
DA-06762-001_v08 | March 2024

NGC Catalog

User Guide

NGC Catalog DA-06762-001_v08 | ii

Table of Contents

Chapter 1. What is the NGC Catalog?...1

Chapter 2. Terms and Concepts.. 3

Chapter 3. Why NGC Software...5

Chapter 4. Accessing NGC Software... 6

Chapter 5. Registering and Activating a New NGC Org to Obtain Authenticated
Access...8
5.1. Signing Up for an NVIDIA Account and Activating a New NGC Org.....................................8

5.2. Generating NGC API Keys..12

Chapter 6. Introduction to the NGC Catalog and NGC CLIs..15
6.1. Installing NGC Catalog CLI..16

6.2. Installing NGC Registry CLI...16

Chapter 7. AI Foundation Models... 17

Chapter 8. Docker Containers..20
8.1. What Is a Docker Container?...20

8.2. Why Use A Container?.. 20

8.3. Searching and Filtering Containers... 21

Chapter 9. NGC Container Images in NGC Catalog...28
9.1. Why NGC Container Images?...28

9.1.1. NGC Container Security Policy.. 29

9.1.2. NVIDIA Security Risk Scale... 29

9.1.3. GPU-performance tests for NGC Catalog Container Images.......................................30

9.2. NVIDIA Container Toolkit... 30

9.3. NVIDIA CUDA Toolkit..30

9.4. Running Singularity Containers...31

9.4.1. Prerequisites.. 31

9.4.2. Converting to Singularity Image...31

9.4.3. Running the Singularity Container.. 32

9.4.3.1. Directory Access..33

9.4.3.2. Command Line Execution with Singularity...33

9.4.3.3. Interactive Shell with Singularity..33

Chapter 10. Prerequisites for Using NGC Catalog Container Images..............................34
10.1. Prerequisites for Using NGC Containers on DGX Systems...34

10.2. Prerequisites for Using NGC Containers on Cloud Platforms..34

NGC Catalog DA-06762-001_v08 | iii

10.3. Prerequisites for Using NGC Containers on Other NVIDIA GPUs.....................................35

10.4. HPC Visualization Containers.. 35

10.4.1. Prerequisites For HPC Visualization Containers.. 36

10.4.2. Installing NVIDIA Docker 2.0..36

10.4.3. ParaView With NVIDIA Holodeck... 37

10.4.4. ParaView With NVIDIA IndeX...37

10.4.4.1. Single-Machine With GLX... 38

10.4.4.2. Server Container With EGL.. 38

10.4.4.3. GLX Client Connecting To A Server.. 38

10.4.5. ParaView With NVIDIA OptiX...38

10.4.5.1. Single-Machine Container With GLX..39

10.4.5.2. Server Container With EGL.. 39

10.4.5.3. Running The GLX Client And Attaching To The Server...39

10.4.5.4. Optional: Using The ParaView .config File.. 40

Chapter 11. Pulling NGC Containers from NGC Catalog...41
11.1. Key NGC Container Registry Terminology... 41

11.2. Accessing And Pulling an NGC Container Image via the Docker CLI.............................. 42

11.2.1. Logging in to the NGC container registry... 42

11.2.2. Pulling a Container from NGC Container Registry Using Docker CLI......................43

11.3. Accessing and Pulling an NGC Catalog Container Using NGC CLI...................................44

11.3.1. Viewing Container Image Information...44

11.3.2. Pulling a Container Image...45

Chapter 12. NGC Container Image Versions..46

Chapter 13. NVIDIA Signed Container Images in NGC Catalog..47
13.1. Checking for Signed Container Images.. 47

13.1.1. Using the NGC Catalog UI.. 47

13.1.2. Using the NGC CLI... 49

13.2. Finding NVIDIA's Public Key... 50

13.2.1. Using the NGC Catalog UI.. 50

13.2.2. Using the NGC CLI... 51

13.3. Verifying NVIDIA's Signature..51

13.3.1. Using Cosign... 51

13.3.2. Using an Admission Controller in Kubernetes Clusters... 52

Chapter 14. Running an NGC Container.. 53
14.1. Enabling GPU Support for NGC Containers..53

14.2. Running NGC Containers with Runtime Resources... 55

14.2.1. Specifying A User... 56

NGC Catalog DA-06762-001_v08 | iv

14.2.2. Setting The Remove Flag.. 56

14.2.3. Setting The Interactive Flag...56

14.2.4. Setting The Volumes Flag...57

14.2.5. Setting The Mapping Ports Flag.. 57

14.2.6. Setting The Shared Memory Flag..58

14.2.7. Setting The Restricting Exposure Of GPUs Flag...58

14.2.8. Container Lifetime..58

Chapter 15. Multi-Architecture Support for NGC Container Images...............................60

Chapter 16. Customizing Containers.. 62
16.1. Benefits And Limitations To Customizing A Container.. 63

16.2. Example 1: Building A Container From Scratch...63

16.3. Example 2: Customizing A Container Using Dockerfile..65

16.4. Example 3: Customizing A Container Using docker commit..66

16.5. Example 4: Developing A Container Using Docker...68

16.5.1. Example 4.1: Package The Source Into The Container..70

Chapter 17. Models...71
17.1. What are Models...71

17.2. Searching and Filtering Models..71

17.3. Downloading Models via NGC CLI... 72

17.4. Downloading Models via WGET/cURL.. 73

17.4.1. Downloading Guest Access Models via WGET/cURL... 73

17.4.2. Downloading Authenticated Access Models via WGET/cURL.................................... 75

17.5. Downloading Models via Web UI..77

Chapter 18. Resources...80
18.1. What are Resources?.. 80

18.2. Searching and Filtering Resources..80

18.3. Downloading Resources via the NGC CLI...81

18.4. Downloading Resources via WGET/cURL..82

18.4.1. Downloading Guest Access Resources via WGET/cURL... 82

18.4.2. Downloading Authenticated Access Resources via WGET/cURL..............................84

18.5. Downloading Resources via Web UI... 86

18.6. Deploying Jupyter Notebooks to Google Cloud Vertex AI Workbench using Quick
Deploy.. 89

18.7. Viewing Jupyter Notebooks using the NGC Catalog Website...97

Chapter 19. Helm Charts..99
19.1. Setting Up an NGC Helm Repository...99

19.2. Searching for Available Helm Charts in the NGC Catalog.. 100

NGC Catalog DA-06762-001_v08 | v

19.3. Fetching Helm Charts.. 100

19.4. Using the NGC Website to View the List of Helm Charts and Get Fetch
Commands.. 100

Chapter 20. SDK and AI Toolkits.. 103

Chapter 21. Deep Learning Frameworks...104
21.1. GPU Operator...104

NGC Catalog DA-06762-001_v08 | vi

NGC Catalog DA-06762-001_v08 | 1

Chapter 1. What is the NGC Catalog?

