | Description
br | Type | red
legacy
Output
Entry l’yp Description
bdf Stri | The PCle BDF (bus:device:function) number enumerated by host. The
ng | user should see this PCle device from host side.
vuid Stri | Unique device SN. It can be used as an index to query/modify/unplug
ng | this device.
" Nu | Unique device ID. It can be used as an index to query/modify/unplug
m | this device.
Is the current device a transitional hotplug device.
Nu

transitional | m

Stri
sf_rep_net_
device ng

Stri
ng

mac

Nu
errno

Stri
errstr

Example

e 0 - modern device
e 1 -transitional device

The SF representor name represents the virtio-net device. It should be
added into the OVS bridge.

The hotplug virtio-net device MAC address

Error number if hotplug failed.

e (O -success
e non-0 - failed

Explanation of the error number

NVIDIA BlueField Virtio-net v24.07

52

Hotplug one device with MAC address 0C:C4:7A:FF:22:93, MTU 1500, and 3 virtio queues
(1 tx, 1 rx, 1 ctrl) with a depth of 1024 entries. The device is created on the physical port
of mix5_0.

virtnet hotplug -i mIx5_0 -f 0x80000 -m 0C:C4:7A:FF:22:93 -t 1500 -n 3 -s 1024
{

"bdf": "15:00.0",
"vuid": "MT2151X03152VNETS1DOF0",
"id": 0,

"transitional": 0,

"sf_rep_net_device": "en3fOpf0sf2000",
"mac": "0C:C4:7A:FF:22:93",

"errno": 0,

"errstr": "Success"

}

Unplug
This command unplugs a virtio-net PCle PF device.

Syntax
virtnet unplug [-h] [-p PF | -u VUID]

Only one of --pf and --vuid is needed to unplug the device.

Opti |Ab |Argument | Requi

on br | Type red Description

~help |-h | N/A No Show the help message and exit

Unique device ID returned when doing hotplug. Can be

—pf |- Number | Yes . :
P P retrieved by using virtnet list.

Unique device SN returned when doing hotplug. Can be

~vuid | -u | String Yes . , : .
retrieved by using virtnet list.

NVIDIA BlueField Virtio-net v24.07 53

Output

Entry Type Description

Error number if operation failed

errno Num e (O -success
e non-0 - failed

errstr String Explanation of the error number

Example

Unplug-hotplug device using the PF ID:

virtnet unplug -p 0
{id": '0x1"}
{

"errno": O,

"errstr': "Success"

}

List

This command lists all existing virtio-net devices, with global information and individual
information for each device.

Syntax

virtnet list [-h]

NVIDIA BlueField Virtio-net v24.07 54

Option | Abbr

--help -h

Output

Argument Type Required | Description

N/A

No Show the help message and exit

The output has two main sections. The first section wrapped by the controller are global
configurations and capabilities.

Entry

controller

emulation_manager

max_hotplug_devices

max_virt_net_devices

max_virt_queues

max_tunnel_descript
ors

supported_features

supported_virt_queu
e_types

supported_event_mo
des

Typ
e

Stri
ng
Stri
ng
Stri
ng
Stri
ng
Stri
ng
Stri
ng
Stri
ng
Stri
ng

Stri
ng

Description

Entries under this section is global information for the
controller

The RDMA device manager used to manage internal resources.
Should be default mix5_0.

Maximum number of devices that can be hotpluged

Total number of emulated devices managed by the device
emulation manager

Maximum number of virt queues supported per device

Maximum number of descriptors the device can send in a
single tunnel request

Total list of features supported by device

Currently supported virt queue types: Packed and Split

Currently supported event modes: no_msix_mode, gp_mode,
msix_mode

Each device has its own section under devices.

NVIDIA BlueField Virtio-net v24.07 55

Entry

devices

pf_id

function_t
ype

transition
al

vuid

pci_bdf

pci_vhca_i
d

pci_max_v
fs

enabled_v
fs

msix_num
_pool_size

min_msix_
num

max_msix
_num

NVIDIA BlueField Virtio-net v24.07

mb

mb
er

Nu
mb

Nu
mb
er

Nu
mb
er

Description

Entries under this section is per device information

Physical function ID

Function type: Static PF, hotplug PF, VF

The current device a transitional hotplug device:

e 0 - modern device
e 1 -transitional device

Unique device SN, it can be used as an index to query/modify/unplug a
device

Bus:device:function to describe the virtio-net PCle device

Virtual HCA identifier for the general virtio-net device. For debug
purposes only.

Maximum number of virtio-net VFs that can be created for this PF. Valid
only for PFs.

Currently enabled number of virtio-net VFs for this PF

Number of free dynamic MSIX available for the VFs on this PF

The minimum number of dynamic MSI-Xs that can be set for an virtio-
net VF

The maximum number of dynamic MSI-Xs that can be set for an virtio-
net VF

56

Entry

min_num_
of_gp

max_num
_of_gp

gp_pool_si
ze

num_msix

num_queu
es

enabled_q
ueues

max_queu
es_size

msix_confi
g_vector

mac

link_status

max_queu
e_pairs

Typ
e

Nu
mb

Nu
mb

Nu
mb
er

Nu
mb
er

Nu
mb
er

Nu
mb
er

Nu
mb
er
Stri
ng
Stri
ng

Nu
mb
er

Nu

er

Description

The minimum number of dynamic data VQ pairs (i.e., each pair has one
TX and 1 RX queue) that can be set for an virtio-net VF

The minimum number of dynamic data VQ pairs (i.e., each pair has one
TX and 1 RX queue) that can be set for an virtio-net VF

Number of free dynamic data VQ pairs (i.e., each pair has one TX and 1
RX queue) available for the VFs on this PF

Maximum number of MSI-X available for this device

Maximum virtual queues can be created for this device, driver can
choose to create less

Currently enabled number of virtual queues by the driver

Maximum virtual queue depth in byte can be created for each VQ,
driver can use less

MSIX vector number used by the driver for the virtio config space.
OxFFFF means that no vector is requested.

The virtio-net device permanent MAC address, can be only changed
from controller side via modify command

Link status of the virtio-net device on the driver side

e 0-down
e 1-up

Number of data VQ pairs. One VQ pair has one TX queue and one RX
queue. Control or admin VQ are not counted. From the host side, it
appears as Pre-set maximums->Combined in ethtool -| <virtio-dev>.

NVIDIA BlueField Virtio-net v24.07

57

Typ
Entr
y e
Nu
mtu mb
er
Nu
speed mb
er
Nu
rss_max_k | mb
ey_size er
e Nu
supporte
_hash_typ mb
Stri
ctrl_mac
ng
Nu
ctrl_mq mb
er
Nu
sf_num mb
er

sf_parent_ | Stri
device ng

sf_parent_ | Stri
device_pci | n g
_addr

Stri
sf_rep_net ng

Description

The virtio-net device MTU. Default is 1500.

The virtio-net device link speed in Mb/s

The maximum supported length of the RSS key. Only applicable when
VIRTIO_NET_F_RSS Or VIRTIO_NET_F_HASH_REPORT is enabled.

Supported hash types for this device in hex. Only applicable when
VIRTIO_NET_F_HASH_REPORT is enabled:

® VIRTIO_NET_HASH_TYPE_IPv4 (bit 0)
e VIRTIO_NET_HASH_TYPE_TCPv4 (bit 1)
® VIRTIO_NET_HASH_TYPE_UDPV4 (bit 2)
e VIRTIO_NET_HASH_TYPE_IPv6 (bit 3)
® VIRTIO_NET_HASH_TYPE_TCPvV6 (bit 4)
® VIRTIO_NET_HASH_TYPE_UDPV6 (bit 5)

Admin MAC address configured by driver. Not persistent with driver
reload or host reboot.

Number of queue pairs/channels configured by the driver. From the
host side, it appears as Current hardware settings->Combined in ethtool - <virtio-
dev>.

Scalable function number used for this virtio-net device

The RDMA device to use to create the SF

The PCle device address (bus:device:function) to use to create the SF

Represents the virtio-net device

NVIDIA BlueField Virtio-net v24.07 58

T

Entry eyp Description

_device
Nu

sf_rep_net |mb | The SF representor network interface index

_ifindex er
Stri L

sf_rdma_d The SF RDMA device interface name

evice ng

. Nu

;i;ss‘ mb | The cross-device MKEY created for the SF. For debug purposes only.
er
Nu

sf_vhca_id | mb | Virtual HCA identifier for the SF. For debug purposes only.
er
Nu

ragt_num | mb | The RQ table ID used for this virtio-net device. For debug purposes only.
er

sarfs Stri | Whether Accelerated Receive Flow Steering configuration is enabled or
ng | disabled

Example

The following is an example of a list with 1 static PF created:

virtnet list
{

"controller": {
"emulation_manager": "mix5_0",
"max_hotplug_devices": "0",
"max_virt_net_devices": "1",
"max_virt_queues": "256",
"max_tunnel_descriptors": "6",
"supported_features": {

"value": "0x8b00037700ef982f",
" 0" "VIRTIO_NET_F_CSUM",

NVIDIA BlueField Virtio-net v24.07 59

B
"2
"3
"o5™

SRAE
12
"5
" 16"
"7
"8
" 19
21
" 22
" 23"
" 32
" 33"
T34
" 36"
" 37"
" 38"
" 40"
4
" 56"
" 57"
" 59"
" 63"

h

"VIRTIO_NET_F_GUEST_CSUM",
"VIRTIO_NET_F_CTRL_GUEST_OFFLOADS",
"VIRTIO_NET_F_MTU",
"VIRTIO_NET_F_MAC",
"VIRTIO_NET_F_HOST_TS0O4",
"VIRTIO_NET_F_HOST_TSO6",
"VIRTIO_F_MRG_RX_BUFFER",
"VIRTIO_NET_F_STATUS",
"VIRTIO_NET_F_CTRL_VQ",
"VIRTIO_NET_F_CTRL_RX",
"VIRTIO_NET_F_CTRL_VLAN",
"VIRTIO_NET_F_GUEST_ANNOUNCE",
"VIRTIO_NET_F_MQ",
"VIRTIO_NET_F_CTRL_MAC_ADDR",
"VIRTIO_F_VERSION_1",
"VIRTIO_F_IOMMU_PLATFORM",
"VIRTIO_F_RING_PACKED",
"VIRTIO_F_ORDER_PLATFORM",
"VIRTIO_F_SR_IOV",
"VIRTIO_F_NOTIFICATION_DATA",
"VIRTIO_F_RING_RESET",
"VIRTIO_F_ADMIN_VQ",
"VIRTIO_NET_F_HOST_USO",
"VIRTIO_NET_F_HASH_REPORT",
"VIRTIO_NET_F_GUEST_HDRLEN",
"VIRTIO_NET_F_SPEED_DUPLEX"

"supported_virt_queue_types": {
"value": "Ox1",
n Oll: IISPLITII

h

"supported_event_modes": {
"value": "Ox5",
" 0":"NO_MSIX_MODE",
" 2" "MSIX_MODE"

}
2

"devices": [

{

"pf_id": O,
"function_type": "static PF",

"transitional": 0,

"vuid":

"MT2306XZ00BNVNETSODOF2",

"pci_bdf": "e2:00.2",

NVIDIA BlueField Virtio-net v24.07

60

"pci_vhca_id": "0x2",
"pci_max_vfs": "0",
"enabled_vfs": "0",
"msix_num_pool_size": 0,
"min_msix_num": O,
"max_msix_num": 256,
"min_num_of_qgp": 0,
"max_num_of_gp": 127,
"gp_pool_size": 0,

"num_msix": "256",
"num_qgueues": "255",
"enabled_queues": "0",
"max_queue_size": "256",
"msix_config_vector": "OxFFFF",
"mac": "16:B0:E0:41:B8:0D",
"link_status": "1",
"max_queue_pairs™: "127",
"mtu": "1500",

"speed": "100000",
"rss_max_key_size": "0",
"supported_hash_types": "0x0",
"ctrl_mac": "00:00:00:00:00:00",
"ctrl_mqg": "0",

"sf num": 1000,
"sf_parent_device": "mix5_0",
"sf_parent_device_pci_addr": "0000:03:00.0",
"sf_rep_net_device": "en3fOpf0sf1000",
"sf_rep_net_ifindex": 10,

"sf rdma_device": "mix5_3",
"sf_cross_mkey": "0x12642",
"sf vhca_id": "0x124",
"sf_rgt_num": "0x0",

"aarfs": "disabled"

Query

This command queries detailed information for a given device, including all VQ
information if created.

NVIDIA BlueField Virtio-net v24.07

Syntax

virtnet query [-h] {[-a] | [-p PF] [-v VF] | [-u VUID]} [--dbg_stats] [-b] [--latency_stats] [-g QUEUE_ID] [--

stats_clear]

(D Info

The options --pf, --vf, --vuid , and --all are mutually exclusive, but one of
them must be applied.

Opti | Ab |/ \T8Um

ent
on br

Type
—help |-h | N/A
-all |-a | N/A

Numb
~pf|-p

er

Numb
--vf -V

er

~vuid | -u | String

Numb
queu |-q
e id er
brief N/A
- N/ | N/A
dbg_S A
tats

No

No

No

No

No

No

No

Description

Show the help message and exit

Query all the detailed information for all available devices. It
can be time consuming if a large number of devices is
available.

Unique device ID for the PF. Can be retrieved by using virtnet
list.

Unique device ID for the VF. Can be retrieved by using virtnet
list.

Unique device SN for the device (PF/VF). Can be retrieved by
using virtnet list.

Queue index of the device VQs

Query brief information of the device (does not print VQ
information)

Print debug counters and information

NVIDIA BlueField Virtio-net v24.07 62

Argum | Req
ent uire | Description
Type |d

Opti Ab
on br

(D) Note

This option will be depreciated in the
future.

Clear all the debug counter stats

LY. (Note
stats_ N/A No This option will be depreciated in the

future.

clear

Output

Output has two main sections.
e The first section, wrapped by devices, are configuration and capabilities on the device

level, the majority of which are the same as the list command. This section only
covers the differences between the two.

Entry Zyp Description

Stri : : Lo o .
devices ng Entries under this section is per-device information

Stri | Virtio-net PCle device ID. Default: 0x1041.

pci_dev_id ng

() Note

NVIDIA BlueField Virtio-net v24.07 63

T
Entry eyp Description

This option will be depreciated in the future.

Virtio-net PCle vendor ID. Default: 0x1af4.

pci_vendo St @ Note
r_id ne This option will be depreciated in the future.

Virtio-net PCle device class code. Default: 0x20000.

pci_class_ Str] @ Note
code n& This option will be depreciated in the future.

Virtio-net PCle vendor ID. Default; 0x1041.

pci_subsy Stri @ Note
s_id ne This option will be depreciated in the future.

Virtio-net PCle subsystem vendor ID. Default: Ox1af4.

pci_subsy | Stri @ Note

s_vendor
a - | N This option will be depreciated in the future.

NVIDIA BlueField Virtio-net v24.07

64

T
Entry eyp Description

Virtio-net PCle revision ID. Default; 1.

pci_revisi Str @ Note
on_id ne This option will be depreciated in the future.

Stri | Enabled device feature bits according to the virtio spec. Refer to

device_fe L .
atures ng | Virtio-net Feature Bits.
driver fea Stri | Enabled driver feature bits according to the virtio spec. Valid only
tures ng | when the driver probes the device. Refer to Virtio-net Feature Bits.
Device status field bit masks according to the virtio spec:
O ACKNOWLEDGE (bit 0)
Stri O DRIVER (bit 1)
status N O DRIVER_OK (bit 2)
8 O FEATURES_OK (bit 3)
O DEVICE_NEEDS_RESET (bit 6)
O FAILED (bit 7)
Nu | Shows if the current virtio-net device undergoing reset:
reset mbe o 0-notundergoing reset

r o 1 -undergoing reset

Nu | Shows if the current virtio-net device is enabled:
enabled | mbe o 0-disabled, likely FLR has occurred
r o 1 -enabled

e The second section, wrapped by enabled-queues-info, provides per-VQ information:

T —
Entry y Description
pe
Nu
, m . .
index be VQ index starting from 0 to enabled_queues

r

NVIDIA BlueField Virtio-net v24.07 65

file:///networking/display/bluefieldvirtionetv2407/Virtio-net+Feature+Bits
file:///networking/display/bluefieldvirtionetv2407/Virtio-net+Feature+Bits

Ty

Entr
y e
Nu
size m
be
r
Nu
. m
msix_vector
be
r
Nu
m
enable
be
r
Nu
m
notify_offset
V- be
r
Nu
descriptor_add | M
ress be
r
Nu
m
driver_address
be
r
Nu
device_addres | m
s be

Description

Driver VQ depth in bytes. It is bound by device max_queues_size .