The NGC Catalog is a curated set of GPU-optimized software for AI, HPC and
Visualization.

The content provided by NVIDIA and third-party ISVs simplifies building, customizing,
and integrating GPU-optimized software into workflows, accelerating the time to
solutions for users.

The NGC Catalog consists of containers, pre-trained models, Helm charts for Kubernetes
deployments, and industry-specific AI toolkits with software development kits (SDKs).

Containers

The NGC Catalog hosts a broad range of containers, including deep learning frameworks,
machine learning, HPC, and visualization applications that maximize the utilization of
GPU environments. Containers package software applications, libraries, dependencies,
and run-time compilers in a self-contained environment to easily deploy them across
various computing environments. They enable software portability, and through a single
command, users can pull, run and scale applications across the cloud, the data center,
and the edge.

Models and Resources

The NGC Catalog offers pre-trained models for a wide range of common AI tasks
optimized for NVIDIA Tensor Core GPUs. The pre-trained models can be used for
inference or fine-tuned with transfer learning, saving data scientists and developers
valuable time.

Resources offer documentation, code samples, and many other assets such as Jupyter
Notebooks, deployment pipelines, and step-by-step instructions and scripts for creating
deep learning models, making it easy to get started with deep learning.

Helm Charts

Kubernetes is a container orchestrator that facilitates the deployment and management
of containerized applications and microservices. A Helm chart is a package manager
that allows DevOps to configure, deploy and update applications across Kubernetes

What is the NGC Catalog?

NGC Catalog DA-06762-001_v08 | 2

environments more efficiently. The NGC Catalog provides Helm charts for deploying
GPU-optimized applications and SDKs.

Software Development Kits

SDKs deliver all the tooling users need to build and deploy AI applications across
domains such as medical imaging, conversational AI, or video analytics. They include
annotation tools for data labeling, pre-trained models for customization with transfer
learning, and SDKs that enable deployment across the cloud, the data center, or the
edge for low-latency inference.

To learn more about the NGC Catalog content, visit the NGC Catalog website.

https://ngc.nvidia.com/

NGC Catalog DA-06762-001_v08 | 3

Chapter 2. Terms and Concepts

The following are common terms used in this document.

Term Definition

Authenticated / Registered User A user who has signed in to NGC using their
email account. The user inherits all "guest user"
privileges and can access certain free/ free trial
entities/features that require users to sign in.

Entity A container, model, helm chart, or resource.
They are also referred to as "software" in this
document.

Guest User An unauthenticated user who can access (view
and download) entities from the public catalog
without signing in.

Container Images All applications running in NGC are
containerized as Docker containers and
execute in our Runtime environment.
Containers are stored in the NGC Registry
nvcr.io, accessible from both the CLI and the
Web UI.

Container Port Opening a port when creating a job will create
a URL that can be used to reach the container
on that port using web protocols. The security
of web applications (e.g. Jupyterlab) that are
accessed this way is the user's responsibility.
See note below.

Enterprise Catalog The Enterprise Catalog includes the NVIDIA AI
Enterprise software and can only be accessed
by customers with an active subscription.
NVIDIA AI Enterprise also includes software
available in the public/free catalog which is
designed as "NVIDIA AI Enterprise Supported..

The existing implementation of the enterprise
catalog will be integrated with the NGC
Catalog described in this document.

Enterprise-only software The containers, Helm charts, resources,
models, and collections that are only available

Terms and Concepts

NGC Catalog DA-06762-001_v08 | 4

Term Definition
for users with an NVIDIA AI Enterprise
subscription.

Enterprise-only features The features of the NGC Catalog that are
only available for users with a product (i.e.,
subscribers).

Models NGC offers a collection of state-of-the-art
pre-trained deep learning models that can be
easily used out of the box, re-trained or fine-
tuned.

NVIDIA AI Enterprise The software layer of the NVIDIA AI platform,
NVIDIA AI Enterprise, accelerates the
data science pipeline and streamlines the
development and deployment of production
AI, including generative AI, computer vision,
speech AI, and more. Regular security reviews,
API stability, and dependable support SLAs
ensure AI projects stay on track.

The NVIDIA AI Enterprise subscriptions include
entities, support, and exclusive software
features/models.

Publisher Publisher is an owner of the entity hosted on
NGC.

Private Registry The NGC private registry provides a secure
space to store and share custom containers,
models, resources, and Helm charts within your
enterprise.

Resources NGC offers step-by-step instructions and
scripts for creating deep learning models that
you can share within teams or the org.

Subscriber A user who is signed in (i.e., registered) to NGC
using their email account and is part of an
org that has access to products (e.g., "nv-ai-
enterprise", "riva-enterprise").

An example of a free product for subscriber is
someone who has purchased a license or has
been granted access to gated software for free
for a limited time.

https://www.nvidia.com/en-us/ai-data-science/

NGC Catalog DA-06762-001_v08 | 5

Chapter 3. Why NGC Software

NGC provides software to meet the needs of data scientists, developers, and researchers
with various levels of AI expertise.

Software hosted on NGC undergoes scans against an aggregated set of common
vulnerabilities and exposures (CVEs), crypto, and private keys.

In addition to security scanning, NGC software is tested against a broad range of GPU-
enabled platforms, including public cloud instances, workstations, and OEM servers
targeted for data center or edge deployments. Supported GPUs include H100, V100,
A100, T4, Jetson, and the RTX Quadro.

NGC software is tested and assured to scale to multiple GPUs and, in some cases, to
scale to multi-node, ensuring users maximize the use of their GPU-powered servers out
of the box.

For a select set of containers, NVIDIA offers NGC Support Services for running software
on DGX platforms or certified OEM servers. The service gives enterprise IT direct access
to NVIDIA subject matter experts to quickly address software issues and minimize
system downtime.

NGC Catalog DA-06762-001_v08 | 6

Chapter 4. Accessing NGC Software

There are four ways to explore and access software on NGC.

Guest Access: Content under guest access does not require users to register or sign in
to pull or download the software.

Guest users can view all publicly available software and most of the entitled content in
the NGC Catalog but cannot download entitled content.

The majority of software on the NGC Catalog falls under guest access. However, it is
important to note that many third-party applications require a license key that can be
sourced directly from ISVs. While pulling public software from the NGC Catalog does
not require sign-in, a user might have to reach out to an ISV to obtain a license key for
further use.

Authenticated Access: Software under authenticated access requires a user to sign into
their NGC org using an NVIDIA account or sign in to NGC using SSO if the user's org is
federated to their external SSO/IdP service. Pulling or downloading the software requires
the user to provide their API key.

Registered users can view and download all publicly available software in the NGC
Catalog. Entitled content is also viewable but not downloadable. Note that registered
users may not view content exclusively gated to users of that product.

Approved Access: The publisher must grant user approval to access the software under
this category. Once access is granted, the user will receive a notification with further
instructions for accessing the software. Instructions to request access are provided in
the overview section of the respective software.

Subscription: To access subscription-based software, users must provide Business
Address details and a token (serial number, activation code, and so on). Note that this
category also requires Authenticated Access.

Subscribers can view and download all publicly available software, including entitled
content and exclusive content, in the NGC Catalog.

The following table outlines the permissions and capabilities associated with each user
access level (guest user, registered user, subscriber).

https://ngc.nvidia.com/signin
https://ngc.nvidia.com/signin

Accessing NGC Software

NGC Catalog DA-06762-001_v08 | 7

Access Level
View Public
Entities

Download
Public
Entities

View
Entitled
Content

Download
Entitled
Content

View/
Download
Exclusive
Content

Guest User Yes Yes Yes No No

Registered
User

Yes Yes Yes No No

Subscriber Yes Yes Yes Yes Yes

NGC Catalog DA-06762-001_v08 | 8

Chapter 5. Registering and Activating
a New NGC Org to Obtain
Authenticated Access

Instructions for registering and activating a new NGC org.

5.1. Signing Up for an NVIDIA Account
and Activating a New NGC Org

This section describes the steps to sign up for an individual NGC org.

 1. Go to the NGC sign-in page from your browser, enter your email address, and then
click Continue.

http://ngc.nvidia.com/signin

Registering and Activating a New NGC Org to Obtain Authenticated Access

NGC Catalog DA-06762-001_v08 | 9

 2. At the Create your Account screen, create a password, make sure to review the
NVIDIA Account Terms of Use and Privacy Policy, and click Create Account to accept
and proceed with account creation. You will receive an email to verify your email
address.

Registering and Activating a New NGC Org to Obtain Authenticated Access

NGC Catalog DA-06762-001_v08 | 10

A verification email is sent to your email address.
 3. Open the NVIDIA account creation email and click Verify Email Address.

Registering and Activating a New NGC Org to Obtain Authenticated Access

NGC Catalog DA-06762-001_v08 | 11

You are automatically directed to nvidia.com and see an Email verified successfully
page.

 4. At the Almost done! dialog, set your communications preferences, and then click
Submit.

 5. Complete your user profile at the Set Your Profile screen, agree to the NVIDIA GPU

Cloud Terms of Use, and then click Submit.

Registering and Activating a New NGC Org to Obtain Authenticated Access

NGC Catalog DA-06762-001_v08 | 12

Your NVIDIA account is created, and you will be automatically logged in to your NGC
org.

5.2. Generating NGC API Keys
This section describes obtaining an API key to access locked container images from the
NGC Registry.

 1. Sign in to the NGC website.

From a browser, go to https://ngc.nvidia.com/signin and then enter your email and
password.

 2. Click your user account icon in the top right corner and select Setup.

https://ngc.nvidia.com/signin

Registering and Activating a New NGC Org to Obtain Authenticated Access

NGC Catalog DA-06762-001_v08 | 13

 3. Click Generate API Key to open the API Key page.

The API Key is the mechanism to authenticate your access to the NGC container
registry.

 4. On the API Key page, click + Generate API Key to generate your API key.

A warning message shows that your old API key will become invalid if you create a
new one.

 5. Click Confirm to generate the key.

Registering and Activating a New NGC Org to Obtain Authenticated Access

NGC Catalog DA-06762-001_v08 | 14

Your API key appears.

You only need to generate an API Key once. NGC does not save your key, so store it
securely.

Tip: You can copy your API Key to the clipboard by clicking the copy icon to the right of
the API key.

You can generate a new one from the NGC website if you lose your API Key. When you
generate a new API Key, the old one is invalidated.

NGC Catalog DA-06762-001_v08 | 15

Chapter 6. Introduction to the NGC
Catalog and NGC CLIs

Unified NGC and Enterprise Catalog

Note: The Enterprise Catalog, which housed software supported by NVIDIA AI Enterprise
(NVAIE), is now integrated into the NGC Catalog (public), providing users with a cohesive
and comprehensive platform. NVAIE customers, with their active NVAIE entitlement, can
access software and features exclusive to them from within the NGC Catalog.

The NGC Catalog aims to provide a centralized catalog of publicly available entities (e.g.,
containers, models, resources) alongside those that are part of products called entitled
entities. This approach enables users to search and filter seamlessly across all entities,
for a more efficient and improved user experience.

Users can view and download entitled entities by signing in to NGC. The NGC CLI is also
available for downloading software using the API key. Access to all granted products will
remain even when switching org/team context. Unauthenticated users will see a prompt
to log in or gain access to the product when attempting to download gated features or
entitled entities.

Publishers can publish and map entities to products. Access to entities is restricted by
entity type, entity access type, user subscriptions, and roles, enhancing security and
control. For entitled entities, guest users are encouraged to convert to registered or
subscribed status to access product-specific entities.

Introduction to NGC CLIs

The NGC CLIs are command-line interfaces for managing content within the NGC
Registry. The CLI operates within a shell and lets you use scripts to automate commands.

NGC Catalog CLI

The NGC Catalog CLI is available to you if you have guest access to the NGC Registry, and
with it, you can

‣ View a list of GPU-accelerated Docker container images, pre-trained deep-learning
models, and scripts for creating deep-learning models.

‣ Download container images, models, and resources.

NGC Registry CLI

Introduction to the NGC Catalog and NGC CLIs

NGC Catalog DA-06762-001_v08 | 16

The NGC Registry CLI is available to you if you are logged in with your own NGC account
or with an NGC Private Registry account, and with it, you can

‣ View a list of GPU-accelerated Docker containers available and detailed information
about each image.

‣ See a list of deep-learning models and resources and detailed information about
them.

‣ Download container images, models, and resources.

‣ Upload container images, models, and resources.

‣ Create and manage users and teams (available to NGC Private Registry
administrators).

For more details and best practices, visit the NGC CLI documentation page.