The MSI-X vector number used for this VQ

If current VQ is enabled or not
o 0 -disabled
o 1 -enabled

Driver reads this to calculate the offset from start of notification
structure at which this virtqueue is located

The physical address of the descriptor area

The physical address of the driver area

The physical address of the device area

NVIDIA BlueField Virtio-net v24.07 66

Entry

received_desc

completed_de
sc

bad_desc_erro
rs

error_cqges

exceed_max_c
hain

Ty
pe

Nu

be

Nu

be

Nu

be

Nu

be

Nu

be

Description

Total number of received descriptors by the device on this VQ

() Note

This option will be depreciated in the future.

Total number of completed descriptors by the device on this VQ

() Note

This option will be depreciated in the future.

Total number of bad descriptors received on this VQ

(D) Note

This option will be depreciated in the future.

Total number of error CQ entries on this VQ

(D) Note

This option will be depreciated in the future.

Total number of chained descriptors received that exceed the
maximum allowed chain by device

NVIDIA BlueField Virtio-net v24.07

67

T
Entry p)é Description

() Note

This option will be depreciated in the future.

Total number of times the device tried to read or write buffer
that is not registered to the device

Nu
invalid_buffer | "
Invalld_burtrer be @ NOte
r This option will be depreciated in the future.

The number of RX descriptors for the last received packet.
Relevant for BlueField-3 only.

Nu
batch ber |
atch_numbper be @ NOte
r This option will be depreciated in the future.

The DMA g index used for this VQ. Relevant for BlueField-3 only.

Nu
dma_g_used_n | M Note
umber be @

) This option will be depreciated in the future.

handler_schd_ | Nu | Scheduler number for this VQ. Relevant for BlueField-3 only.
number m

be

r () Note

NVIDIA BlueField Virtio-net v24.07

68

T
Entry p)é Description

This option will be depreciated in the future.

Aux scheduler number for this VQ. Relevant for BlueField-3 only.

Nu

aux_handler_.s | m @ Note
chd_number
be This option will be depreciated in the future.

Maximum number of posted descriptors on this VQ. Relevant
for DPA.

Nu

max_post_des | M
c_number be @ Note
r This option will be depreciated in the future.

Total number of bytes handled by this VQ. Relevant for
BlueField-3 only

Nu
I_b m
total_bytes be @ Note
r This option will be depreciated in the future.

rq_cqg_max_co | Nu | Event generation moderation counter of the queue. Relevant for
unt m RQ

be

[

(D) Note

NVIDIA BlueField Virtio-net v24.07 69

T
Entry p)é Description

This option will be depreciated in the future.

Event generation moderation timer for the queue in 1 p sec
granularity. Relevant for RQ.

Nu
iod m
rq_cq_perio be @ Note
r This option will be depreciated in the future.
Current period mode for RQ
o 0x0 - default_mode - use device best defaults
o 0x1 - upon_event - queue_period timer restarts upon event
generation
N o 0x2 - upon_cqe - queue_period timer restarts upon completion
. generation
rg_cq_period_ | M
mode be
r
() Note
This option will be depreciated in the future.
Example

The following is an example of querying the information of the first PF:

virtnet query -p 0
{

"devices": [

{

NVIDIA BlueField Virtio-net v24.07 70

"pf_id": O,
"function_type": "static PF",
"transitional": 0,
"vuid": "MT2349X00018VNETSODOF1",
"pci_bdf"; "23:00.1",
"pci_vhca_id": "0x1",
"pci_max_vfs": "0",
"enabled_vfs": "0",
"pci_dev_id": "0x1041",
"pci_vendor_id": "0x1af4",
"pci_class_code": "0x20000",
"pci_subsys_id": "0x1041",
"pci_subsys_vendor_id": "0x1af4",
"pci_revision_id": "1",
"device_feature": {
"value": "0x8930032300e7182f",
" 0" "VIRTIO_NET_F_CSUM",
" 1" "VIRTIO_NET_F_GUEST_CSUM",
" 2" "VIRTIO_NET_F_CTRL_GUEST_OFFLOADS",
" 3" "VIRTIO_NET_F_MTU",
" 5" "VIRTIO_NET_F_MAC",
" 11" "VIRTIO_NET_F_HOST_TS04",
" 12" "VIRTIO_NET_F_HOST_TSO6",
" 16" "VIRTIO_NET_F_STATUS",
" 17" "VIRTIO_NET_F_CTRL_VQ",
" 18" "VIRTIO_NET_F_CTRL_RX",
" 21" "VIRTIO_NET_F_GUEST_ANNOUNCE",
" 22" "VIRTIO_NET_F_MQ",
" 23" "VIRTIO_NET_F_CTRL_MAC_ADDR",
" 32" "VIRTIO_F_VERSION_1",
" 33" "VIRTIO_F_IOMMU_PLATFORM",
" 37" "VIRTIO_F_SR_IOV",
" 40" "VIRTIO_F_RING_RESET",
" 41" "VIRTIO_F_ADMIN_VQ",
" 52" "VIRTIO_NET_F VQ_NOTF_COAL",
" 53" "VIRTIO_NET_F_NOTF_COAL",
" 56" "VIRTIO_NET_F_HOST_USO",
" 59" "VIRTIO_NET_F_GUEST_HDRLEN",
" 63" "VIRTIO_NET_F_SPEED_DUPLEX"
h
"driver_feature": {
"value": "0x8000002300e7182f",
" 0" "VIRTIO_NET_F_CSUM",
" 1" "VIRTIO_NET_F_GUEST_CSUM",

NVIDIA BlueField Virtio-net v24.07

" 2" "VIRTIO_NET_F_CTRL_GUEST_OFFLOADS",
" 3" "VIRTIO_NET_F_MTU",
" 5" "WIRTIO_NET_F_MAC",
" 11" "VIRTIO_NET_F_HOST_TSO4",
" 12" "VIRTIO_NET_F_HOST_TSO6",
" 16" "VIRTIO_NET_F_STATUS",
" 17" "VIRTIO_NET_F_CTRL_VQ",
" 18" "VIRTIO_NET_F_CTRL_RX",
" 21" "VIRTIO_NET_F_GUEST_ANNOUNCE",
" 22" "VIRTIO_NET_F_MQ",
" 23" "VIRTIO_NET_F_CTRL_MAC_ADDR",
" 32" "VIRTIO_F_VERSION_1",
" 33" "VIRTIO_F_IOMMU_PLATFORM",
" 37" "VIRTIO_F_SR_IOV",
" 63" "VIRTIO_NET_F_SPEED_DUPLEX"
h
"status": {
"value": "Oxf",
" 0":"ACK",
" 1" "DRIVER",
" 2":"DRIVER_OK",
" 3" "FEATURES_OK"
h
"reset": "0",
"enabled": "1",
"num_mesix": "64",
"num_queues": "63",
"enabled_queues": "63",
"max_queue_size": "256",
"msix_config_vector": "0x0",
"mac": "4E:6A:E1:41:D8:BE",
"link_status": "1",
"max_queue_pairs™ "31",
"mtu": "1500",
"speed": "200000",
"rss_max_key_size": "0",
"supported_hash_types": "0x0",
"ctrl_mac": "4E:6A:E1:41:D8:BE",
"ctrl_mqg": "31",
"sf_ num": 1000,
"sf_parent_device": "mIx5_0",
"sf_parent_device_pci_addr": "0000:03:00.0",
"sf_rep_net_device": "en3f0pf0sf1000",
"sf_rep_net_ifindex": 12,

NVIDIA BlueField Virtio-net v24.07

"sf_rdma_device": "mIx5_2",
"sf_cross_mkey": "0xC042",
"sf_vhca_id": "Ox7E8",
"sf_rgt_num": "0xQ",
"aarfs"; "disabled"
"enabled-queues-info": [
{
"index": "0",
"size": "256",
"msix_vector": "Ox1",
"enable": "1",
"notify_offset": "0",
"descriptor_address": "0x10cece000",
"driver_address": "0x10cecf000",
"device_address": "0x10cecf240",
"received_desc": "256",
"completed_desc": "0",
"bad_desc_errors": "0",
"error_cqes™ "0",
"exceed_max_chain": "0",
"invalid_buffer": "0",
"batch_number": "64",
"dma_qg_used_number": "6",
"handler_schd_number": "4",
"aux_handler_schd_number": "3",
"max_post_desc_number": "0",
"total_bytes": "0",
"rg_cq_max_count": "0",
"rq_cq_period": "0",
"rg_cq_period_mode"; "1"

Stats

NVIDIA BlueField Virtio-net v24.07

Tip
This command is recommended for obtaining all packet counter
information. The existing packet counter information available using

the virtnet list and virtnet query commands, but will be deprecated in the
future.

This command retrieves the packet counters for a specified device, including detailed
information for all Rx and Tx virtqueues (VQs).

To enable/disable byte wise packet counters for each Rx queue, use the following
command:

virtnet modify {[-p PF] [-v VF]} device -pkt_cnt {enable,disable}

e When enabled, byte-wise packet counters are initialized to zero.

e When disabled, the previous values are retained for debugging purposes. The
command will still return these old, disabled counter values.

(i) Note

Packet counters are attached to an RQ. Thus, RQ must be created
first. This means that the virtio-net device should be probed by the
driver on the host OS before running the commands above.

Syntax

virtnet stats [-h] {[-p PF] [-v VF] | [-u VUID]} [-g QUEUE_ID]

NVIDIA BlueField Virtio-net v24.07 74

(D Info

The options —-pf, --vf, and --vuid are mutually exclusive, but one of
them must be applied.

Optio |Ab | Argument | Requir

N br | Type od Description

~help |-h | N/A No Show the help message and exit

o o Number No Umqug deV|§e ID for the PF. Can be retrieved by
using virtnet list.

o v | Number No Umqug devu.:e ID for the VF. Can be retrieved by
using virtnet list.

wid | | String No Unlgue device SN fqr the.deV|ce (PF/VF). Can be
retrieved by using virtnet list.

queue_i |-g | Number No Queue index of the device RQs or SQs

d

Output

The output has two sections.

e The first section wrapped by device are device details along with the packet counter
statics enable state.

Entry Type | Description
, Strin : : L o .
device g Entries under this section is per-device information
Strin : ,
pf_id g Physical function ID

NVIDIA BlueField Virtio-net v24.07 75

Entry Type | Description

packet_counte | Strin

rs g

Indicates whether the packet counters feature is enabled or
disabled

e The second section wrapped by queues-stats are information for each receive VQ.

Ty
pe
Nu
m

be
r

Entry

VQ Index

Nu

rx_64_or_less_.o | M
ctet_packets be

r

Nu

rx_65_to_127. o0 | M
ctet_packets be

r

Nu

rx_128 to 255 | m
octet_packets | pe

r

Nu

rx_256_to_511_ | M
octet_packets | pe

r

Nu
rx_512_to_1023 | M
_octet_packets | pe

r

Nu
rx_1024 to_152

2_octet_packet
s

Description

The VQ index starts at 0 (the first RQ) and continues up to the
last SQ

The number of packets received with a size of 0 to 64 bytes.
Relevant for BlueField-3 RQ.

The number of packets received with a size of 65 to 127 bytes.
Relevant for BlueField-3 RQ.

The number of packets received with a size of 128 to 255 bytes.

Relevant for BlueField-3 RQ.

The number of packets received with a size of 256 to 511 bytes.

Relevant for BlueField-3 RQ.

The number of packets received with a size of 512 to 1023
bytes. Relevant for BlueField-3 RQ.

The number of packets received with a size of 1024 to 1522
bytes. Relevant for BlueField-3 RQ.

NVIDIA BlueField Virtio-net v24.07

76

Ty
pe

Nu
rx_1523 _to_204

7_octet_packet
s

Entry

e

Nu
rx_2048 to_409

5_octet_packet

s e

Nu
rx_4096_to 819

1_octet_packet

S e

Nu
rx_8192_to_902 m

2_octet_packet

s be
r
Nu
received_desc
be
r
Nu
completed_des | M
c be
r
Nu
bad_desc_error | M
s be
r
Nu
error_cqges m
B be

r

exceed_max_ch | Nu

amn m

Description

The number of packets received with a size of 1523 to 2047
bytes. Relevant for BlueField-3 RQ.

The number of packets received with a size of 2048 to 4095
bytes. Relevant for BlueField-3 RQ.

The number of packets received with a size of 4096 to 8191
bytes. Relevant for BlueField-3 RQ.

The number of packets received with a size of 8192 to 9022
bytes. Relevant for BlueField-3 RQ.

Total number of received descriptors by the device on this VQ

Total number of completed descriptors by the device on this VQ

Total number of bad descriptors received on this VQ

Total number of error CQ entries on this VQ

Total number of chained descriptors received that exceed the
max allowed chain by device

NVIDIA BlueField Virtio-net v24.07 77

Ty

Entr
y e
be
r
Nu
m
invalid_buffer
be
r
Nu
m
batch_number
be
r
Nu
dma_qg_used_n | M
umber be
r
Nu
handler schd n|' M
umber be
r
Nu
aux_handler_sc | M
hd_number be
r
Nu
max_post_desc | M
_number be
r
Nu
total_bytes
r
Nu
rg_cg_max_cou ' m
nt be

Description

Total number of times the device tried to read or write a buffer

which is not registered to the device

The number of RX descriptors for the last received packet.
Relevant for BlueField-3.

The DMA q index used for this VQ. Relevant for BlueField-3.

Scheduler number for this VQ. Relevant for BlueField-3.

Aux scheduler number for this VQ. Relevant for BlueField-3.

Maximum number of posted descriptors on this VQ. Relevant
for DPA.

Total number of bytes handled by this VQ. Relevant for
BlueField-3.

Event generation moderation counter of the queue. Relevant
for RQ.

NVIDIA BlueField Virtio-net v24.07

78

Entry

rq_cq_period

rq_cq_period_
mode

Example

Ty
pe

Nu

be

Nu
m
be
r

Description

Event generation moderation timer for the queue in 1 p sec
granularity. Relevant for RQ.

Current period mode for RQ
o 0x0 - default_mode - use device best defaults
o 0x1 - upon_event - queue_period timer restarts upon event
generation
o 0x2 - upon_cge — queue_period timer restarts upon
completion generation

The following is an example of querying the packet statistics information of PF 0 and VQ 0

(i.e., RQ):

virtnet stats-p 0-q 0
{'pf": '0x0', 'queue_id": '0x0'}

{
"device": {
"pf_id": O,

"packet_counters": "Enabled",

"queues-stats": [

{

"VQ Index": 0,

"rx_64_or_less_octet_packets": 0,
"rx_65_to_127_octet_packets": 259,
"rx_128_to_255_octet_packets": 0,
"rx_256_to_511_octet_packets": 0,
"rx_512_to_1023_octet_packets": O,
"rx_1024_to_1522_octet_packets": 0,
"rx_1523_to_2047_octet_packets": 0,
"rx_2048_to_4095_octet_packets": 199,
"rx_4096_to_8191_octet_packets": 0,
"rx_8192_to_9022_octet_packets": 0,
"received_desc": "4096",

NVIDIA BlueField Virtio-net v24.07

79

"completed_desc": "0",
"bad_desc_errors": "0",
"error_cqes": "0",
"exceed_max_chain": "0",
"invalid_buffer": "0",
"batch_number": "64",
"dma_g_used_number": "0",
"handler_schd_number"; "44",
"aux_handler_schd_number": "43",
"max_post_desc_number": "0",
"total_bytes": "0",
"err_handler_schd_num": "0",
"rg_cqg_max_count": "0",
"rg_cq_period"; "0",
"rg_cq_period_mode": "1"

Modify Device

This command modifies the attributes of a given device.

Syntax

virtnet modify [-h] [-p PF] [-v VF] [-u VUID] [-a] {device,queue} ...

(D Info

The options --pf, --vf, --vuid , and --all are mutually exclusive, but one of
them must be applied.

NVIDIA BlueField Virtio-net v24.07 80

Opti |Ab | Argument
on br | Type

-—-help |-h N/A

--all -a N/A
--pf -p Number
—-vf v Number

-vuid | -u String

device | N/A | Number

queue | N/A | N/A

Device Options

Requir
ed

No

No

No

No

No

No
No

Description

Show the help message and exit

Modify all available device attributes depending on the
selection of device or queue

Unique device ID for the PF. May be retrieved using
virtnet list.

Unique device ID for the VF. May be retrieved using
virtnet list.

Unique device SN for the device (PF/VF). May be
retrieved by using virtnet list.