6.1. Installing NGC Catalog CLI
To install NGC Catalog CLI,

 1. Enter the NGC website (https://ngc.nvidia.com) as a guest user.
 2. In the top right corner, click Welcome Guest and then select Setup from the menu.
 3. Click Downloads under CLI from the Setup page.
 4. From the CLI Install page, click the Windows, Linux, or macOS tab, according to the

platform you will be running NGC Catalog CLI.
 5. Follow the instructions to install the CLI.
 6. Verify the installation by entering ngc --version.

The output should be NGC CLI x.y.z where x.y.z indicates the version.

6.2. Installing NGC Registry CLI
To install NGC Registry CLI,

 1. Log in to your enterprise account on the NGC website (https://ngc.nvidia.com).
 2. In the top right corner, click your user account icon and select Setup, then click

Downloads under CLI from the Setup page.
 3. From the CLI Install page, click the Windows, Linux, or macOS tab, according to the

platform from which you will be running NGC Registry CLI.
 4. Follow the instructions to install the CLI.
 5. Verify the installation by entering ngc --version.

The output should be NGC CLI x.y.z where x.y.z indicates the version.

https://docs.ngc.nvidia.com/cli/index.html
https://ngc.nvidia.com
https://ngc.nvidia.com

NGC Catalog DA-06762-001_v08 | 17

Chapter 7. AI Foundation Models

The NVIDIA AI Foundation Models catalog is a repository of pre-trained generative AI
models optimized for performance on the NVIDIA accelerated computing platform. With
support for domains including computer vision, natural language processing, and speech
recognition, to name a few, developers and data scientists can quickly leverage and
customize models for their AI and machine learning workflows.

Accessing AI Foundation Models

To view available models, navigate to NGC Catalog and select Catalog > AI Foundation
Models.

Note:

NVIDIA AI Foundation Models are moving to the new NVIDIA API Catalog!

Starting March 18, 2024, NVIDIA AI Foundation Models have begun migrating to our
API Catalog at build.nvidia.com and are scheduled to complete in the next few months.
During this migration, some models may be affected and not accessible. For API users,
your API keys will need to be updated to reflect new endpoints. By signing in with your
NGC account on the API Catalog, you will also receive some free credits to make API calls.
Please update your bookmarks accordingly.

https://catalog.ngc.nvidia.com/ai-foundation-models
https://catalog.ngc.nvidia.com/ai-foundation-models
https://build.nvidia.com/

AI Foundation Models

NGC Catalog DA-06762-001_v08 | 18

Each model comes with detailed information, including:

‣ Name and description: A brief overview of the model and its capabilities.

‣ Playground: An interactive environment where you can experiment with the model.

‣ Architecture: Technical details about the model architecture and underlying
algorithms.

‣ Usage: Guidelines, input/output parameters, and code snippets for using the model in
your applications.

‣ Training and fine tuning: Links to datasets for the model.

‣ Citation: How to cite the model in your research papers or projects.

Once you've identified a model of interest, you can use any downloading method outlined
in the Models chapter.

AI Foundation Models

NGC Catalog DA-06762-001_v08 | 19

Utilizing AI Foundation Models

After obtaining the model container, you can deploy it on your local machine or in a
cloud environment equipped with NVIDIA GPUs. The documentation accompanying
each model guides loading the model, performing inference, fine-tuning for specific
tasks, and integrating it into your existing workflows. Whether you're building computer
vision applications, natural language understanding systems, or speech recognition
solutions, AI foundation models from the NGC Catalog can be powerful building blocks to
accelerate your development process.

NGC Catalog DA-06762-001_v08 | 20

Chapter 8. Docker Containers

Over the last few years there has been a dramatic rise in the use of software containers
for simplifying deployment of data center applications at scale. Containers encapsulate
an application along with its libraries and other dependencies to provide reproducible
and reliable execution of applications and services without the overhead of a full virtual
machine.

GPU support within Docker containers enables GPU-based applications that are portable
across multiple machines in a similar way to how Docker enables CPU-based applications
to be deployed across multiple machines.
Docker container

A Docker container is an instance of a Docker image. A Docker container deploys a
single application or service per container.

Docker image
A Docker image is simply the software (including the filesystem and parameters) that
you run within a Docker container.

8.1. What Is a Docker Container?
A Docker container is a mechanism for bundling a Linux application with all of its
libraries, data files, and environment variables so that the execution environment is
always the same, on whatever Linux system it runs and between instances on the same
host.

Unlike a VM which has its own isolated kernel, containers use the host system kernel.
Therefore, all kernel calls from the container are handled by the host system kernel.
Users can use Docker containers as the mechanism for deploying deep learning
frameworks on-prem,, in the cloud, or at the edge.

A Docker container is the running instance of a Docker image.

8.2. Why Use A Container?
Using containers allows you to package your application, dependencies, and environment
variables into a single image rather than on each system you run on. Additional benefits
to using containers include:

https://docs.docker.com/engine/getstarted/step_four/

Docker Containers

NGC Catalog DA-06762-001_v08 | 21

‣ Multiple versions of the same application, which may have conflicting software
dependencies, can run on the same server.

‣ Containerized applications can be deployed on premise, in the cloud, or at the edge

‣ Specific GPU resources can be allocated to a container for isolation and better
performance.

‣ Easily share, collaborate, and test applications across different environments.

‣ Resolve network-port conflicts between applications by mapping container-ports to
specific externally-visible ports when launching the container.

8.3. Searching and Filtering Containers
To view NGC containers, navigate to Catalog > Containers in the left menu. Use the
search bar at the top of the page to find a particular container or sort the list using the
criteria from the dropdown menu. You can refine your search by utilizing the filters under
NVIDIA Platform, NVIDIA AI Enterprise, Quick Deploy, and many others. The descriptions
for the filtering options are as follows:

‣ Use Case: Choose from the available common use cases.

‣ NVIDIA Platform: Choose from Clara, DeepStream, TensorFlow, and many others.

‣ NVIDIA AI Enterprise Support: Select this option to find publicly available containers
supported by NVAIE containers.

‣ NVIDIA AI Enterprise Exclusive: Choose products under this to see entitled entities.

‣ Quick Deploy: Select this option to find containers to quickly deploy your artifacts in
a Jupyter environment.

‣ Industry: Select by available industries.

‣ Solution: Select the solution that closely matches your use case.

‣ Publisher: Filter by publisher.

‣ Architecture: Choose this option for multi-architecture support.

‣ Signed Images: Choose this option for container images with a digital signature.

‣ Multi-Node: Choose this option for multi-node support.

‣ Other: Miscellaneous options.

The following page displays a list of sample containers for guest users:

Docker Containers

NGC Catalog DA-06762-001_v08 | 22

Select a container from the list to view its details. All users can access the overview
information, regardless of their sign-in status. Here’s an example of an NVIDIA AI
Enterprise Supported container:

Docker Containers

NGC Catalog DA-06762-001_v08 | 23

Users must sign in to view the content for the Tags, Layers, and Security Scanning tabs.

Docker Containers

NGC Catalog DA-06762-001_v08 | 24

Similarly, when filtering on NVIDIA AI Enterprise Essentials, the available containers will
be displayed:

Docker Containers

NGC Catalog DA-06762-001_v08 | 25

Once you choose a container, it shows the information in the Overview tab:

If users are not subscribed to NVIDIA AI Enterprise Software Exclusive products, they’ll
see the following message when viewing other tabs:

Docker Containers

NGC Catalog DA-06762-001_v08 | 26

If users try to download the container, they’ll see a message indicating that a
subscription is required:

However, once users subscribe to NVIDIA AI Enterprise Software Exclusive products, they
can view the container information.

Docker Containers

NGC Catalog DA-06762-001_v08 | 27

NGC Catalog DA-06762-001_v08 | 28

Chapter 9. NGC Container Images in
NGC Catalog

NGC Containers are designed to enable a software platform centered around minimal
OS requirements, Docker and driver installation on the server or workstation, and
provisioning of all application and SDK software in the NGC containers through the NGC
container registry.

NGC Catalog is a curated set of fully integrated and optimized container images for Deep
Learning, HPC and Visualization applications.

‣ Deep learning framework containers that take full advantage of NVIDIA GPUs in
both single GPU and multi-GPU configurations. They include CUDA Toolkit, DIGITS
workflow, and deep learning frameworks: NVCaffe, Caffe2, Microsoft Cognitive
Toolkit (CNTK), MXNet, PyTorch, TensorFlow, Theano, and Torch. These framework
containers are delivered ready-to-run, including all necessary dependencies such as
CUDA runtime, NVIDIA libraries, and an operating system. NVIDIA updates these deep
learning containers monthly to ensure they continue to provide peak performance.

‣ NGC also hosts a catalog of HPC applications such as NAMD, GROMACS, LAMMPS,
RELION, CHROMA, MILC, and many more.

‣ In addition to HPC applications, NGC hosts the industry’s leading visualization tools,
including ParaView with NVIDIA IndeX volume renderer, NVIDIA OptiX ray-tracing
library, and NVIDIA Holodeck for interactive real-time visualization and high-quality
visuals.

‣ NGC also hosts popular third-party GPU-ready application containers which conform
to NGC container standards and best practices, making it easy to get the most out of
your NVIDIA GPU.

‣ With the NGC Quick Deploy feature, many NGC containers can be used as a kernel
to launch a JupyterLab instance on Google Cloud Vertex AI Workbench with optimal
configuration and all software dependencies preload.

9.1. Why NGC Container Images?
Every image hosted on NGC Catalog undergoes a security scan and GPU-performance
test by the NGC team.

NGC Container Images in NGC Catalog

NGC Catalog DA-06762-001_v08 | 29

9.1.1. NGC Container Security Policy
A critical function of enterprise risk and security assessment processes is to ensure all
container images being used in development or deployment have been tested for known
vulnerabilities. Containers published to the NGC Catalog undergo scanning with the NGC
Container Security Policy.

The security scans include checks such as the following:

‣ Outdated software packages, such as vulnerability scans

‣ Metadata checks, such as open ports specified in Dockerfiles, etc

‣ Cryptographic key material leaks

The scanning policy for CVEs rates the severity into critical, high, medium, and low
vulnerabilities using the Common Vulnerability Scoring System (CVSS). Scan results and
NVIDIA Security-Risk Scale are made available to users. Published images are rescanned
every 30 days to reflect the newest CVE findings.

9.1.2. NVIDIA Security Risk Scale
The NVIDIA Security-Risk Scale rates the risk level a given container image poses for a
development/production infrastructure environment.

This rating takes into account vulnerability scans for OS and non-OS packages.

Scale Description Packages Details

AAA Rated to have lowest security
risk.

0 No package with vulnerabilities

AA Rated to have lower security
risk.

1 1 package has a Critical or High
vulnerability

A Rated to have moderate
security risk with some
speculative judgment needed
based on environment
workloads

2-3 2-3 packages with Critical or
High vulnerabilities

B Rated to have high security
risk with some speculative
judgment needed based on
environment workloads

3+ 4-5 packages with Critical or
High vulnerabilities

C Rated as highest security risk 5+ 5+ packages with Critical or
High vulnerabilities

NGC Container Images in NGC Catalog

NGC Catalog DA-06762-001_v08 | 30

9.1.3. GPU-performance tests for NGC Catalog
Container Images

To ensure that NVIDIA GPU owners can perform well with NGC hosted images, all
container images undergo basic installation, functional, scalability and performance
tests on GPUs.

These tests are performed on an array of GPUs ranging from NVIDIA T4s to A100 to DGX
Systems for performance and multi-GPU for scale. The selection of supported GPUs may
be limited to few architectures or single-/multi-GPU based on the business use case of
application containers.

These tests are performed on both bare-metal installations and cloud deployed
instances to ensure both on-prem and cloud deployment use-cases.

9.2. NVIDIA Container Toolkit
The NVIDIA Container Toolkit allows users to build and run GPU accelerated containers.
The toolkit includes a container runtime library and utilities to automatically configure
containers to leverage NVIDIA GPUs. It integrates with many popular container runtimes
including Docker, podman, CRI-O, LXC etc.

To enable portability in Docker images that leverage NVIDIA GPUs, NVIDIA developed
nvidia-docker, an open-source project hosted on Github that provides the two critical
components needed for portable GPU-based containers:

 1. Driver-agnostic CUDA images.
 2. A Docker command line wrapper that mounts the user mode components of the

driver and the GPUs (character devices) into the container at launch.

nvidia-docker is a Docker command line wrapper that provisions a container with the
necessary components to execute code on the GPU.

When working with containers that utilize GPUs, the only command that must be
executed through an nvidia-docker command is the run command. For all other
functionalities, docker commands can be used.

But for simplicity in this documentation we use nvidia-docker for all commands.