Modify device specific options

Modify queue specific options

virtnet modify device [-h] [-m MAC] [-t MTU] [-e SPEED] [-I LINK]
[-s STATE] [-f FEATURES]
[-o SUPPORTED_HASH_TYPES] [-k RSS_MAX_KEY_SIZE]
[-r RX_MODE] [-n MSIX_NUM] [-g MAX_QUEUE_SIZE]
[-d DST_PORT] [-b RX_DMA_Q_NUM]
[-dim {enable,disable}] [-dc {enable,disable}] [-pkt_cnt {enable,disable}]
[-aarfs {enable,disable}] [-gp MAX_QUEUE_PAIRS]

Argu
. R
Optio |Ab 'men e. o
qui | Description
n br |t
red
Type
Strin ,
~help | -h g No | Show the help message and exit
Num - ,
~mac |-mo No | The virtio-net device MAC address

NVIDIA BlueField Virtio-net v24.07

81

Optio

--mtu

speed

--link

--state

feature

suppor
ted_ha
sh_typ
es

rss_ma
x_key_
size

Ab
br

Argu
men

Type

Num
ber

Num
ber

Num
ber

Num
ber

Hex
Num
ber

Hex
Num
ber

Num
ber

Re
qui
red

No

No

No

No

No

No

No

Description

The virtio-net device MTU

The virtio-net device link speed in Mb/s

The virtio-net device link status

e 0-down
e 1-up

The virtio-net device status field bit masks according to the virtio

spec:

e ACKNOWLEDGE (bit 0)

e DRIVER (bit 1)

e DRIVER_OK (bit 2)

® FEATURES_OK (bit 3)

e DEVICE_NEEDS_RESET (bit 6)
e FAILED (bit 7)

The virtio-net device feature bits according to the virtio spec

Supported hash types for this device in hex. Only applicable
when VIRTIO_NET_F_HASH_REPORT is enabled.

® VIRTIO_NET_HASH_TYPE_IPv4 (bit 0)
® VIRTIO_NET_HASH_TYPE_TCPV4 (bit 1)
e VIRTIO_NET_HASH_TYPE_UDPvV4 (bit 2)
® VIRTIO_NET_HASH_TYPE_IPV6 (bit 3)
® VIRTIO_NET_HASH_TYPE_TCPvV6 (bit 4)
e VIRTIO_NET_HASH_TYPE_UDPvV6 (bit 5)

The maximum supported length of RSS key. Only applicable
when VIRTIO_NET_F_RSS or VIRTIO_NET_F_HASH_REPORT is enabled.

NVIDIA BlueField Virtio-net v24.07

82

Optio |Ab
br

n

rx_mo
de

msix_n
um

max_q
ueue_s
ize

max_q

ueue_p |

airs

dst_po
rt

rx_dm
a_g_nu

rx_dim
_config

-r

-n

di

Argu
men

Type

Hex
Num
ber

Num
ber

Num
ber

Num
ber

Hex
num
ber

Num
ber

Strin

Re

qui | Description

red
The RX mode exposed to the driver:

e 0 - promisc
e 1 -all-multi
No e 2-all-uni
e 3 -no-multi
e 4 -no-uni
e 5-no-broadcast
Maximum number of VQs (both data and ctrl/admin VQ). It is

No | bound by the cap of max_virt_queues at the controller level (virtnet
list).

No Maximum number of buffers in the VQ. The queue size value is
always a power of 2. The maximum queue size value is 32768.
Number of data VQ pairs. One VQ pair has one TX queue and

No | ON€ RX queue. Control or admin VQs are not counted. From the
host side, it appears as Pre-set maximums->Combined in ethtool -I
<virtio-dev> .

Modify IPv4 dst_port rules.
No . () Note
Will be depreciated in the future.
No | Modify max RX DMA queue number
No | Enable/disable RX dynamic interrupt moderation

NVIDIA BlueField Virtio-net v24.07 83

Optio

drop_c
ounter

packet
_count
er

aarfs_c
onfig

Ab
br

-dc

pkt
cn

aar
fs

Argu

men Re
¢ qui | Description
red
Type
Strin : I
g No |Enable/disable virtio-net drop counter
Strin : I ,
g No |Enable/disable virtio-net device packet counter stats
Strin No Enable/disable auto-AARFS. Only applicable for PF devices (static
g PF and hotplug PF).

(D) Note

The following modify options require unbinding the virtio device from
virtio-net driver in the guest OS:

mac

mtu

features
msix_num
max_gueue_size

max_queue_pairs

For example:

1.

On the guest OS:

[host]# echo "bdf of virtio-dev" > /sys/bus/pci/drivers/virtio-pci/unbind

NVIDIA BlueField Virtio-net v24.07

84

2. On the DPU side:

1. Modify the max queue size of device:

[dpul# virtnet modify -p 0 -v 0 device -q 2048

2. Modify the MSI-X number of VF device:

[dpul# virtnet modify -p 0 -v 0 device -n 8

3. Modify the MAC address of virtio physical device ID 0O (or
with its "VUID string", which can be obtained through
virtnet list/query):

[dpul# virtnet modify -p 0 device -m 0C:C4:7A:FF:22:93

4. Modify the maximum number of queue pairs of VF device:

[dpul# virtnet modify -p 0 -v 0 device -gp 2

3. On the guest OS:

[host]# echo "bdf of virtio-dev" > /sys/bus/pci/drivers/virtio-pci/bind

Queue Options

NVIDIA BlueField Virtio-net v24.07

85

virtnet modify queue [-h] -e {event,cqe} -n PERIOD -c MAX_COUNT

Ab | Argument | Requir

Option br [Type od Description

—help -h | String No Show the help message and exit

periodm |-e | String NoO RQ Perlod mode: event or cqe. Default is selected by
ode device for the best result.

The event generation moderation timer for the

-period |-n | Number No , _
queue in 1 p sec granularity

- The max event generation moderation counter of
max_coun |-c | Number No

¢ the queue
Output
Entry Type Description

Error number:
errno Number e 0 - success

e Non-0 - failed

errstr String Explanation of the error number
Example

To modify the link status of the first VF on the first PF to be down:

virtnet modify -p 0 device -| 0
{'pf": '0x0', 'all": '0x0', 'subcmd": '0x0', 'link": '0x0"}

NVIDIA BlueField Virtio-net v24.07 86

{

"errno": 0,
"errstr": "Success"

}

Log

This command manages the log level of virtio-net-controller.

Syntax

virtnet log [-h] -| {info,err,debug}

Opti |Ab |Argument |Requir

on b [Type od Description

~help |-h | N/A No Show the help message and exit

tevel | 4 Strin Ves Change the log level of virtio_net_controller from the
& journal. Default is DEBUG.

Output

Entry Type Description

Stdout String Success or failed with message

Example

To change the log level to info:

NVIDIA BlueField Virtio-net v24.07 87

virtnet log -1 info
{'level": 'info'}
"Success"

To monitor current log output of the controller service with the latest 100 lines printed
out:

$ journalctl -u virtio-net-controller -f -n 100

Validate

This command validates configurations of virtio-net-controller.

Syntax

virtnet validate [-h] -f PATH_TO_FILE

Optio | Abb | Argument | Requir

Descripti
n ; Tiyae ed escription
~help | -h | N/A No Show the help message and exit
_fle | | String No \(a!idate the JSON format of the virtnet.conf file of the
virtio_net_controller
Output
Entry Type Description
Stdout String Success or failed with message

NVIDIA BlueField Virtio-net v24.07 88

Example

To check if virtnet.conf is a valid JSON file:

virtnet validate -f /opt/mellanox/minx_virtnet/virtnet.conf
/opt/mellanox/minx_virtnet/virtnet.conf is valid

Version

This command prints current and updated version of virtio-net-controller.

Syntax

virtnet version [-h]

Option | Abbr | Argument Type Required | Description

—help -h N/A No Show the help message and exit
Output

Entry Type Description

Original Controller String | The original controller version

Destination Controller String | The to be updated controller version
Example

Check current and next available controller version:

NVIDIA BlueField Virtio-net v24.07

89

virtnet version
[

{
"Original Controller": "v1.8.12"

}I
{
"Destination Controller": "v1.9.14"

}
]

Update

Live update minimizes network interface down time by performing online upgrade of the
virtio-net controller without necessitating a full restart.

Syntax

virtnet update [-h] [-s | -t]

Option |Abbr |Argument Type | Required | Description

~help -h N/A No Show the help message and exit
~-start -s N/A No Start live update virtio-net-controller
—status |-t N/A No Check live update status

Output

Entry Type Description

stdout String If the update started successfully

NVIDIA BlueField Virtio-net v24.07 90

Example

To start the live update process, run:

virtnet update -s
{'start": '0x1'}
"Update started, use 'virtnet update -t' or check logs for status"

To check the update status during the update process:

virtnet update -t
{'status": 'Ox1'}
{

"current status": "inactive",
"last status": "success",
"time_used (s)": 0.604152

}

Error Code

CLI commands will return non-0 error code upon failure. All error numbers are negative.
When there is error happening from log, it could return error number as well.

If the error number is greater than -1000, it's standard error. Please refer to Linux error
code at errno

If the error number is less or equal -1000, please refer to the table below for the
explaination.

Error Name Error Description

-100 | VIRTNET_ERR_DEV_FEATURE_VALID

0 e Failed to validate device feature

~100 VIRTNET_ERR_DEV_NOT_FOUND Failed to find device

NVIDIA BlueField Virtio-net v24.07 91

https://man7.org/linux/man-pages/man3/errno.3.html

Errn

-100

-100

-100

-100

-100

-100

-100

-100

-101

-101

-101

-101

-101

-101

-101

-101

-101

-101

Error Name

VIRTNET_ERR_DEV_NOT_PLUGGED

VIRTNET_ERR_DEV_NOT_STARTED

VIRTNET_ERR_DRIVER_PROBED

VIRTNET_ERR_EPOLL_ADD

VIRTNET_ERR_ID_OUT_OF_RANGE

VIRTNET_ERR_VUID_INVALID

VIRTNET_ERR_MAC_INVALID

VIRTNET_ERR_MSIX_INVALID

VIRTNET_ERR_MTU_INVALID

VIRTNET_ERR_PORT_CONTEXT_NOT

_FOUND

VIRTNET_ERR_REC_CONFIG_LOAD

VIRTNET_ERR_REC_CONFIG_SAVE

VIRTNET_ERR_REC_FILE_CREATE

VIRTNET_ERR_REC_MAC_DEL

VIRTNET_ERR_REC_MAC_LOAD

VIRTNET_ERR_REC_MAC_SAVE

VIRTNET_ERR_REC_MQ_SAVE

VIRTNET_ERR_REC_PFNUM_LOAD

NVIDIA BlueField Virtio-net v24.07

Error Description

Failed - Device is not hotplugged

Failed - Device did not start

Failed - Virtio driver should not be loaded
Failed to add epoll

Failed - ID input exceeds the max range
Failed - VUID is invalid

Failed - MAC is invalid

Failed - MSIX is invalid

Failed - MTU is invalid

Failed to find port contex

Failed to load config from recovery file
Failed to save config into recovery file
Failed to create recovery file

Failed to delete MAC in recovery file
Failed to load MAC from recovery file
Failed to save MAC into recovery file
Failed to save MQ into recovery file

Failed to load PF number from recovery file

92

Errn
Error Name

102 VIRTNET_ERR_REC_RX_MODE_SAVE

102 VIRTNET_ERR_REC_SF_SAVE

102 VIRTNET_ERR_REC_SFNUM_LOAD

-102 | VIRTNET_ERR_SF_MAC_FLOW_APPL
3 Y

102 VIRTNET_ERR_SF_MQ_UPDATE

102 VIRTNET_ERR_SF_RX_MODE_SET

-102 | VIRTNET_ERR_SNAP_NET_CTRL_OPE
6 N

-102 | VIRTNET_ERR_SNAP_CROSS_MKEY_
7 CREATE

-102 | VIRTNET_ERR_SNAP_DMA_Q_CREAT
8 E

-102 | VIRTNET_ERR_SNAP_NET_DEV_QUE
9 RY

-103 | VIRTNET_ERR_SNAP_NET_DEV_MOD
0 IFY

103 VIRTNET_ERR_SNAP_PF_HOTPLUG

103 VIRTNET_ERR_VQ_PERIOD_UPDATE

103 VIRTNET_ERR_QUEUE_SIZE_INVALID

103 VIRTNET_ERR_SF_PORT_ADD

-103 | VIRTNET_ERR_WQ_WORKQUEUE_AL
5 LOC

-103 | VIRTNET_ERR_ETH_VQS_OPERATIO
6 N_ALLOC

-103 | VIRTNET_ERR_ETH_VQS_OPERATIO
7 N_COMP

NVIDIA BlueField Virtio-net v24.07

Error Description

Failed to save RX mode into recovery file
Failed to save PF and SF number into recovery file

Failed to load SF number from recovery file

Failed to apply MAC flow by SF
Failed to update MQ by SF

Failed to set RX mode by SF
Failed to open SNAP device control
Failed to create SNAP cross mkey
Failed to create SNAP DMA Q
Failed to query SNAP device
Failed to modify SNAP device
Failed to hotplug SNAP PF

Failed to update VQ period

Failed - Queue size is invalid
Failed to add SF port

Failed to alloc workqueue

Failed to alloc eth VQS operation

Failed to complete eth VQS operation

93

Errn

Error Name
0
-103
8 VIRTNET_ERR_JSON_OBJ_NOT_EXIST
-103
9 VIRTNET_ERR_DEV_LOAD_PREP
-104
0 VIRTNET_ERR_DEV_SW_MIGRATION

-104 | VIRTNET_ERR_DEV_IS_SW_MIGRATI
1 NG

104 VIRTNET_ERR_MAX_QUEUE_SIZE

-104 | VIRTNET_ERR_MSIX_LESS_EQUAL_T
3 HREE

104 VIRTNET_ERR_SF_POOL_CREATING

104 VIRTNET_ERR_DST_PORT

104 VIRTNET_ERR_INVALID_OPTION

104 VIRTNET_ERR_SF_CREATE

-104 | VIRTNET_ERR_DEV_SF_NUM_OUT_O
8 F_RANGE

104 VIRTNET_ERR_DEV_SF_NUM_USED

-105 | VIRTNET_ERR_QUEUE_NUMBER_INV
0 ALID

105 VIRTNET_ERR_SPEED_INVALID

-105 | VIRTNET_ERR_SUPPORTED_HASH_T
2 YPES_INVALID

-105 | VIRTNET_ERR_RSS_MAX_KEY_SIZE_|
3 NVALID

105 VIRTNET_ERR_REC_OFFLOADS_SAVE

NVIDIA BlueField Virtio-net v24.07

Error Description

Failed - JSON obj does not exist
Failed to prepare device load
Failed to sw migrate a device

Failed - Device is migrating

Error - queue size must be greater than 2 and is
power of 2

Warning - this device won't function, don't try to
probe with virtio driver

SF pool is creating try again later
Failed to set dst port rule
Option is not supported

Failed to create SF

SF number for hotplug device should be between

2000 and 2999

SF number is already used

Queue index is invalid

Invalid speed please check help menu for
supported link speeds

Invalid hash types please check help menu for
supported hash types

Invalid rss max key size supported key size is 40

Failed to save OFFLOADS into recovery file

94

Errn
Error Name

-105 | VIRTNET_ERR_SF_OFFLOADS_UPDA
5 TE

105 VIRTNET_ERR_READ_LINK

105 VIRTNET_ERR_PATH_FORMAT

105 VIRTNET_ERR_Q_COUNTER_ALLOC

-105 | VIRTNET_ERR_REC_DIRTY_LOG_SAV
9 E

106 VIRTNET_ERR_REC_DIRTY_LOG_DEL

-106 | VIRTNET_ERR_REC_LM_STATUS_SAV
1 E

106 VIRTNET_ERR_REC_LM_STATUS_REC

-106 | VIRTNET_ERR_REC_DEV_MODE_SAV
3 E

106 VIRTNET_ERR_REC_DEV_MODE_REC

-106 | VIRTNET_ERR_UNPLUG_NOT_READ
5 Y

106 VIRTNET_ERR_REC_MAC_TABLE_DEL

-106 | VIRTNET_ERR_REC_MAC_TABLE_LO
7 AD

-106 | VIRTNET_ERR_REC_MAC_TABLE_SAV
8 E

106 VIRTNET_ERR_REC_HASH_CFG_DEL

-107 | VIRTNET_ERR_REC_HASH_CFG_LOA
0 D

-107

VIRTNET_ERR_REC_HASH_CFG_SAVE

-107 | VIRTNET_ERR_DEV_VF_GET

NVIDIA BlueField Virtio-net v24.07

Error Description

Failed to update OFFLOADS by SF
Failed to readlink

Error - Path format is invalid
Failed to alloc g counter

Failed to save dirty log

Failed to delete dirty log

Failed to save LM status

Failed to found LM status record
Failed to save dev mode

Failed to found dev mode record

Error - Device is not ready to be unplugged please
check host and retry

Failed to delete MAC table in recovery file
Failed to load MAC table from recovery file
Failed to save MAC table into recovery file
Failed to delete hash cfg in recovery file
Failed to load hash cfg from recovery file

Failed to save hash cfg into recovery file

Failed to get VF device

95

Errn

o Error Name Error Description

2

-107 | VIRTNET_ERR_MAX_QUEUES_INVALI | __. - ,

3 b -ERR_MAXQ - Failed - QUEUES is invalid

-107 , . ,

4 VIRTNET_ERR_DEBUGFS_SAVE Failed to save into debugfs file
-107 , :
c VIRTNET_ERR_DEBUGFS_DEL Failed to delete from debugfs file

NVIDIA BlueField Virtio-net v24.07

96

Feature Guidance

This section is composed of the following pages:

e Counters

Jumbo MTU

e Link Aggregation

e Live Migration

e Live Update

e Mergeable Rx Buffer
e Performance Tuning
e Recovery

e Transitional Device

e VF Dynamic MSIX

e Virtio-net Feature Bits

e Virt Queue Types

Packet Statistics

To query the packet counters, use stats command.