9.3. NVIDIA CUDA Toolkit
The NVIDIA® CUDA® Toolkit provides a development environment for creating high-
performance GPU-accelerated applications. With the CUDA Toolkit, you can develop,
optimize, and deploy your applications on GPU-accelerated embedded systems, desktop
workstations, enterprise data centers, cloud-based platforms, and HPC supercomputers.

https://github.com/NVIDIA/libnvidia-container
https://github.com/NVIDIA/nvidia-docker

NGC Container Images in NGC Catalog

NGC Catalog DA-06762-001_v08 | 31

The toolkit includes GPU-accelerated libraries, debugging and optimization tools, a C/C++
compiler and a runtime library to deploy your application.

GPU-accelerated CUDA libraries enable drop-in acceleration across multiple domains
such as linear algebra, image and video processing, deep learning, and graph analytics.
For developing custom algorithms, you can use available integrations with commonly
used languages and numerical packages as well as well-published development APIs.
Your CUDA applications can be deployed across all NVIDIA GPU families available on
premise and on GPU instances in the cloud. Using built-in capabilities for distributing
computations across multi-GPU configurations, scientists and researchers can develop
applications that scale from single GPU workstations to cloud installations with
thousands of GPUs.

9.4. Running Singularity Containers
NGC supports both Docker and Singularity container runtimes. While Docker is prevalent
primarily in enterprises, Singularity has become ubiquitous in the HPC community.
Singularity was developed to better satisfy the requirements of HPC users and system
administrators, including the ability to run containers without superuser privileges.

NGC containers can be easily used with Singularity. Let’s use the NGC NAMD container
to illustrate. NAMD is a parallel molecular dynamics application designed for high-
performance simulation of large biomolecular systems, developed by the Theoretical and
Computational Biophysics Group at the University of Illinois.

9.4.1. Prerequisites
These instructions assume the following.

‣ You have Singularity v2.6+ installed on your system

‣ You have performed the following steps from the NGC website.

‣ Signed up for an NGC account at https://ngc.nvidia.com/signup.

‣ Created an NGC API key for access to the NGC container registry

‣ Browsed the NGC website and identified an available NGC container and tag to
run

‣ Ensure you have correctly set udev rules which are detailed (here)

Note:

It is recommended that you install nvidia-container-cli because if installed, Singularity
will use it. More information can be found here.

9.4.2. Converting to Singularity Image

https://ngc.nvidia.com/catalog/containers/hpc:namd
http://github.com/sylabs/singularity
https://ngc.nvidia.com/signup
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#runfile-verifications
https://github.com/NVIDIA/nvidia-container-runtime

NGC Container Images in NGC Catalog

NGC Catalog DA-06762-001_v08 | 32

Before running with Singularity you must set NGC container registry authentication
credentials.

This is most easily accomplished by setting the following environment variables.

bash
$ export SINGULARITY_DOCKER_USERNAME='$oauthtoken'
$ export SINGULARITY_DOCKER_PASSWORD=<NVIDIA NGC API key>

tcsh
> setenv SINGULARITY_DOCKER_USERNAME '$oauthtoken'
> setenv SINGULARITY_DOCKER_PASSWORD <NVIDIA NGC API key>

More information describing how to obtain and use your NVIDIA NGC API key can be
found here.

Once credentials are set in the environment, the NGC container can be pulled to a local
Singularity image.
$ singularity build <app_tag>.simg docker://nvcr.io/<repository>/<app:tag>

This will save the container to the current directory as
<app_tag>.simg

For example to convert the HPC application NAMD hosted on NGC to a Singularity image,
run
$ singularity build namd_2.12-171025.simg docker://nvcr.io/hpc/namd:2.12-171025

After the build has finished the Singularity image file, namd_2.12-171025.simg, will be
available for use in the current working directory.

9.4.3. Running the Singularity Container
Once the local Singularity image has been pulled, the following modes of running are
supported.

‣ Command line execution with Singularity

‣ Interactive shell with Singularity

To leverage NVIDIA GPUs, you must use the Singularity flag --nvwhen running the
containers. More singularity flags are explained here.

Important:

For Amazon Machine Image Users

Amazon Machine Images on Amazon Web Service have a default root umask of 077.
Singularity must be installed with a umask of 022 to run properly. To (re)install Singularity
with correct permissions:

‣ Uninstall Singularity (if it is installed)

‣ Change the umask with: $ umask 0022

‣ Install Singularity

‣ Restore the umask: $ umask 0077

https://docs.nvidia.com/ngc/ngc-user-guide/index.html
http://singularity.lbl.gov/action-flags

NGC Container Images in NGC Catalog

NGC Catalog DA-06762-001_v08 | 33

This causes installed Singularity files to have permission 0755 instead of the default 0700.
Note that the umask command only applies changes to the current shell. Use umask and
install Singularity from the same shell session.

9.4.3.1. Directory Access
Singularity containers are themselves ostensibly read only. In order to provide application
input and persist application output we’ll bind a host directory into our container,
this is accomplished through the Singularity -B flag. The format of this flag is -B
<host_src_dir>:<container_dst_dir>. Once a host directory is bound into the
container we can interact with this directory from within the container exactly as we can
outside the container.

It is also often convenient to use the --pwd <container_dir> flag, which will set the
present working directory of the command to be run within the container.

The Singularity commands below will mount the present working directory on the
host to /host_pwd in the container process and set the present working directory of
the container process to /host_pwd. With this set of flags the <cmd> to be run will be
 launched from the host directory Singularity was called from.
$ singularity exec --nv -B $(pwd):/host_pwd --pwd /host_pwd <image.simg> <cmd>

Note:

Binding to a directory which doesn't exist within the container image requires kernel and
configuration support that may not be available on all systems, particularly those running
older kernels such as CentOS/RHEL 6. When in doubt contact your system administrator.

9.4.3.2. Command Line Execution with Singularity
Running the container with Singularity from the command line looks similar to the
command below.
$ singularity exec --nv <app_tag>.simg <command_to_run>

For example, to run the NAMD executable in the container
$ singularity exec --nv namd_2.12-171025.simg /opt/namd/namd-multicore

9.4.3.3. Interactive Shell with Singularity
To start a shell within the container, run the command below
$ singularity exec --nv <app_tag>.simg /bin/bash

For example, to start an interactive shell in the NAMD container
$ singularity exec --nv namd_2.12-171025.simg

NGC Catalog DA-06762-001_v08 | 34

Chapter 10. Prerequisites for Using
NGC Catalog Container
Images

To enable portability in Docker images that leverage GPUs, three methods of providing
GPU support for Docker containers have been developed.

‣ Running Docker-ce 19,.03 or later for Native GPU support

‣ nvidia-docker2

‣ nvidia-docker

Each of these methods mount the user mode components of the NVIDIA driver and
the GPUs into the Docker container at launch. They allow NGC containers to take full
advantage of NVIDIA GPUs.