NVIDIA BlueField Virtio-net v24.07

97

file:///networking/display/bluefieldvirtionetv2407/Jumbo+MTU
file:///networking/display/bluefieldvirtionetv2407/Link+Aggregation
file:///networking/display/bluefieldvirtionetv2407/Live+Migration
file:///networking/display/bluefieldvirtionetv2407/Live+Update
file:///networking/display/bluefieldvirtionetv2407/Mergeable+Rx+Buffer
file:///networking/display/bluefieldvirtionetv2407/Performance+Tuning
file:///networking/display/bluefieldvirtionetv2407/Transitional+Device
file:///networking/display/bluefieldvirtionetv2407/VF+Dynamic+MSIX
file:///networking/display/bluefieldvirtionetv2407/Virtio-net+Feature+Bits
file:///networking/display/bluefieldvirtionetv2407/Virt+Queue+Types

[dpul# virtnet stats [-h] {[-p PF] [-v VF] | [-u VUID]} [-g QUEUE_ID]

(D Info

Optio

--help

__pf

--vf

--vuid

queue_i
d

() Note

The options --pf, --vf and --vuid are mutually exclusive, but one of them
must be applied.

Ab
br

-

Argument
Type
N/A

Number

Number

String

Number

Requir

ed
No

No

No

No

No

Description

Show the help message and exit

Unique device ID for the PF. Can be retrieved by
using virtnet list.

Unique device ID for the VF. Can be retrieved by
using virtnet list.

Unique device SN for the device (PF/VF). Can be
retrieved by using virtnet list.

Queue index of the device RQs or SQs

This command is recommended for obtaining all packet counter
information. The existing packet counter information available
through the virtnet list and virtnet query commands will be deprecated in
the future.

The following command queries PF 0 and VQ O (i.e., RQ):

NVIDIA BlueField Virtio-net v24.07

98

[dpul# virtnet stats-p 0-q 0

Output:

virtnet stats-p 0-q 0
{'pf": '0x0', 'queue_id": '0x0"}
{
"device": {
"pf_id": O,
"packet_counters": "Enabled",
"queues-stats": [
{
"VQ Index": 0,

"rx_64_or_less_octet_packets": 0,
"rx_65_to_127_octet_packets": 259,
"rx_128_to_255_octet_packets": 0,
"rx_256_to_511_octet_packets": 0,
"rx_512_to_1023_octet_packets": O,
"rx_1024_to_1522_octet_packets": 0,
"rx_1523_to_2047_octet_packets": 0,

"rx_2048 to_4095_octet_packets": 199,

"rx_4096_to_8191_octet_packets": 0,
"rx_8192_to_9022_octet_packets": O,
"received_desc": "4096",
"completed_desc": "0",
"bad_desc_errors": "0",
"error_cqes": "0",
"exceed_max_chain": "0",
"invalid_buffer": "0",
"batch_number": "64",
"dma_qg_used_number": "0",
"nhandler_schd_number": "44",
"aux_handler_schd_number": "43",
"max_post_desc_number": "0",
"total_bytes": "0",
"err_handler_schd_num": "0",
"rg_cq_max_count": "0",
"rg_cq_period": "0",
"rg_cq_period_mode"; "1"

NVIDIA BlueField Virtio-net v24.07

99

The output has two sections.

e The first section, wrapped by device, are device details along with the packet counter
statics enable state.

Entry Type | Description
device String | Entries under this section is per device information
pf_id String | Physical function ID

packet_counters | String | packet counters feature: enabled/disabled

e The second section, wrapped by queues-stats, are information for each receive VQ.

Entry Zyp Description

N . , .

. The VQ index starts at O (the first RQ) and continues up to the
VQ Index mbe
last SQ

r

Nu . . .
rx_64_or_less_ mbe The number of packets received with a size of 0 to 64 bytes.
octet_packets ; Relevant for BlueField-3 RQ when packet counter is enabled.

Nu . . .
rx_65_to_127_0 mbe The number of packets received with a size of 65 to 127 bytes.
ctet_packets Relevant for BlueField-3 RQ when packet counter is enabled.

Nu | The number of packets received with a size of 128 to 255
mbe | bytes. Relevant for BlueField-3 RQ when packet counter is
r enabled.

rx_128_to_255_
octet_packets

Nu | The number of packets received with a size of 256 to 511
mbe | bytes. Relevant for BlueField-3 RQ when packet counter is
r enabled.

rx_256_to 511_
octet_packets

NVIDIA BlueField Virtio-net v24.07 100

Entry

rx_512_to_102
3_octet_packet
s

rx_1024_to_15
22_octet_packe
ts

rx_1523_to_20
47 _octet_packe
ts

rx_2048_to_40
95_octet_packe
ts

rx_4096_to_81
91_octet_packe
ts

rx_8192_to_90
22_octet_packe
ts

received_desc

completed_des
C

bad_desc_error
S

error_cqges

exceed_max_c
hain

Typ

Nu
mbe

Nu
mbe

Nu
mbe

Nu
mbe

Nu
mbe

Nu
mbe

Nu
mbe

Nu
mbe

Nu
mbe

Nu
mbe

Nu
mbe

NVIDIA BlueField Virtio-net v24.07

Description

The number of packets received with a size of 512 to 1023
bytes. Relevant for BlueField-3 RQ when packet counter is
enabled.

The number of packets received with a size of 1024 to 1522
bytes. Relevant for BlueField-3 RQ when packet counter is
enabled.

The number of packets received with a size of 1523 to 2047
bytes. Relevant for BlueField-3 RQ when packet counter is
enabled.

The number of packets received with a size of 2048 to 4095
bytes. Relevant for BlueField-3 RQ when packet counter is
enabled.

The number of packets received with a size of 4096 to 8191
bytes. Relevant for BlueField-3 RQ when packet counter is
enabled.

The number of packets received with a size of 8192 to 9022
bytes. Relevant for BlueField-3 RQ when packet counter is
enabled.

Total number of received descriptors by the device on this VQ

Total number of completed descriptors by the device on this

vQ

Total number of bad descriptors received on this VQ

Total number of errors CQ entries on this VQ

Total number of chained descriptors received that exceed the
max allowed chain by the device

101

Entry Typ

Nu
invalid_buffer | mbe

Nu
batch_number | mbe

g g Nu
ma
_g_used_n mbe
umber
r
Nu
handler_schd_
mbe
number
r
Nu
aux_handler_sc mbe
hd_number
r
g Nu
max t
_post_desc mbe
_number
r
Nu
total_bytes mbe
r
Nu
r
g_Cg_max_cou mbe
nt
r
Nu

rq_cq_period | mbe

rg_cq_period_ | Nu
mode mbe

Description

Total number of times device tried to read or write buffer that
is not registered to the device

The number of RX descriptors for the last received packet.
Relevant for BlueField-3.

The DMA g index used for this VQ. Relevant for BlueField-3.

Scheduler number for this VQ. Relevant for BlueField-3.

Aux scheduler number for this VQ. Relevant for BlueField-3.

Maximum number of posted descriptors on this VQ. Relevant
for DPA.

Total number of bytes handled by this VQ. Relevant for
BlueField-3.

Event generation moderation counter of the queue. Relevant
for RQ.

Event generation moderation timer for the queue in 1 p sec
granularity. Relevant for RQ.

Current period mode for RQ
o 0x0 - default_mode - use device best defaults
o 0x1 - upon_event - queue_period timer restarts upon event
generation
o 0x2 - upon_cge - queue_period timer restarts upon
completion generation

NVIDIA BlueField Virtio-net v24.07 102

T
Entry eyp Description

The second section wrapped by queues-stats IS
information for each receive VQ.

VQ Statistics

To query Rx VQ statistics, use the corresponding VQ index. For example, If there are 3

queues configured then to query Rx, VQ uses queue 0, Tx VQ uses queue 1, and Ctrl VQ
uses queue 2.

The following is the command to query PF 0, VF 0, and VQ O (i.e., Rx).

[d

pul# virtnet query-p0-v0-q 0

Output:

"enabled-queues-info": [

{

"index": "0",

"size": "256",
"msix_vector": "Ox1",
"enable": "1",
"notify_offset": "0",

"descriptor_address": "Oxffffe000",

"driver_address": "0xfffff000",
"device_address": "0Oxfffff240",
"received_desc": "256",
"completed_desc": "19",
"bad_desc_errors": "0",
"error_cqes": "0",
"exceed_max_chain": "0",
"invalid_buffer": "0",
"batch_number": "64",
"dma_qg_used_number": "0",
"handler_schd_number": "4",
"aux_handler_schd_number": "3",
"max_post_desc_number": "0",

NVIDIA BlueField Virtio-net v24.07

103

"total_bytes": "6460",
"rg_cqg_max_count": "0",
"rg_cq_period": "0",
"rg_cq_period_mode": "1"

}

The following are some of the important VQ counters:

Counter Name | Description

total_bytes Number of bytes received

received_desc Number of available descriptors received by device
completed_desc | Number of available descriptors completed by the device
error_cqes Number of error CQEs received on the queue
bad_desc_errors | Number of bad descriptors received

Number of chained descriptors received that exceed the max allowed

exceed_max_chain . .
chain by device

Number of times device tried to read or write buffer that is not

invalid_buffer) .
- registered to the device

RQ Drop Counter

When DPA is the data path provider, each RQ has its corresponding drop counter, which
counts the number of packets dropped inside the DPA virtio RQs.

(D Info

The drop could also happen from the uplink or SF.

The drop counter only increments (initial value being 0), and its value gets reset to 0
when disabled.

NVIDIA BlueField Virtio-net v24.07 104

RQ drop counter can be enabled and disabled as follows (using VF 0 on PF 0):

[dpul# virtnet modify -p 0 -v 0 device -dc enable
[dpul# virtnet modify -p 0 -v O device -dc disable

() Note

Drop counter is attached to a RQ, thus RQ must be created first. This
means that the virtio-net device should be probed by the driver on
the host OS before running the commands above.

To query the drop counter value(s), run:
[dpul# virtnet query -p 0 -v O | grep num_desc_drop_pkts

If there are more than one RQ for a device, the drop count is the sum of all RQ's value.

Packet Counter

() Note

Relevant for BlueField-3 only.

The packet counter feature helps the user query the byte-wise packet counters for each
Rx queue.

By default, byte-wise packet counters are disabled as that negatively impacts

performance. When the user is interested in the debug, enable the packet counter
feature using the below command

NVIDIA BlueField Virtio-net v24.07 105

Packet counter can be enabled and disabled as follows (using VF 0 on PF 0):

[dpul# virtnet modify -p 0 -v 0 device -pkt_cnt enable
[dpul# virtnet modify -p 0 -v 0 device -pkt_cnt disable

e When enabled, byte-wise packet counters are initialized to zero.

e When disabled, the previous values are retained for debugging purposes. The
command will still return these old, disabled counter values.

() Note

Packet counters are attached to an RQ. Thus, RQ must be created
first. This means that the virtio-net device should be probed by the
driver on the host OS before running the commands above.

Introduction

Jumbo MTU is critical for increasing the efficiency of Ethernet and network processing by
reducing the protocol overhead (ratio of headers and payload size).

Configuration

To support jumbo MTU run the following virtnet command:

[dpul# virtnet modify -p 0 -v 0 device -t 9216

(D Info

NVIDIA BlueField Virtio-net v24.07 106

The example sets the MTU to 9126 for VF 0 on PF 0.

Jumbo MTU is only supported starting from the following kernel version:

Release
Upstream VM kernel: 4.18‘.0—193.el8.x86_.64
(VM Linux version supports big MTU after 4.11)
Ubuntu DOCA_2.5.0 BSP 4.5.0 Ubuntu_22.04
Virtnet controller v1.7 orv1.6.26

To configure jumbo MTU (e.g., using VF 0 on PF 0):

1. Change the MTU of the uplink and SF representor from the BlueField:

[dpul# ifconfig p0 mtu 9216
[dpul# ifconfig en3f0pf0sf3000 mtu 9216

If a bond is configured, change the MTU of the bond rather than po:

[dpul# ifconfig bond0 mtu 9216
[dpul# ifconfig en3f0pf0sf3000 mtu 9216

2. Restart the virtio-net-controller from the BlueField:

[dpul# systemctl restart virtio-net-controller

3. Change the corresponding device MTU on the BlueField:

[dpul# virtnet modify -p 0 -v 0 device -t 9216

NVIDIA BlueField Virtio-net v24.07 107

4. Reload virtio driver from the host OS:

[host]# modprobe -rv virtio-net && modprobe -v virtio-net

5. Check virtqueue MTU configuration is correct on the BlueField:

[dpul# virtnet query -p 0 -v 0 --dbg_stats | grep jumbo_mtu
"jumbo_mtu": 1
"jumbo_mtu": 1

6. Change the MTU of virtio-net interface from the host OS:

[host]# ifconfig <vnet> mtu 9216

It is common to use link aggregation (LAG) or bond interfaces to increase reliability,
availability, or bandwidth of networking devices. Virtio-net devices support this mode via
DPU-side LAG configurations.

To configure the virtio-net-controller in LAG mode must follow a specific procedure due
to the dependency on mix5 RDMA device:

1. Stop the virtio-net-controller to avoid resource leakage (which would be caused by
LAG destroying the existing mIx5 RDMA device and creating a new bond RDMA
device).

[dpul# systemctl stop virtio-net-controller.service

2. Configure the LAG interface for two uplink interfaces from the DPU side. Refer to
the " Link Aggregation " page in NVIDIA BlueField BSP documentation for detailed

steps.

NVIDIA BlueField Virtio-net v24.07 108

https://docs.nvidia.com/networking/display/bluefielddpuos/link+aggregation

() Note

The virtio-net-controller service starts by default. If DPU is
rebooted during LAG configuration, it is necessary to stop the
controller before creating a bond interfaces from the DPU side.

3. Update the controller configuration file to use bond interface.

[dpul# cat /opt/mellanox/minx_virtnet/virtnet.conf

{
"ib_dev_lag": "mIx5_bond_0",
"ib_dev_for_static_pf": "mIx5_bond_0",
"is_lag": 1,

}

(D Info

Refer to page "Configuration File" for details.

4. Start the controller for the new configuration to take effect.

[dpul# systemctl start virtio-net-controller.service

Live Migration Using vHost Acceleration Software Stack

NVIDIA BlueField Virtio-net v24.07 109

file:///networking/display/bluefieldvirtionetv2407/Configuration+File

Virtio VF PCle devices can be attached to the guest VM using the vhost acceleration
software stack. This enables performing live migration of guest VMs.

/ QEMU \

vhost
acceleration
service

vhost
server

orchestration

cli VM

Y)
[virtio PF] Al
virtio VF(s)

DPU

This section provides the steps to enable VM live migration using virtio VF PCle devices
along with vhost acceleration software.

NVIDIA BlueField Virtio-net v24.07

vhostmgmt
cli

nvidia vhost
Customer slave backend
orchestration service J

HOST user space

HOST kernel

HOST system

MI virtio virtio

static PF VF
VFE devices
T ettt
virtio
commands
Prerequisites

e Minimum hypervisor kernel version - Linux kernel 5.7 (for VFIO SR-IOV support)

e To use high-availability (the additional vfe-vhostd-ha service which can persist
datapath when vfe-vhostd crashes), this kernel patch must be applied.

Install vHost Acceleration Software Stack

Vhost acceleration software stack is built using open-source BSD licensed DPDK.

e To install vhost acceleration software:

NVIDIA BlueField Virtio-net v24.07

111

https://github.com/torvalds/linux/commit/ffed0518d871482e26c5826c0875bea6775446da

1. Clone the software source code:

[host]# git clone https://github.com/Mellanox/dpdk-vhost-vfe

(D Info

The latest release tag is vfe-24.07-rc2.

2. Build software:

[host]# apt-get install libev-dev -y

[host]# apt-get install libev-libevent-dev -y

[host]# apt-get install uuid-dev -y

[host]# apt-get install libnuma-dev -y

[host]# meson build --debug -
Denable_drivers=vdpa/virtio,common/virtio,common/virtio_mi,common/virtio_ha
[host]# ninja -C build install

e Toinstall QEMU:

(D Info

Upstream QEMU later than 8.1 can be used or the following
NVIDIA QEMU.

1. Clone NVIDIA QEMU sources.

NVIDIA BlueField Virtio-net v24.07

112

[host]# git clone https://github.com/Mellanox/gemu -b stable-8.1-presetup

(D Info

Latest release tag is vfe-0.6.

2. Build NVIDIA QEMU.

[host]# mkdir bin

[host]# cd bin

[host]# ../configure --target-list=x86_64-softmmu --enable-kvm
[host]# make -j24

Configure vHost on Hypervisor

1. Configure 1G huge pages :

[host]# mkdir /dev/hugepages1G

[host]# mount -t hugetlbfs -0 pagesize=1G none /dev/hugepages1G

[host]# echo 16 > /sys/devices/system/node/node0/hugepages/hugepages-
1048576kB/nr_hugepages

[host]# echo 16 > /sys/devices/system/node/nodel/hugepages/hugepages-
1048576kB/nr_hugepages

2. Enable gemu:commandline in VM XML by adding the xmins:gemu option:

NVIDIA BlueField Virtio-net v24.07

113

<domain type='kvm' xmlIns:gemu="http://libvirt.org/schemas/domain/qemu/1.0">

3. Assign a memory amount and use 1GB page size for huge pages in VM XML:

<memory unit='GiB'>4</memory>
<currentMemory unit='GiB">4</currentMemory>
<memoryBacking>
<hugepages>
<page size='1" unit="GiB'/>
</hugepages>
</memoryBacking>

4, Set the memory access for the CPUs to be shared:

<cpu mode='custom' match='exact' check='partial>
<model fallback="allow'>Skylake-Server-IBRS</model>
<numa>
<cell'id='0" cpus='0-1" memory='4' unit='GiB' memAccess='shared'/>
</numa>
</cpu>

5. Add a virtio-net interface in VM XML:

<gemu:commandline>

<gemu:arg value='"-chardev'/>

<gemu:arg value='socket,id=char0,path=/tmp/vhost-net0,server=on'/>

<gemu:arg value="-netdev'/>

<gemu:arg value='type=vhost-user,id=vhost1,chardev=char0,queues=4'/>

<gemu:arg value='"-device'/>

<gemu:arg value='virtio-net-pci,netdev=vhost1,mac=00:00:00:00:33:00,vectors=10,page-
per-vg=on,rx_queue_size=1024,tx_queue_size=1024,mg=on,disable-legacy=on,disable-
modern=off'/>
</gemu:commandline>

NVIDIA BlueField Virtio-net v24.07 114

Run vHost Acceleration Service

1. Bind the virtio PF devices to the vfio-pci driver:

[host]# modprobe vfio vfio_pci

[host]# echo 1 > /sys/module/vfio_pci/parameters/enable_sriov
[host]# echo Ox1af4 0x1041 > /sys/bus/pci/drivers/vfio-pci/new_id
[host]# echo Ox1af4 0x1042 > /sys/bus/pci/drivers/vfio-pci/new_id
[host]# echo <pf_bdf> > /sys/bus/pci/drivers/virtio-pci/unbind
[host]# echo <vf_bdf> > /sys/bus/pci/drivers/virtio-pci/unbind
[host]# echo <pf_bdf> > /sys/bus/pci/drivers/vfio-pci/bind

[host]# echo <vf_bdf> > /sys/bus/pci/drivers/vfio-pci/bind

[hostl# Ispci -vwv -s <pf_bdf> | grep "Kernel driver"

Kernel driver in use: vfio-pci

[hostl# Ispci -vwv -s <vf_bdf> | grep "Kernel driver"

Kernel driver in use: vfio-pci

(D Info

Example of <pf_bdf> or <vf_bdf> format: 0000:af:00.3

2. Enable SR-IOV and create a VF(s):

[host]# echo 1 > /sys/bus/pci/devices/<pf_bdf>/sriov_numvfs
[hostl# Ispci | grep Virtio

0000:af:00.1 Ethernet controller: Red Hat, Inc. Virtio network device
0000:af:00.3 Ethernet controller: Red Hat, Inc. Virtio network device

3. Add a VF representor to the OVS bridge on the BlueField:

[dpul# virtnet query -p 0 -v O | grep sf_rep_net_device
"sf_rep_net_device": "en3fOpf0sf3000",

NVIDIA BlueField Virtio-net v24.07

[dpul# ovs-vsctl add-port ovsbr1 en3fOpf0sf3000

4. Run the vhost acceleration software service:

start the vfe-vhostd service:

[host]# systemctl start vfe-vhostd

(D Info

A log of the service can be viewed by running the following:

[host]# journalctl -u vfe-vhostd

5. Provision the virtio-net PF and VF:

[host]# /usr/local/bin/vfe-vhost-cli mgmtpf -a <pf_bdf>
Wait on virtio-net-controller finishing handle PF FLR

On BlueField, change VF MAC address or other device options
[dpul# virtnet modify -p 0 -v 0 device -m 00:00:00:00:33:00

Add VF into vfe-dpdk
[host]# /usr/local/bin/vfe-vhost-cli vf -a <vf_bdf> -v /tmp/vhost-net0

() Note

NVIDIA BlueField Virtio-net v24.07 116

If the SR-IOV is disabled and reenabled, the user must re-
provision the VFs. 00:00:00:00:33:00 is a virtual MAC address used
in VM XML.

Start the VM

[host]# virsh start <vm_name>

HA Service

Running the vfe-vhostd-ha service allows the datapath to persist should vfe-vhostd crash:

[host]# systemctl start vfe-vhostd-ha

Simple Live Migration

1. Prepare two identical hosts and perform the provisioning of the virtio device to
DPDK on both.

2. Boot the VM on one server:

[host]# virsh migrate --verbose --live --persistent <vm_name>
gemu+ssh://<dest_node_ip_addr>/system --unsafe

Remove Device

NVIDIA BlueField Virtio-net v24.07

117

When finished with the virtio devices, use following commands to remove them from
DPDK:

[host]# /usr/local/bin/vfe-vhost-cli vf -r <vf_bdf>
[host]# /usr/local/bin/vfe-vhost-cli mgmtpf -r <pf_bdf>

Live update minimizes network interface downtime by performing online upgrade of the
virtio-net controller without necessitating a full restart.

Requirements

To perform a live update, the user must install a newer version of the controller either
using the rpm or deb package (depending on the OS distro used). Run:

For Ubuntu/Debian [dpul# dpkg --force-all -i virtio-net-controller-x.y.z-1.mInx.aarch64.deb
For CentOS/RedHat [dpul# rpm -Uvh virtio-net-controller-x.y.z-1.mInx.aarch64.rpm --force
Check Versions

Before staring live update, the following command can be used to check the version of
the original and destination controllers:

[dpul# virtnet version

Example output:

NVIDIA BlueField Virtio-net v24.07 118

{
"Original Controller": "v1.9.13"

}I
{
"Destination Controller": "v1.9.14"

}

Start Updating

If no errors occur, issue the following command to start the live update process:

[dpul# virtnet update -s

() Note

If an error appears regarding the "update" command not being
supported, this implies that the controller version you are trying to
install is too old. Reinstalling the proper version will resolve this issue.

Check Status

During the update process, the following command may be used to check the update
status:

[dpul# virtnet update -t
Example output:

{
"current status": "inactive", # updating status, whether live update is finished or ongoing

NVIDIA BlueField Virtio-net v24.07 119

"last status": "success", # last live update status
"time_used (s)": 1.655439 # time cost for last live update

}

During the update, some existing virtnet commands (e.g., list, query, modify) remain
supported.

When the update process completes successfully, the command virtnet update status reflects
the status accordingly

() Note

If a device is actively migrating, the existing virtnet commands appear
as "migrating" for that specific device so that the user can retry later.

() Note

When live update is in progress, hotplug/unplug and VF
creation/deletion are not supported.

When negotiating with the driver, mergeable buffers is a mode where multiple
descriptors are posted to fit a single jumbo sized packet coming from the wire. This is a
receive-side only feature which helps im prove performance in situations of a large MTU
(e.g., 9K).

Enabling and using mergeable buffers requires updating the configuration file along with
advertising feature bits from the controller side as described in the following subsections.

Enabling/Disabling Mergeable Buffers

NVIDIA BlueField Virtio-net v24.07 120

To enable or disable the mergeable Rx buffer feature, set the mrg_rxbuf attribute in the
virtnet.conf configuration file to 1 or 0 respectively.

For example, to enable mergeable Rx buffer:

[dpul# cat /opt/mellanox/minx_virtnet/virtnet.conf
{

"mrg_rxbuf": 1

() Note

Updating the configuration file requires a restart of the virtio-net-
controller.

(D Info

Refer to "Configuration File" page for more information.

Configuring Device
Mergeable buffer is a per-device feature.
1. Users must query a device to check if VIRTIO_F_MRG_RX_BUFFER is available. For

example, the following PF 0 does not support mergeable buffer:

[dpul# virtnet query -p 0 -b
{'all'; '0x0', 'pf": '0x0', 'dbg_stats": '0x0', 'brief'; '0x1", 'latency_stats': '0x0', 'stats_clear": '0x0'}
{

NVIDIA BlueField Virtio-net v24.07 121

file:///networking/display/bluefieldvirtionetv2407/Configuration+File

"devices": [

{

"pf_id": O,

"transitional": 0,

"vuid": "MT2251X00020VNETS1DOF0",
"pci_bdf": "86:00.0",

"pci_dev_id": "0x1041",
"pci_vendor_id": "0x1af4",
"pci_class_code": "0x20000",
"pci_subsys_id": "0x1",
"pci_subsys_vendor_id": "0x1af4",
"pci_revision_id": "1",

"pci_max_vfs": "0",
"enabled_vfs": "0",
"device_feature": {

"value": "0x8900010300e7182f",

0"
1
2"
3"
5"
1"
12"
16"
17"
18"
21"
22"
23"
32"
33"
40"
56":
59"
63"

"VIRTIO_NET_F_CSUM",
"VIRTIO_NET_F_GUEST_CSUM",

"VIRTIO_NET_F_CTRL_GUEST_OFFLOADS",

"VIRTIO_NET_F_MTU",
"/IRTIO_NET_F_MAC",
"VIRTIO_NET_F_HOST TSO4",
"VIRTIO_NET_F_HOST TSO6",
"VIRTIO_NET_F_STATUS",
"VIRTIO_NET_F_CTRL_VQ",
"VIRTIO_NET_F_CTRL_RX",
"VIRTIO_NET_F_GUEST_ANNOUNCE",
"VIRTIO_NET_F_MQ",
"VIRTIO_NET_F_CTRL_MAC_ADDR",
"VIRTIO_F_VERSION_1",
"VIRTIO_F_IOMMU_PLATFORM?",
"VIRTIO_F_RING_RESET",
"VIRTIO_NET_F_HOST_USO",
"VIRTIO_NET_F_GUEST_HDRLEN?",
"VIRTIO_NET_F_SPEED_DUPLEX"

2. To enable the feature:

1. Make sure there is no driver loaded from the guest-OS side:

NVIDIA BlueField Virtio-net v24.07

122

[host]# modprobe -rv virtio_net && modprobe -rv virtio_pci

2. Set the 15th bit to 1 in the feature bits, and modify the device:

[dpul# virtnet modify -p 0 device -f 0x8900010300e7982f
{'pf':'0x0', 'all": '0x0', 'subcmd": '0x0', 'features': '0x8900010300e7982f"}
{

"errno": O,

"errstr': "Success"

}

3. Load the drivers from the host:

[host]# modprobe -v virtio_pci && modprobe -v virtio_net

4. Query the device again, checking whether VIRTIO_F_MRG_RX_BUFFER is available.
The following query shows VIRTIO_F_MRG_RX_BUFFER under device_feature and
driver_feature. Now mergeable buffer is enabled on PF 0.

[dpul# virtnet query -p 0 -b

{'all': '0x0', 'pf": '0x0', 'dbg_stats": '0x0', 'brief": '0x1", 'latency_stats": '0x0', 'stats_clear": '0x0'}

{

"devices": [
{

"pf_id": O,
"transitional": 0,
"vuid": "MT2251X00020VNETSODOF1",
"pci_bdf": "85:00.1",
"pci_dev_id": "0x1041",
"pci_vendor_id": "0x1af4",
"pci_class_code": "0x20000",
"pci_subsys_id": "0x1041",
"pci_subsys_vendor_id": "0x1af4",
"pci_revision_id": "1",
"pci_max_vfs": "0",

NVIDIA BlueField Virtio-net v24.07 123

"enabled_vfs": "0",
"device_feature": {
"value": "0x8900032300e7982f",

"o
R
"2
"3
" 5"

SRR
12
" 15
" 16"
"7
"8
21
" 22
" 23"
" 32
" 33"
" 37"
" 40"
A
" 56"
" 59"
" 63"

}

"VIRTIO_NET_F_CSUM",
"VIRTIO_NET_F_GUEST_CSUM",
"VIRTIO_NET_F_CTRL_GUEST OFFLOADS",
"VIRTIO_NET_F_MTU",
"VIRTIO_NET_F_MAC",
"VIRTIO_NET_F_HOST _TSO4",
"VIRTIO_NET_F_HOST TSO6",
"VIRTIO_F_MRG_RX_BUFFER",
"VIRTIO_NET_F_STATUS",
"VIRTIO_NET_F_CTRL_VQ",
"VIRTIO_NET_F_CTRL_RX",
"VIRTIO_NET_F_GUEST ANNOUNCE",
"VIRTIO_NET_F_MQ",
"VIRTIO_NET_F_CTRL_MAC_ADDR",
"VIRTIO_F_VERSION_1",
"VIRTIO_F_IOMMU_PLATFORM?",
"VIRTIO_F_SR_IOV",
"VIRTIO_F_RING_RESET",
"VIRTIO_F_ADMIN_VQ",
"VIRTIO_NET_F_HOST_USO",
"VIRTIO_NET_F_GUEST_HDRLEN?",
"VIRTIO_NET_F_SPEED_DUPLEX"

"driver_feature": {
"value": "0x8000002300e7982f",

"o
B
RVA
"3
"o5"

SRIE
"1
"5
" 16"
"7
" 18"
21
" 22
" 23"
" 32
" 33"

NVIDIA BlueField Virtio-net

"VIRTIO_NET_F_CSUM",
"VIRTIO_NET_F_GUEST_CSUM",
"VIRTIO_NET_F_CTRL_GUEST OFFLOADS",
"/IRTIO_NET_F_MTU",
"VIRTIO_NET_F_MAC",
"VIRTIO_NET_F_HOST TSO4",
"VIRTIO_NET_F_HOST_TSO6",
"VIRTIO_F_MRG_RX_BUFFER",
"VIRTIO_NET_F_STATUS",
"VIRTIO_NET_F_CTRL_VQ",
"VIRTIO_NET_F_CTRL_RX",
"VIRTIO_NET_F_GUEST_ANNOUNCE",
"VIRTIO_NET_F_MQ",
"VIRTIO_NET_F_CTRL_MAC_ADDR",
"VIRTIO_F_VERSION_1",
"VIRTIO_F_IOMMU_PLATFORM?",

v24.07

124

" 37" "VIRTIO_F_SR_IOV",
" 63" "VIRTIO_NET_F_SPEED_DUPLEX"

Limitations

e The number of descriptors per work queue entry depends on the MTU size. For best
performance, it is recommended to not enable the feature if the MTU is set to the
default value (1500).

e Performance is expected to degrade with this feature when receiving small sized
packets (e.g., 64 bytes) from the wire.

e Mergeable buffer does not work with the packed VQ feature.

Number of Queues and MSIX

Driver Configuration

The virtio-net driver can configure the number of combined channels via ethtool. This
determines how many virtqueues (VQs) can be used for the netdev. Normally, more VQs
result in better overall throughput when if multi-threaded (e.g., iperf with multiple
streams).

[host]# ethtool -| ethO
Channel parameters for ethO:
Pre-set maximums:

RX: n/a
TX: n/a
Other: n/a

Combined: 31
Current hardware settings:
RX: n/a

NVIDIA BlueField Virtio-net v24.07 125

TX: n/a
Other: n/a
Combined: 15

Therefore, it is common to pick a larger number (less than pre-set maximums) of
channels using the following command.