10.1. Prerequisites for Using NGC
Containers on DGX Systems

DGX™ users should follow the instructions in the Preparing Your DGX System For Use
With NVIDIA Container Runtime.

10.2. Prerequisites for Using NGC
Containers on Cloud Platforms

On each of the major public cloud providers, NVIDIA publishes customized virtual
machine images (VMIs) with updated OS’s and NVIDIA driver that have been tested with
NGC containers. These VMIs have the NVIDIA Container Toolkit pre-installed allowing you
to begin pulling and running Docker containers from NGC right away. To use the NVIDIA
NGC GPU-optimized VMIs on cloud platforms, you would need -

https://docs.nvidia.com/deeplearning/frameworks/preparing-containers/index.html#prepare_dgx_system
https://docs.nvidia.com/deeplearning/frameworks/preparing-containers/index.html#prepare_dgx_system

Prerequisites for Using NGC Catalog Container Images

NGC Catalog DA-06762-001_v08 | 35

‣ A cloud platform account with permissions to create resources. See the details for
your public cloud:

‣ Alibaba - https://home-intl.console.aliyun.com/

‣ AWS - https://aws.amazon.com

‣ Microsoft Azure - https://portal.azure.com

‣ Google Cloud Platform (GCP) - https://console.cloud.google.com/

‣ A CLI for respective cloud platforms if you wish to interface with your VM via a CLI

‣ Alibaba Cloud CLI

‣ AWS CLI Version 2

‣ Azure CLI 2.0

‣ gcloud SDK

‣ Windows Users: Any CLI code snippets in the docs are for bash on Linux or Mac OS
X. If you are using Windows and want to use the snippets as-is, you can set up the
Windows Subsystem for Linux and use the bash shell (you will be in Ubuntu Linux).

10.3. Prerequisites for Using NGC
Containers on Other NVIDIA GPUs

‣ Users running NGC containers on other NVIDIA GPUs or in a virtual GPU environment
should follow the corresponding instructions for TITAN PCs, Quadro PCs, or vGPUs.

‣ Other users should follow the nvidia-docker installation documentation at nvidia-
docker installation and install the latest NVIDIA drivers for your GPU product type
and series for your operating system. If NVIDIA drivers are not already configured on
your system, then install them from here: Download Drivers.

‣ Ensure you have an NVIDIA GPU supporting Compute Unified Device Architecture®

(CUDA) version with compute capability 6.0.0 or higher. For example, Pascal GPU
architecture generation or later.

10.4. HPC Visualization Containers
In addition to accessing the NVIDIA optimized frameworks and HPC containers,
the NVIDIA GPU Cloud (NGC) container registry also hosts the following scientific
visualization containers for HPC. These containers rely on the popular scientific
visualization tool called ParaView.

Visualization in an HPC environment typically requires remote visualization, that is,
data resides and is processed on a remote HPC system or in the cloud, and the user
graphically interacts with this application from their workstation. As some visualization

https://home-intl.console.aliyun.com/
https://aws.amazon.com/
https://portal.azure.com/
https://console.cloud.google.com/
https://www.alibabacloud.com/help/product/29991.htm
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://cloud.google.com/sdk/docs/quickstarts
https://docs.microsoft.com/en-us/windows/wsl/about?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/wsl/about?redirectedfrom=MSDN
https://docs.nvidia.com/ngc/ngc-titan-setup-guide/index.html
https://docs.nvidia.com/ngc/ngc-vgpu-setup-guide/index.html
https://github.com/NVIDIA/nvidia-docker/wiki/Installation
https://github.com/NVIDIA/nvidia-docker/wiki/Installation
http://www.nvidia.com/Download/index.aspx
http://docs.nvidia.com/deeplearning/dgx/index.html
https://www.paraview.org/

Prerequisites for Using NGC Catalog Container Images

NGC Catalog DA-06762-001_v08 | 36

containers require specialized client applications, the HPC visualization containers
consist of two components:
Server container

The server container needs access to the files on your server system. Details
on how to grant this access are provided below. The server container can run
both in serial mode or in parallel. For this alpha release, we are focusing on the
serial node configuration. If you are interested in parallel configuration, contact
hpcviscontainer@nvidia.com.

Client container
To ensure matching versions of the client application and the server container, NVIDIA
provides the client application in a container. Similarly, to the server container, the
client container needs access to some of the ports to establish connection with the
server container.

In addition, the client container needs access to the users’ X server for displaying the
graphical user interface.

10.4.1. Prerequisites For HPC Visualization
Containers

‣ Install docker-ce and nvidia-docker2. First install docker-ce, then install nvidia-
docker2 for your operating system and Docker version. For a script to install nvidia-
docker2, see Installing NVIDIA Docker 2.0.

Note: If you already have nvidia-docker1 installed and intend to keep it, you can
install nvidia-container-runtime.

‣ Install the NVIDIA Display driver version 384.57 or onwards depending on your
GPU product type and series for your operating system. For more information, see
Download Drivers.

‣ Ensure you have an NVIDIA GPU supporting Compute Unified Device Architecture®

(CUDA) version with compute capability 6.0.0 or higher. For example, Pascal GPU
architecture generation or later.

‣ Log into the NVIDIA® GPU Cloud (NGC) Container Registry located at nvcr.io using
your NGC API key. For step-by-step instructions on how to gain access and get your
API key, see Generating NGC API Keys.

10.4.2. Installing NVIDIA Docker 2.0
The following script installs NVIDIA Docker 2.0 which is a prerequisite to pulling the
ParaView with NVIDIA IndeX HPC visualization container.

Full support for concurrent graphics and compute capabilities in containers is supported
in NVIDIA Docker 2.0. Current installations of NGC run on NVIDIA Docker 1.0. Prior to
using a container on any of these instances, NVIDIA Docker 2.0 must be installed.

Use the following script below to install NVIDIA Docker 2.0 on your instance.
Install NVIDIA Docker 2.0
docker volume ls -q -f driver=nvidia-docker | \
 xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f

https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://github.com/NVIDIA/nvidia-docker/tree/2.0
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://github.com/NVIDIA/nvidia-docker/tree/2.0
https://github.com/NVIDIA/nvidia-docker/tree/2.0
http://www.nvidia.com/Download/index.aspx

Prerequisites for Using NGC Catalog Container Images

NGC Catalog DA-06762-001_v08 | 37

sudo apt-get purge -y nvidia-docker
curl -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
sudo tee /etc/apt/sources.list.d/nvidia-docker.list <<< \
"deb https://nvidia.github.io/libnvidia-container/ubuntu16.04/amd64 /
deb https://nvidia.github.io/nvidia-container-runtime/ubuntu16.04/amd64 /
deb https://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64 /"

sudo apt-get -y update
sudo apt-get install -y nvidia-docker2
sudo pkill -SIGHUP dockerd

Tests
#docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi

10.4.3. ParaView With NVIDIA Holodeck
Currently, the ParaView with NVIDIA Holodeck container requires a running X server
both on the server host and the client host. Therefore, only a single container image is
required.