Tip

Normally, configuring the combined number of channels to be the
same as number of CPUs available on the guest OS will yield good
performance.

[host]# ethtool -L ethO combined 31
[host]# ethtool -| ethO

Channel parameters for ethO:
Pre-set maximums:

RX: n/a
TX: n/a
Other: n/a

Combined: 31
Current hardware settings:

RX: n/a
TX: n/a
Other: n/a

Combined: 31

Device Configuration

To reach the best performance, it is required to make sure each tx/rx queue has an
assigned MSIX. Check the information of a particular device and make sure num_queues is
less than num_msix.

NVIDIA BlueField Virtio-net v24.07 126

[dpul# virtnet query -p 0 -b | grep -i num_
"num_mesix": "64",
"num_queues": "8",

If num_queues is greater than num_msix, it is necessary to change mixconfig to reserve more
MSIX than queues. It is determined by the VIRTIO_NET_EMULATION_NUM_VF_MSIX and
VIRTIO_NET_EMULATION_NUM_MSIX. Please refer to the "Virtio-net Deployment" page for more
information.

Queue Depth

By default, queue depth is set to 256. It is common to use a larger queue depth (e.g.,
1024). This cannot be requested from the driver side but must be done from the device
side.

Refer to the "Virtnet CLI Commands" page to learn how to modify device max_queue_size.

MTU

To improve performance, the user can use jumbo MTU. Refer to "Jumbo MTU" page for
information regarding MTU configuration.

Introduction

Recovery is critical for status restoration (both control plane and data plane) for cases
such as controller restart, live update, or live migration.

Recovery depends on the JSON files stored in /opt/mellanox/minx_virtnet/recovery where there
is a file corresponding to each device (either PF or VF). The filename is the unique VUID of
the corresponding device.

The following entries are saved to the recovery file and restored when necessary:

NVIDIA BlueField Virtio-net v24.07 127

file:///networking/display/bluefieldvirtionetv2407/Virtio-net+Deployment
file:///networking/display/bluefieldvirtionetv2407/Virtnet+CLI+Commands
file:///networking/display/bluefieldvirtionetv2407/Jumbo+MTU

Entry Type Description

port_ib_dev String RDMA device name the virtio-net device is created on
pf_id Number | ID of PF
vf_id Number | ID of VF, valid for VF only

function_type | String PF or VF
bdf_raw Number | Virtio-net device bus:device:function in uint16 type

device_type String Static or hotplug (only for PF)

mac String MAC address of device

pf_num Number | PCle function number

sf_num Number | SF number which was used for this virtio-net device

mq Number | Number of multi-queue created for this virtio-net device

An example of recovery file for a hotplug PF device:

{
"port_ib_dev": "mIx5_0",
"pf_id": O,
"function_type": "pf",
"bdf_raw": 57611,
"device_type": "hotplug",
"mac": "0c:c4:7a:ff:22:93",
"pf_num": 0,
"sf num": 2000,
"mq": 3

Use Cases

Depending on the actions of the BlueField or host, recovery may or may not be
performed. Please refer to the following table for individual scenarios:

NVIDIA BlueField Virtio-net v24.07 128

DPU Actions

Restart | Live Hot
Controlle |Updat |Unplu

r e g
Static Recov
Recover N/A
PF er
No
Hotpl Recov
Recover recov
ug PF er
er
Recov
VF Recover or N/A

() Note

Host Actions

Destroy
VFs

N/A

N/A

Recovery
file deleted

Unload
Driver

Recove
r

Recove
r

Recove

Power Cycle
Host & DPU

No recover

No recover

No recover

Warm
Reboot

Recove
r

Recove
r

No
recover

These recovery files are internal to the controller and should not be

modified.

() Note

Controller recovery is enabled by default and does not need user

configuration or intervention. When the mixconfig settings used by the
controller take effect, the newly started controller service
automatically deletes all recovery files.

Overview

NVIDIA BlueField Virtio-net v24.07

Live
Migrati
on

Recover

Recover

Recover

129

A transitional device is a virtio device which supports drivers conforming to virtio
specification 1.x and legacy drivers operating under virtio specification 0.95 (i.e., legacy
mode) so servers with old Linux kernels can still utilize virtio-based technology.

(D Info

Currently, only transitional VF device is supported.

() Note

Host kernel version must be newer than v6.9.

() Note

When using this feature, vfe-vdpa-dpdk solutions cannot be used
anymore, including vfe-vdpa-dpdk live migration.

() Note

Libvirt does not support the virtio_vfio_pci kernel driver. Use the QEMU
command line to start the VM instead.

Transitional Virtio-net VF Device

1. Configure virtio-net SR-IOV. R efer to "Virtio-net Deployment" for details.

NVIDIA BlueField Virtio-net v24.07 130

file:///networking/display/bluefieldvirtionetv2407/Virtio-net+Deployment

2. Modify configuration file to add the "Im_prov": "kernel" option.

[dpul# cat /opt/mellanox/minx_virtnet/virtnet.conf
{

"Im_prov": "kernel",

3. Restart the virtio-net controller for the configuration to take effect:

[dpul# systemctl restart virtio-net-controller.service

4. Create virtio-net VF devices on the host:

[host]# modprobe -v virtio_pci
[host]# modprobe -v virtio_net
[host]# echo <vf_num> > /sys/bus/pci/devices/<pf_bdf>/sriov_numvfs

5. Bind the VF devices with the virtio_vfio_pci kernel driver:

[host]# echo <vf_bdf> > /sys/bus/pci/devices/<vf_bdf>/driver/unbind
[host]# echo Ox1af4 0x1041 > /sys/bus/pci/drivers/virtio_vfio_pci/new_id
[host]# modprobe -v virtio_vfio_pci

[host]# Ispci -s <vf_bdf> -vwv | grep -i virtio_vfio_pci

Kernel driver in use: virtio_vfio_pci

6. Add the following option into the QEMU cmdline to passthrough the VF device into
the VM:

-device vfio-pci,host=<vf_bdf>,id=hostdev0,bus=pci.<#BUS_IN_VM>,addr=<#FUNC_IN_VM>

NVIDIA BlueField Virtio-net v24.07 131

7. Load virtio-net driver as legacy mode inside the VM:

[vm]# modprobe -v virtio_pci force_legacy=1
[vm]# modprobe -v virtio_net

[vm]# Ispci -s <vf_bdf_in_vm> -n

00:0a.0 0200: 1af4:1000

8. Verify that the VF is a transitional device:

[dpul# virtnet query -p <pf_id> -v <vf_id> | grep transitional
"transitional": 1,

In virtio-net controller, each VF gets the same number of MSIX and virtqueues (VQs) so
that each data VQ has a MSIX assigned. This means that changing the number of MSIX
updates the number of VQs.

By default, each VF is assigned with the same number of MSIX, the default number is
determined by the minimum of NUM_VF_MSIX and VIRTIO_NET_EMULATION_NUM_MSIX.

Using dynamic VF MSIX, a VF can be assigned with more MSIX/queues than its default.
MSIX hardware resources of all VF devices are managed by PF via a shared MSIX pool. The
user can reduce the MSIX of one VF, thus releasing its MSIX resources to the shared pool.
On the other hand, another VF can be assigned with more MSIX than its default to gain
more performance.

NVIDIA BlueField Virtio-net v24.07 132

VF-a VF-b

low performance high performance
Add MSIX resource to
Reduce MSIX resource high performance VF
and return to share pool from share pool
> MSIX
Resource
Pool
PF

Firmware Configuration
The emulation VF device uses VIRTIO_NET_EMULATION_NUM_VF_MSIX to set the MSIX number.

VIRTIO_NET_EMULATION_NUM_VF_MSIX is available to set the MSIX number of the emulation VF
device. For the emulation VF device, uses the new configuration
VIRTIO_NET_EMULATION_NUM_VF_MSIX instead of the old configuration NUM_VF_MSIX.

o |f VIRTIO_NET_EMULATION_NUM_VF_MSIX!=0, VIRTIO_NET_EMULATION_NUM_ MSIX is used for the
PF only, and VF uses VIRTIO_NET_EMULATION_NUM_VF_MSIX.

For example, to configure the default MSIX number for a VF to 32:

[dpul# mlixconfig -y -d 03:00.0 s VIRTIO_NET_EMULATION_NUM_ MSIX=32
VIRTIO_NET_EMULATION_NUM_VF_MSIX=32

e |f VIRTIO_NET_EMULATION_NUM_VF_MSIX==0, VIRTIO_NET_EMULATION_NUM_ MSIX is used for
the PF and VF.

The default number of MSIX for each VF is determined by minimum(NUM_VF_MSIX,
VIRTIO_NET_EMULATION_NUM_MSIX). For example, to configure the default MSIX number for a

VF to 32:

NVIDIA BlueField Virtio-net v24.07 133

[dpul# mixconfig -y -d 03:00.0 s VIRTIO_NET_EMULATION_NUM_MSIX=32 NUM_VF_MSIX=32

Power cycle the BlueField and host to have the mixconfig taking effect.

MSIX

MSIX Capability

The MSIX pool for VFs is managed by their PF. To check the share pool size, run the
following command (using PF 0 as example):

[dpul# virtnet list | grep -i ""pf_id": 0'-A 8 | grep -i msix_num_pool_size

By default, the share pool size is empty (0), since all MSIX resources have already been
allocated to VFs evenly. Upon reducing the MSIX of one or more VFs, the reduced MSIX is
released back to the pool.

However, the number of MSIX can be assigned to a given VF is also bound by capability.

To check those caps, run the following command:

[dpul# virtnet list | grep -i "pf_id": 0'-A 10 | grep -i max_msix_num
[dpul# virtnet list | grep -i "pf_id": 0'-A 10 | grep -i min_msix_num

To check the currently assigned number of MSIX, run the following command:
[dpul# virtnet query -p 0 -v O | grep num_msix

If num_msix is less than max_msix_num cap, more MSIX can be assigned to the VF.

Reallocating VF MSIX

NVIDIA BlueField Virtio-net v24.07 134

To allocate more MSIX to one VF, there should be MSIX available from the pool. This is
done by reducing the MSIX from another VF(s).

The following example shows the steps to reallocate MSIX from VF1 to VF0, assuming that
each VF has 32 MSIX available as default:

1. Unbind both VF devices from host driver.

[host]# echo <vfO_bdf> > /sys/bus/pci/drivers/virtio-pci/unbind
[host]# echo <vf1_bdf> > /sys/bus/pci/drivers/virtio-pci/unbind

2. Reduce the MSIX of VF1.

[dpul# virtnet modify -p 0 -v 1 device -n 4

3. Check pool size of PFO.

[dpul# virtnet list | grep -i "pf_id": 0'-A 8 | grep -i msix_num_pool_size

Confirm the reduced MSIX are added to the share pool.

4. Increase the MSIX of VFO.

[dpul# virtnet modify -p 0 -v 0 device -n 48

5. Check the MSIX of VFO.

[dpul# virtnet query -p 0-v O | grep -i num_msix

6. Bind both VF devices to host driver.

NVIDIA BlueField Virtio-net v24.07 135

[host]# echo <vf0_bdf> > /sys/bus/pci/drivers/virtio-pci/bind
[host]# echo <vf1_bdf> > /sys/bus/pci/drivers/virtio-pci/bind

() Note

The number of MSIX must be an even number greater than 4.

MSIX Limitations

e MSIX and QP configuration is mutually exclusive (i.e., only one of them can be
configured at a time). For example, the following modify command should result in
failure:

[dpul# virtnet modify -p 0 -v 1 device-gp2-n 6
e To use a VF, make sure to assign a valid MSIX number:
[dpul# virtnet modify -p 0 -v 1 device -n 10
The minimum number of MSIX resources required for the VF to load the host driver
is 4 if VIRTIO_NET_F_CTRL_VQ is negotiated, or 2 if it is not.
e The MSIX resources of a VF can be reduced to 0, but doing so prevents the VF from

functioning.

[dpul# virtnet modify -p 0 -v 1 device -n 0

NVIDIA BlueField Virtio-net v24.07 136

Queue Pairs

Queue pairs (QPs) are the number of data virtio queue (VQ) pairs. Each VQ pair has one
transmit (TX) queue and one receive (RX) queue. These pairs are dedicated to handling
data traffic and do not include control or admin VQs.

QP Capability
The QP pool for VFs is managed by their PF.

To check the shared pool size, run the following command (using PF 0 as example):
[dpul# virtnet list | grep -i ""pf_id": 0'-A 13 | grep -i gp_pool_size

By default, the shared pool size is empty (0), since all QP resources have already been
allocated to VFs evenly. Upon reducing the QP of one or more VFs, the reduced QP is
released back into the pool.

However, the number of QPs assignable to a VF depends on its supported capabilities. To

verify these capabilities, run the following command:

[dpul# virtnet list | grep -i "pf_id": 0'-A 12 | grep -i max_num_of_gp
[dpul# virtnet list | grep -i "pf_id": 0'-A 12 | grep -i min_num_of_qp

To check the currently assigned number of QPs, run the following command:
[dpul# virtnet query -p 0 -v 0 | grep max_queue_pairs

If max_queue_pairs is less than max_num_of_gp cap, then more QPs can be assigned to the VF.

Reallocating VF QPs

NVIDIA BlueField Virtio-net v24.07 137

To allocate more QPs to one VF, there should be QPs available from the pool as explained
in the previous section.

The following example illustrates the process of reallocating a QP from VF1 to VFO,
assuming that each VF initially has 32 QPs available by default:
1. Unbind both VF devices from the host driver:

[host]# echo <vfO_bdf> > /sys/bus/pci/drivers/virtio-pci/unbind
[host]# echo <vf1_bdf> > /sys/bus/pci/drivers/virtio-pci/unbind

2. Reduce the number of QPs VF1 has:

[dpul# virtnet modify -p 0 -v 1 device -gp 1

3. Check the pool size of PFO and confirm that the reduced number of QPs are added
to the shared pool:

[dpul# virtnet list | grep -i ""pf_id": 0'-A 13 | grep -i gp_pool_size

4. Increase the number of QPs VFO has:

[dpul# virtnet modify -p 0 -v 0 device -qp 23

5. Check the number of QPs VFO has:

[dpul# virtnet query -p 0 -v O | grep -i max_queue_pairs

6. Bind both VF devices to the host driver:

NVIDIA BlueField Virtio-net v24.07 138

[host]# echo <vf0_bdf> > /sys/bus/pci/drivers/virtio-pci/bind
[host]# echo <vf1_bdf> > /sys/bus/pci/drivers/virtio-pci/bind

() Note

The number of QPs must be greater than 0.

QP Limitations

e QP and MSIX configuration is mutually exclusive (i.e., only one of them can be
configured at a time). For example, the following modify command should result in
failure:

[dpul# virtnet modify -p 0 -v 1 device-gp2-n 6
e To use a VF, assign it with a valid QP number:
[dpul# virtnet modify -p 0 -v 1 device-n 4
The minimum number of QP resources which allows the VF to load the host driver is
1.
e The QP resources of a VF can be reduced to 0. However, the VF would not be

functional in this case.

[dpul# virtnet modify -p 0 -v 1 device -qp 0

NVIDIA BlueField Virtio-net v24.07 139

Virtio-net Feature Bits

Per virtio spec, virtio the device negotiates with the virtio driver on the supported
features when the driver probes the device. The final negotiated features are a subset of
the features supported by the device.

From the controller's perspective, all feature bits can be supported by a device are
populated by virtnet list. Each individual virtio-net device is able to choose the feature bits
supported by itself.

The following is a list of the feature bits currently supported by controller:
® VIRTIO_NET_F_CSUM
® VIRTIO_NET_F_GUEST_CSUM
® VIRTIO_NET_F_CTRL_GUEST_OFFLOADS
® VIRTIO_NET_F_MTU
® VIRTIO_NET_F_MAC
® VIRTIO_NET_F_HOST_TSO4
® VIRTIO_NET_F_HOST_TSO6
® VIRTIO_NET_F_MRG_RXBUF
® VIRTIO_NET_F_STATUS
® VIRTIO_NET_F_CTRL_VQ
® VIRTIO_NET_F_CTRL_RX
® VIRTIO_NET_F_CTRL_VLAN
® VIRTIO_NET_F_GUEST_ANNOUNCE
e VIRTIO_NET_F_MQ

® VIRTIO_NET_F_CTRL_MAC_ADDR

NVIDIA BlueField Virtio-net v24.07 140

® VIRTIO_F_VERSION_1

e VIRTIO_F_IOMMU_PLATFORM
e VIRTIO_F_RING_PACKED

e VIRTIO_F_ORDER_PLATFORM
e VIRTIO_F SR_IOV

e VIRTIO_F_NOTIFICATION_DATA
e VIRTIO_F RING_RESET

e VIRTIO_F ADMIN_VQ

e VIRTIO_NET_F_HOST_USO

® VIRTIO_NET_F_HASH_REPORT
® VIRTIO_NET_F_GUEST_HDRLEN

® VIRTIO_NET_F_SPEED_DUPLEX

(D Info

For more information on these bits, refer to the VIRTIO Version 1.2
Specifications.

Virt Queue Types

Virtqueues (VQs) are the mechanism for bulk data transport on virtio devices. Each device
can have zero or more VQs.

VQs can be in one of the following modes:

e Split

NVIDIA BlueField Virtio-net v24.07 141

https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html#x1-2200003
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html#x1-2200003

e Packed

/\ Warning

When changing the supported VQ types, make sure to unload the
guest driver first so the device can modify the supported feature bits.

Split vQ

Currently the default VQ type. Split VQ format is the only format supported by version 1.0
of the virtio spec.

In split VQ mode, each VQ is separated into three parts:
e Descriptor table - occupies the descriptor area
¢ Available ring - occupies the driver area
e Used ring - occupies the device area
Each of these parts is physically-contiguous in guest memory. Split VQ has a very simple

design, but its sparse memory usage puts pressure on CPU cache utilization and requires
several PCle transactions for each descriptor.

Configuration

The following shows how the output of the virtnet list command appears only when split
VQ mode is enabled:

"supported_virt_queue_types": {
"value": "0Ox1",
" 0" "SPLIT"
2

NVIDIA BlueField Virtio-net v24.07 142

Packed VQ

Packed VQ addresses the limitations of split VQ by merging the three rings in one location
in virtual environment guest memory. This mode allows for fewer PCle transactions and

better CPU cache utilization per each descriptor access.

(D Info

Packed VQ is supported from kernel 5.0 with the virtio-support-
packed-ring commit from the guest OS.

Configuration

Packed VQ mode can be enabled by defining packed_vq in the configuration file at the
following path /opt/mellanox/minx_virtnet/virtnet.conf.

The following is an example of the packed_vq enabled in the configuration file:

"single_port": 1,

"packed_vq": 1,

"sf_pool_percent": 0,

"sf_pool_force_destroy": 0,

"vf': {
"mac_base": "CC:48:15:FF.00:00",
"vfs_per_pf": 126

}

}

The controller must be restarted after the configuration file is modified for the changes to
take effect. Make sure to unload virtio-net/virtio-pcie drivers on the host and run:

[dpul# systemctl restart virtio-net-controller.service

NVIDIA BlueField Virtio-net v24.07 143

https://github.com/torvalds/linux/commit/02c72d5edadc453f8e7f367df066ab6bd516c050
https://github.com/torvalds/linux/commit/02c72d5edadc453f8e7f367df066ab6bd516c050

To check if the configuration has taken effect and controller supported packed VQ mode,
run:

[dpul# virtnet list

Check for PACKED in supported_virt_queue_types:

"supported_virt_queue_types": {

"value": "0x3",
n Oll: "SPL'T"’
" 1" "PACKED"

h

Virtio-net/virtio-pci drivers can be loaded at this point to create VQs in packed mode.
Once the driver is loaded to verify that the device has packed VQ mode enabled, run the
following command:

[dpul# virtnet query -p <PFID> -v <VFID>

Check for VIRTNET_F_RING_PACKED in the driver features:

"driver_feature": {
"value": "0x8930012700e7182f",
" 0":"VIRTIO_NET_F_CSUM",
" 1":"VIRTIO_NET_F_GUEST_CSUM",
" 2":"VIRTIO_NET_F_CTRL_GUEST_OFFLOADS",
" 3":"VIRTIO_NET_F_MTU",
" 5" "WIRTIO_NET_F_MAC",
" 11" "VIRTIO_NET_F_HOST_TS0O4",
" 12":"VIRTIO_NET_F_HOST_TSO6",
" 16" "VIRTIO_NET_F_STATUS",
" 17":"VIRTIO_NET_F_CTRL_VQ",
" 18" "VIRTIO_NET_F_CTRL_RX",
" 21" "VIRTIO_NET_F_GUEST_ANNOUNCE",
" 22" "VIRTIO_NET_F_MQ",

NVIDIA BlueField Virtio-net v24.07 144

" 23" "VIRTIO_NET_F_CTRL_MAC_ADDR",
" 32" "VIRTIO_F_VERSION_1",

" 33" "VIRTIO_F_IOMMU_PLATFORM",
" 34" "VIRTIO_F_RING_PACKED",

" 37" "VIRTIO_F_SR_IOV",

" 40" "VIRTIO_F_RING_RESET",

" 52" "VIRTIO_NET_F_VQ_NOTF_COAL",
" 53" "VIRTIO_NET_F_NOTF_COAL",

" 56" "VIRTIO_NET_F_HOST_USO",

" 59" "VIRTIO_NET_F_GUEST_HDRLEN",
" 63" "VIRTIO_NET_F_SPEED_DUPLEX"

If there are VFs mapped to multiple VMs then it is possible to have some devices create
VQs in packed mode and some in split mode depending on the OS version and whether
the driver has the feature supported.

Known Limitations

The following features are not currently supported when packed VQ is enabled:
e Mergeable buffer
e Jumbo MTU

e UDP segmentation offload and RSS hash report

NVIDIA BlueField Virtio-net v24.07 145

Trobuleshooting

This section covers the following topics:

e BlueField-3 Jumbo MTU Not Working

e Failed to Start virtio-net-controller.service

e Function Not Implemented Error When Creating VF

e Guest OS Hangs When Creating VF

e Hotplug Device Does Not Show Correctly in Guest OS

e Hot-unplug Devices with Heavy Self-traffic, Guest OS Gets Call Trace

e Ubuntu Guest OS Hangs with Kernel 5.15.0-88/89-generic

BlueField-3 Jumbo MTU Not Working

Problem

Ping failed with packet size greater than 1500/4000 after configuring jumbo MTU.

Solution

Jumbo MTU is supported starting from the following kernel version:

Release

VM kernel: 4.18.0-193.el8.x86_64

Upstream VM Linux version supports big MTU after 4.11.
Ubuntu DOCA_2.5.0_BSP_4.5.0_Ubuntu_22.04
Virtnet v1.7 orv1.6.26

NVIDIA BlueField Virtio-net v24.07 146

file:///networking/display/bluefieldvirtionetv2407/BlueField-3+Jumbo+MTU+Not+Working
file:///networking/display/bluefieldvirtionetv2407/Failed+to+Start+virtio-net-controller.service
file:///networking/display/bluefieldvirtionetv2407/Function+Not+Implemented+Error+When+Creating+VF
file:///networking/display/bluefieldvirtionetv2407/Guest+OS+Hangs+When+Creating+VF
file:///networking/display/bluefieldvirtionetv2407/Hotplug+Device+Does+Not+Show+Correctly+in+Guest+OS
file:///networking/display/bluefieldvirtionetv2407/Hot-unplug+Devices+with+Heavy+Self-traffic%2C+Guest+OS+Gets+Call+Trace
file:///networking/display/bluefieldvirtionetv2407/Ubuntu+Guest+OS+Hangs+with+Kernel+5.15.0-88+89-generic

The following steps configure jumbo MTU:

1. Change the MTU of uplink representor (or bond) from the BlueField Arm OS:

echo 9216 > /sys/bus/pci/devices/0000:03:00.0/net/p0/mtu

2. Restart virtio-net-controller from the BlueField Arm OS:

systemctl restart virtio-net-controlle

3. Change the corresponding device MTU on BlueField Arm OS. For example, for the
first VF on the first PF, run:

virtnet modify -p 0 -v O device -t 9216

4. Reload the virtio driver from the guest OS:

modprobe -rv virtio-net && modprobe -v virtio-net

5. Verify the VQs' MTU configuration is correct on BlueField Arm OS:

virtnet query -p 0 -v 0 --dbg_stats | grep jumbo_mtu
"jumbo_mtu": 1
"jumbo_mtu": 1

6. Change the MTU of the virtio-net interface from the guest OS:

echo 9216 > /sys/bus/pci/devices/0000:af:00.2/virtio0/net/enp175s0f2/mtu

NVIDIA BlueField Virtio-net v24.07 147

Failed to Start virtio-net-
controller.service

Problem

The problem can be verified using the following commands:

virtnet list
ERR: Can't connect to virtnet controller: [Errno 111] Connection refused

Check 'systemctl status virtio-net-controller
Or controller is not ready to accept commands

systemctl status virtio-net-controller
virtio-net-controller.service - Nvidia VirtlO Net Controller Daemon
Loaded: loaded (/etc/systemd/system/virtio-net-controller.service; enabled; vendor preset: disabled)
Active: inactive (dead) since Fri 2023-10-27 17:46:59 CDT; 2min 26s ago
Docs: file:/opt/mellanox/minx_virtnet/README.md
Process: 29652 ExecStart=/usr/sbin/virtio_net_manager (code=exited, status=0/SUCCESS)

Main PID: 29652 (code=exited, status=0/SUCCESS)

Solution

The problem may happen due to the following reasons.

Virtio-net Not Enabled

1. Check if mIxconfig has VIRTIO_NET_EMULATION_ENABLE enabled:

mixconfig -d 03:00.0 -e q | grep -i VIRTIO_NET_EMULATION_ENABLE
* VIRTIO_NET_EMULATION_ENABLE False(0) True(1) True(1)

Both 2 and 3 columns should appear as true.

NVIDIA BlueField Virtio-net v24.07 148

2. If they are not, perform the following from the BlueField Arm side:

mixconfig -d 03:00.0 s VIRTIO_NET_EMULATION_ENABLE="1

3. Perform a BlueField system-level reset as documented in the BlueField software
documentation.

Not Enough SFs Reserved

This can happen when more VIRTIO_NET_EMULATION_NUM_PF are reserved than PF_TOTAL_SF,
as each virtio-net PF/VF requires a corresponding SF created:

mixconfig -d 03:00.0 -e q | grep -iE 'PF_TOTAL_SF|VIRTIO_NET_EMULATION_NUM_PF'
* VIRTIO_NET_EMULATION_NUM_PF 0 4 4
* PF_TOTAL_SF 0 8 8

(D Info

By default, the BlueField creates an SF for each PF. Take this into
consideration when reserving PF_TOTAL_SF.

Function Not Implemented Error
When Creating VF

Problem

NVIDIA BlueField Virtio-net v24.07 149

https://docs.nvidia.com/networking/display/bluefielddpuos/nvidia+bluefield+reset+and+reboot+procedures#src-2821752845_NVIDIABlueFieldResetandRebootProcedures-BlueFieldSystem-levelReset

Creating a virtio-net VF returns an error from the command line:

echo 3 > /sys/bus/pci/drivers/virtio-pci/0000:41:00.2/sriov_numvfs
write error: Function not implemented

The host-side dmesg shows the following:

[301.204661] virtio-pci 0000:41:00.2: Driver doesn't support SRIOV configuration via sysfs

Solution

Virtio SR-IOV is only supported starting from the following kernel version:

Release
Upstream 4.18 with commit cfecc2918d2b3
Ubuntu Ubuntu-hwe-4.18.0-9.10_18.04.1
CentOS 3.10.0-957.el7 /7.6.1810

Guest OS Hangs When Creating VF

Problem

The following command from the hypervisor hangs:

echo 100 > /sys/bus/pci/drivers/virtio-pci/0000:89:00.4/sriov_numvfs

Solution

This can happen when more VIRTIO_NET_EMULATION_NUM_PF/VIRTIO_NET_EMULATION_NUM_VF are
reserved than PF_TOTAL_SF (VIRTIO_NET_EMULATION_NUM_PF + VIRTIO_NET_EMULATION_NUM_VF >

NVIDIA BlueField Virtio-net v24.07 150

PF_TOTAL_SF) as each virtio-net PF/VF requires a corresponding SF created. Example:

mixconfig -d 03:00.0 -e q | grep -iE
'PF_TOTAL_SF|VIRTIO_NET_EMULATION_NUM_PF|VIRTIO_NET_EMULATION_NUM_VF'

* VIRTIO_NET_EMULATION_NUM_VF 0 126 126
* VIRTIO_NET_EMULATION_NUM_PF 0 4 4
* PF_TOTAL_SF 0 508 508

(D Info

By default, BlueField creates an SF for each PF. Take this into
consideration when reserving PF_TOTAL_SF.

() Note

BlueField supports a limited number of SFs. The SF reserved on the
BlueField Arm side and host side are not shared. Make sure to
remove the SFs reserved on the host side when reserving a large
number on the BlueField Arm side.

Hotplug Device Does Not Show
Correctly in Guest OS

Problem

After creating a hotplug device from the BlueField side, probing virtio drivers does not
create the virtio-net device correctly.

Solution

NVIDIA BlueField Virtio-net v24.07 151

The problem may happen due to the following reasons.

BARO

Possible failure on BAR 0. check dmesg from guest OS for corresponding hotplug BDF:

[10.874845] pci 0000:87:00.1: BAR 0: failed to assign [mem size 0x00100000]

(D Info

In this example, the hotplug PCle BDF is 87:00.1. This value can be
retrieved using "Ispci | grep -i virtio" from the guest OS.

This can be normally resolved by adding "pci=realloc" in the Linux command line (grub).

BAR 14/15

Possible failure on other PCle BAR. Check the dmesg from the guest OS for the
corresponding hotplug BDF:

[2893.484281] pcieport 0000:10:01.0: bridge window [mem 0x00100000-0x000fffff] to [bus 12]
add_size 200000 add_align 100000

[2893.484285] pcieport 0000:10:01.0: BAR 14: no space for [mem size 0x00200000]

[2893.484287] pcieport 0000:10:01.0: BAR 14: failed to assign [mem size 0x00200000]

[2893.484289] pcieport 0000:10:01.0: BAR 14: no space for [mem size 0x00200000]

[2893.484290] pcieport 0000:10:01.0: BAR 14: failed to assign [mem size 0x00200000]

(D Info

NVIDIA BlueField Virtio-net v24.07

152

In this example, the hotplug PCle BDF is 10:01.0. This value can be
retrieved using "Ispci | grep -i virtio" from the guest OS.

e This is mostly due to there being insufficient BAR resources. Try to reduce the PF
BAR size by performing the following from the BlueField side:

mixconfig -d 03:00.0 s PF_LOG_BAR_SIZE=0

¢ This can also be caused by the BIOS provider not reserving enough memory. Check
the guest OS's dmesg for similar messages for the PCle bus of the BlueField device:

[3.979061] pci_bus 0000:a0: root bus resource [mem 0x41c0800000-0x41c10fffff window] (9M)
[3.979062] pci_bus 0000:a0: root bus resource [bus a0-bf]

[4.017770] pci 0000:a4:00.0: bridge window [mem 0x41c0800000-0x41cOffffff 64bit pref] (8M)
[4.018243] pci 0000:a4:00.0: BAR 15: no space for [mem size 0x05800000 64bit pref] (88M)
[4.018245] pci 0000:a4:00.0: BAR 15: failed to assign [mem size 0x05800000 64bit pref]

o On the host, the prefetchable memory limit of the root bus (a0) is only 9 M.
This means that all the devices under this bus (including BlueField) can only be
allocated 9M prefetchable memory in total.

o The BAR 15 is the total prefetchable memory limit on the bridge (a4) of the
device. The PCI bridge window of the BlueField for prefetchable memory is 8M,
but the bridge requires 88M for its child device (BlueField). A fter several
attempts, the PCle bridge did not find sufficient IO memory to allocate for
BlueField BARs. This can be solved by contacting the BIOS provider to provide
enough memory to the PCl root.

Rescan

If the the hotplug operation from the BlueField Arm side is performed before the guest
OS is up, and the virtio device is not found by the command "Ispci | grep -i virtio". Try to
rescan from guest OS:

NVIDIA BlueField Virtio-net v24.07 153

echo 1>/sys/bus/pci/rescan

No Hotplug from BIOS

The server BIOS may not support hotplug device. This can be confirmed by looking at
guest OS dmesg:

[8.209406] acpi PNPOA08:03: _OSC: platform does not support [PCleHotplug PME]

Try to enable hotplug from the BIOS:

Aptio Setup - AMI

PCI Latency Timer [32 PCI Bus Clocks]

Force Hotplug

NVIDIA BlueField Virtio-net v24.07 154

Guest OS may be running a kernel older than 4.19, the virtio device is not found by "Ispci |
grep -ivirtio". Add the entry pciehp.pciehp_force=1 to the grub command line.

Hot-unplug Devices with Heavy Self-
traffic, Guest OS Gets Call Trace

Problem

When the guest OS is running heavy traffic (e.g., iperf/iperf3) on a hotplug virtio-net
device, unplugging those devices from BlueField side at the same time may results in the
guest OS hanging.

The guest OS would print a call traffic similar like the following:

[203.886218] CPU: 35 PID: 3077 Comm: iperf3 Not tainted 6.6.0 #1

[203.886222] Hardware name: Dell Inc. PowerEdge R7525/0590KW, BIOS 2.2.5 04/08/2021

[203.886224] RIP: 0010:free_old_xmit_skbs+0x5d/0xf0 [virtio_net]

[203.886247] Code: 41 f6 ¢4 01 75 75 66 90 44 89 fe 4c 89 e7 45 03 6¢c 24 70 e8 65 1a 0a f0 83 ¢3 01 49
8b3e488d75cce82621d1ef4d989 c4<48>85c075d185db740e4d 01 ae 800200004901 9e
78 02 00

[203.886249] RSP: 0018:ffffac62cbh837678 EFLAGS: 00000246

[203.886253] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffoa35e7dbc000

[203.886255] RDX: 0000000000000000 RSI: ffffac62cbh83767c RDI: ffff9a2e5e7d8900

[203.886257] RBP: ffffac62cb8376b0 RO8: 0000000000000000 RO9: 000000000003b2f0

[203.886259] R10: ffff9a2e4a570b00 R11: 000000000000000c R12: 0000000000000000

[203.886261] R13: 0000000000000000 R14: ffff9a2e62a48800 R15: 0000000000000000

[203.886263] FS: 00007f8444643400(0000) GS:ffffoa359f2c0000(0000) knlGS:0000000000000000
[203.886266] CS: 0010 DS: 0000 ES: 0000 CR0O: 0000000080050033

[203.886268] CR2: 000056277998d028 CR3: 0000000127976000 CR4: 0000000000350ee0

[203.886270] Call Trace:

[203.886274] <NMI>

[203.886277] ? show_regs+0x6e/0x80

[203.886289] ? nmi_cpu_backtrace+0xb1/0x120

[203.886298] ? nmi_cpu_backtrace_handler+0x15/0x20

[203.886305] ? nmi_handle+0x6b/0x180

[203.886310] ? default_do_nmi+0x45/0x120

[203.886316] ? exc_nmi+0x142/0x1c0

NVIDIA BlueField Virtio-net v24.07 155

[203.886319] ? end_repeat_nmi+0x16/0x67

[203.886328] ? free_old_xmit_skbs+0x5d/0xf0 [virtio_net]
[203.886334] ? free_old_xmit_skbs+0x5d/0xf0 [virtio_net]
[203.886341] ? free_old_xmit_skbs+0x5d/0xf0 [virtio_net]
[203.886347] </NMI>

[203.886348] <TASK>

[203.886349] ? free_old_xmit_skbs+0x8c/0xf0 [virtio_net]
[203.886356] start_xmit+0x149/0x500 [virtio_net]

[203.886364] dev_hard_start_xmit+0x95/0x1e0

[203.886370] ? validate_xmit_skb_list+0x51/0x80

[203.886374] sch_direct_xmit+0x10c/0x3a0

[203.886381] __dev_queue_xmit+0xa47/0xda0

[203.886387] ip_finish_output2+0x2ef/0x5a0

[203.886393] ? srso_return_thunk+0x5/0x10

[203.886400] ? nf_conntrack_in+0xeb/0x6c0 [nf_conntrack]
[203.886428] _ip_finish_output+0xbh7/0x190

[203.886433] ip_finish_output+0x32/0x100

[203.886437] ip_output+0x63/0xf0

[203.886441] ? __pfx_ip_finish_output+0x10/0x10

[203.886446] ip_local_out+0x62/0x70

[203.886449] __ip_queue_xmit+0x18e/0x4b0

[203.886454] ip_queue_xmit+0x19/0x20

[203.886456] _ tcp_transmit_skb+0xb2d/0xcdO

[203.886462] ? srso_return_thunk+0x5/0x10

[203.886469] tcp_write_xmit+0x565/0x1620

[203.886474] tcp_push_one+0x40/0x50

[203.886476] tcp_sendmsg_locked+0x350/0xeel

[203.886481] ? tcp_current_mss+0x75/0xd0

[203.886488] tcp_sendmsg+0x31/0x50

[203.886491] inet_sendmsg+0x47/0x80

[203.886498] sock_write_iter+0x163/0x190

[203.886507] vfs_write+0x342/0x3f0

[203.886517] ksys_write+0xb9/0xf0

[203.886520] _ x64_sys_write+0x1d/0x30

[203.886522] do_syscall_64+0x60/0x90

[203.886528] ? srso_return_thunk+0x5/0x10

[203.886531] ? ksys_write+0xb9/0xf0

[203.886532] ? srso_return_thunk+0x5/0x10

[203.886535] ? exit_to_user_mode_prepare+0x35/0x180
[203.886542] ? srso_return_thunk+0x5/0x10

[203.886544] ? syscall_exit_to_user_mode+0x38/0x50

[203.886549] ? _x64_sys_write+0x1d/0x30

[203.886551] ? srso_return_thunk+0x5/0x10

[203.886553] ? do_syscall_64+0x6d/0x90

NVIDIA BlueField Virtio-net v24.07 156

[203.886556] ? srso_return_thunk+0x5/0x10

[203.886558] ? syscall_exit_to_user_mode+0x38/0x50

[203.886561] ? srso_return_thunk+0x5/0x10

[203.886564] ? do_syscall_64+0x6d/0x90

[203.886566] ? _ x64_sys_write+0x1d/0x30

[203.886568] ? srso_return_thunk+0x5/0x10

[203.886570] ? do_syscall_64+0x6d/0x90

[203.886572] ? srso_return_thunk+0x5/0x10

[203.886575] ? sysvec_apic_timer_interrupt+0x52/0x90

[203.886578] entry_SYSCALL_64_after_hwframe+0x6e/0xd8

Root Cause

From kernel 5.14, the following patch introduced a while loop for the virtio-net TX path
which may enter infinite when VQ is broken (e.g., device is removed) under heavy traffic:

commit a7766ef18b33674fa164e2e2916cef16d4e17f43

Author: Michael S. Tsirkin <mst@redhat.com>

Date: Tue Apr 13 01:30:45 2021 -0400
virtio_net: disable cb aggressively
There are currently two cases where we poll TX vq not in response to a
callback: start xmit and rx napi. We currently do this with callbacks
enabled which can cause extra interrupts from the card. Used not to be
a big issue as we run with interrupts disabled but that is no longer the
case, and in some cases the rate of spurious interrupts is so high
linux detects this and actually kills the interrupt.

Fix up by disabling the callbacks before polling the tx vq.

Signed-off-by: Michael S. Tsirkin <mst@redhat.com>

Solution

Currently, there is no official fix from the kernel side, some The following workarounds
may be employed:

e Use kernel without the offending kernel patches

NVIDIA BlueField Virtio-net v24.07 157

e Stop heavy traffic while performing unplug

Ubuntu Guest OS Hangs with Kernel
5.15.0-88/89-generic

Problem

When probing the virtio-pci and virtio-net kernel modules while running Ubuntu 22.04
with kernel 5.15.0-88/89-generic with any virtio function (i.e, PF or VF), the guest OS hangs
and prints call traces as follows:

[2052.109566] CPU: 0 PID: 1183 Comm: systemd-udevd Tainted: P OL 5.15.0-88-generic #98-
Ubuntu

[2052.109568] Hardware name: Red Hat KVM, BIOS 1.15.0-2.module+el8.6.0+14757+c25ee005
04/01/2014

[2052.109570] RIP: 0010:virtqueue_is_broken+0x9/0x20

[2052.109579] RSP: 0018:ffffc206423a79c0 EFLAGS: 00000246

[2052.109581] RAX: 0000000000000000 RBX: ffff9e8980bfa980 RCX: 0000000000000a20

[2052.109582] RDX: 0000000000000000 RSI: ffffc206423a79cc RDI: ffff9e89847b9000

[2052.109583] RBP: ffffc206423a7a60 R0O8: 0000000000000000 RO9: 0000000000000003

[2052.109584] R10: 0000000000000003 R11: 0000000000000002 R12: ffffc206423a79f0

[2052.109585] R13: 0000000000000002 R14: 0000000000000004 R15: ffff9e8984667400

[2052.109586] FS: 00007f3e295388c0(0000) GS:ffffoe89bbc00000(0000) knlGS:0000000000000000
[2052.109588] CS: 0010 DS: 0000 ES: 0000 CR0O: 0000000080050033

[2052.109590] CR2: 0000555613432be0 CR3: 0000000116af0002 CR4: 0000000000170ef0

[2052.109593] Call Trace:

[2052.109595] <IRQ>

[2052.109598] ? show_trace_log_IvI+0x1d6/0x2ea

[2052.109605] ? show_trace_log_IvI+0x1d6/0x2ea

[2052.109609] ? _virtnet_set_queues+0xbb/0x100 [virtio_net]

[2052.109615] ? show_regs.part.0+0x23/0x29

[2052.109618] ? show_regs.cold+0x8/0xd

[2052.109621] ? watchdog_timer_fn+0x1be/0x220

[2052.109625] ? lockup_detector_update_enable+0x60/0x60

[2052.109627] ? __hrtimer_run_queues+0x107/0x230

[2052.109631] ? kvm_clock_get_cycles+0x11/0x20

[2052.109637] ? hrtimer_interrupt+0x101/0x220

[2052.109640] ? __sysvec_apic_timer_interrupt+0x61/0xe0

[2052.109644] ? sysvec_apic_timer_interrupt+0x7b/0x90

NVIDIA BlueField Virtio-net v24.07 158

[2052.109650] </IRQ>

[2052.109650] <TASK>

[2052.109651] ? asm_sysvec_apic_timer_interrupt+0x1b/0x20
[2052.109655] ? virtqueue_is_broken+0x9/0x20

[2052.109656] ? virtnet_send_command+0x105/0x170 [virtio_net]
[2052.109660] _virtnet_set_queues+0xbb/0x100 [virtio_net]
[2052.109670] virtnet_probe+0x4ca/0xa10 [virtio_net]

[2052.109674] virtio_dev_probe+0x1ae/0x260

[2052.109676] really_probe+0x222/0x420

[2052.109679] _ driver_probe_device+0xe8/0x140

[2052.109681] driver_probe_device+0x23/0xc0

[2052.109683] _ driver_attach+0xf7/0x1f0

[2052.109685] ? __device_attach_driver+0x140/0x140

[2052.109687] bus_for_each_dev+0x7f/0xd0

[2052.109691] driver_attach+0x1e/0x30

[2052.109693] bus_add_driver+0x148/0x220

[2052.109695] driver_register+0x95/0x100

[2052.109697] register_virtio_driver+0x20/0x40

[2052.109698] virtio_net_driver_init+0x74/0x1000 [virtio_net]
[2052.109702] ? Oxffffffffc0Od6f000

[2052.109704] do_one_initcall+0x49/0x1e0

[2052.109709] ? kmem_cache_alloc_trace+0x19e/0x2e0

[2052.109713] do_init_module+0x52/0x260

[2052.109716] load_module+0xb2b/0xbcO

[2052.109718] __do_sys_finit_module+0xbf/0x120

[2052.109721] __x64_sys_finit_module+0x18/0x20

[2052.109722] do_syscall_64+0x5c/0xc0

[2052.109725] ? do_syscall_64+0x69/0xc0

[2052.109726] ? syscall_exit_to_user_mode+0x35/0x50
[2052.109729] ? _ x64_sys_newfstatat+0x1c/0x30

[2052.109733] ? do_syscall_64+0x69/0xc0

[2052.109735] entry_SYSCALL_64_after_hwframe+0x62/0xcc

Solution

There is a bug in upstream version v6.5-rc4, which is fixed in v6.5-rc7. Canonical
backported the problematic patch to Ubuntu 5.15.0-88/89.generic, which triggers this
Virtio-net deadlock issue:

commit 51b813176f098ff61bd2833f627f5319ead098a5
Author: Jason Wang <jasowang@redhat.com>

NVIDIA BlueField Virtio-net v24.07 159

Date: Wed Aug 9 23:12:56 2023 -0400
virtio-net: set queues after driver_ok
Commit 25266128fe16 ("virtio-net: fix race between set queues and
probe") tries to fix the race between set queues and probe by calling
_virtnet_set_queues() before DRIVER_OK is set. This violates virtio

spec. Fixing this by setting queues after virtio_device_ready().

Note that rtnl needs to be held for userspace requests to change the
number of queues. So we are serialized in this way.

Fixes: 25266128fe16 ("virtio-net: fix race between set queues and probe")
Reported-by: Dragos Tatulea <dtatulea@nvidia.com>

Acked-by: Michael S. Tsirkin <mst@redhat.com>

Signed-off-by: Jason Wang <jasowang@redhat.com>

Signed-off-by: David S. Miller <davem@davemloft.net>

Switch default kernel back to another version (e.g., 5.15.0-79-generic).

() Note

From 5.15.0-90-generic, the Ubuntu official kernel has the issue fixed.

There are multiple ways to switch the default kernel. The following is only one example:

() Note

Users must have root permission before proceeding.

1. Open /etc/default/grub and change GRUB_DEFAULT as follows:

NVIDIA BlueField Virtio-net v24.07 160

GRUB_DEFAULT=saved

2. Save file.

3. Run the following to get the number of the kernel you want

grep "menuentry 'Ubuntu," /boot/grub/grub.cfg

(D Info

Numbering starts from O (i.e., first entry is 0)

4. Run the following to set the default kernel:

grub-set-default num_from_last_step

5. Reboot.

NVIDIA BlueField Virtio-net v24.07 161

Document Revision History

Rev 24.07 - August 14, 2024

Added:

e Section "Stats"

e Section "Validate"

e Section "Error Code"

e Page "Link Aggregation"

e Page "Mergeable Rx Buffer"

e Page "Performance Tuning"
Updated:

e Page "Configuration File"

e Section "Hotplug"

e Section "List"

e Section "Query"

e Section "Modify Device"

e Section "Packet Counter™"

e Page "Jumbo MTU"

e Page "Live Migration"

e Page "Transitional Device"

NVIDIA BlueField Virtio-net v24.07

162

file:///networking/display/bluefieldvirtionetv2407/Virtnet+CLI+Commands#src-3095331127_VirtnetCLICommands-Stats
file:///networking/display/bluefieldvirtionetv2407/Virtnet+CLI+Commands#src-3095331127_VirtnetCLICommands-Validate
file:///networking/display/bluefieldvirtionetv2407/Virtnet+CLI+Commands#src-3095331127_VirtnetCLICommands-ErrorCode
file:///networking/display/bluefieldvirtionetv2407/Link+Aggregation
file:///networking/display/bluefieldvirtionetv2407/Mergeable+Rx+Buffer
file:///networking/display/bluefieldvirtionetv2407/Performance+Tuning
file:///networking/display/bluefieldvirtionetv2407/Configuration+File
file:///networking/display/bluefieldvirtionetv2407/Virtnet+CLI+Commands#src-3095331127_VirtnetCLICommands-Hotplug
file:///networking/display/bluefieldvirtionetv2407/Virtnet+CLI+Commands#src-3095331127_VirtnetCLICommands-List
file:///networking/display/bluefieldvirtionetv2407/Virtnet+CLI+Commands#src-3095331127_VirtnetCLICommands-Query
file:///networking/display/bluefieldvirtionetv2407/Virtnet+CLI+Commands#src-3095331127_VirtnetCLICommands-ModifyDevice
file:///networking/display/bluefieldvirtionetv2407/Jumbo+MTU
file:///networking/display/bluefieldvirtionetv2407/Live+Migration
file:///networking/display/bluefieldvirtionetv2407/Transitional+Device

Rev 1.9.0 - May 07, 2024

First release

NVIDIA BlueField Virtio-net v24.07 163

	Introduction
	Release Notes
	Changes and New Features
	Bug Fixes in This Version
	Known Issues
	Change Log History

	Virtio-net Deployment
	Configuration File
	Virtnet CLI Commands
	Feature Guidance
	Counters
	Jumbo MTU
	Link Aggregation
	Live Migration
	Live Update
	Mergeable Rx Buffer
	Performance Tuning
	Recovery
	Transitional Device
	VF Dynamic MSIX
	Virtio-net Feature Bits
	Virt Queue Types

	Trobuleshooting
	BlueField-3 Jumbo MTU Not Working
	Failed to Start virtio-net-controller.service
	Function Not Implemented Error When Creating VF
	Guest OS Hangs When Creating VF
	Hotplug Device Does Not Show Correctly in Guest OS
	Hot-unplug Devices with Heavy Self-traffic, Guest OS Gets Call Trace
	Ubuntu Guest OS Hangs with Kernel 5.15.0-88/89-generic

	Document Revision History