 1. Create X-forwarding variables for your container.
XSOCK=/tmp/.X11-unix; XAUTH=/tmp/.docker.xauth;
touch /tmp/.docker.xauth;
xauth nlist :0 | sed -e 's/^..../ffff/' | xauth -f /tmp/.docker.xauth nmerge -

 2. On the server host, start the ParaView Holodeck server:
docker run --rm -it --runtime=nvidia \
-v /tmp/.X11-unix:/tmp/.X11-unix -v /tmp/.docker.xauth:/tmp/.docker.xauth \
-e XAUTHORITY=/tmp/.docker.xauth -e DISPLAY=:0 \
-p 11111:11111 \
--shm-size=4g \
nvcr.io/nvidia-hpcvis/paraview-holodeck:glx-17.11.13-beta \
./service.sh externalvis pvserver

The Holodeck render window showing a space scene displays.

The server container is ready after you receive a message similar to the following:
“Accepting connection(s): [...]:11111”

 3. Set up X access and start the client container on the client host. Ensure you replace
your_server_hostname.
XSOCK=/tmp/.X11-unix; XAUTH=/tmp/.docker.xauth
touch /tmp/.docker.xauth
xauth nlist :0 | sed -e 's/^..../ffff/' \
| xauth -f /tmp/.docker.xauth nmerge -docker run --rm -it --runtime=nvidia \
-v /tmp/.X11-unix:/tmp/.X11-unix -v /tmp/.docker.xauth:/tmp/.docker.xauth \
-e XAUTHORITY=/tmp/.docker.xauth -e DISPLAY=:0 \
nvcr.io/nvidia-hpcvis/paraview-holodeck:glx-17.11.13-beta \
sh -c paraview\ --server-url=cs://your_server_hostname:11111

The ParaView user interface displays.

10.4.4. ParaView With NVIDIA IndeX
To support both X-enabled and headless hosts, the ParaView IndeX container image
is available with GLX and EGL support. The following section shows how to launch the
IndeX container with different use cases.

For more information about ParaView, see the ParaView User’s Guide and the NVIDIA
IndeX SDK.

https://www.paraview.org/paraview-guide/
https://developer.nvidia.com/index
https://developer.nvidia.com/index

Prerequisites for Using NGC Catalog Container Images

NGC Catalog DA-06762-001_v08 | 38

10.4.4.1. Single-Machine With GLX

 1. Login to the docker repository and pull the X display-enabled container on your
workstation:
docker pull nvcr.io/nvidia-hpcvis/paraview-index:glx-17.11.13-beta

 2. Specify X-forwarding variables:
XSOCK=/tmp/.X11-unix; XAUTH=/tmp/.docker.xauth
touch /tmp/.docker.xauth
xauth nlist :0 | sed -e 's/^..../ffff/' \
| xauth -f /tmp/.docker.xauth nmerge

 3. Run the image. In this example, host system data in the current directory $(pwd) are
mounted to both /work in the container. This should be modified as desired by the
user.
docker run --rm -it --runtime=nvidia \
-v /tmp/.X11-unix:/tmp/.X11-unix -v /tmp/.docker.xauth:/tmp/.docker.xauth \
-v $(pwd):/work -e XAUTHORITY=/tmp/.docker.xauth -e DISPLAY=:0 \
nvcr.io/nvidia-hpcvis/paraview-index:glx-17.11.13-beta \
sh -c paraview

10.4.4.2. Server Container With EGL
In a typical client-server setup, one container acting as the server will run remotely on a
display-less machine, connected to a second container that runs locally on a workstation
and provides the graphical front end.

Use the following command to pull the EGL-enabled, no-display container from the NGC
registry on the server host:
docker pull nvcr.io/nvidia-hpcvis/paraview-index:egl-17.11.13-beta

Run the server component on the server host. We listen on the default port 11111:
docker run --runtime=nvidia -p 11111:11111 --rm -it \
nvcr.io/nvidia-hpcvis/paraview-index:egl-17.11.13-beta sh -c pvserver

10.4.4.3. GLX Client Connecting To A Server
Pull the X display-enabled container on your workstation:
docker pull nvcr.io/nvidia-hpcvis/paraview-index:glx-17.11.13-beta

Set up X access and launch the client application container (make sure to replace
your_server_hostname with the address of your ParaView server host):
XSOCK=/tmp/.X11-unix; XAUTH=/tmp/.docker.xauth
touch /tmp/.docker.xauth
xauth nlist :0 | sed -e 's/^..../ffff/' \
| xauth -f /tmp/.docker.xauth nmerge -
docker run --rm -it --runtime=nvidia \
-v /tmp/.X11-unix:/tmp/.X11-unix -v /tmp/.docker.xauth:/tmp/.docker.xauth \
-e XAUTHORITY=/tmp/.docker.xauth -e DISPLAY=:0 \
nvcr.io/nvidia-hpcvis/paraview-index:glx-17.11.13-beta \
sh -c paraview\ --server-url=cs://your_server_hostname:11111

10.4.5. ParaView With NVIDIA OptiX

Prerequisites for Using NGC Catalog Container Images

NGC Catalog DA-06762-001_v08 | 39

The ParaView with NVIDIA OptiX container is designed to run ParaView as a user
normally would outside a container. The following sections show how to launch the OptiX
container with different use cases.

For more information about ParaView see the ParaView User’s Guide and the NVIDIA
OptiX SDK.

10.4.5.1. Single-Machine Container With GLX
On systems with a physical display, or when running a ParaView client, users will wish to
launch a container with GLX support. This can be done as follows.

 1. Pull the docker image:
docker pull nvcr.io/nvidia-hpcvis/paraview-optix:glx-17.11.13-beta

 2. Set up X11 forwarding variables:
XSOCK=/tmp/.X11-unix; XAUTH=/tmp/.docker.xauth;
touch /tmp/.docker.xauth;
xauth nlist :0 | sed -e 's/^..../ffff/' | xauth -f /tmp/.docker.xauth nmerge -

 3. Run the image. In this example, host system data in the current directory $(pwd) are
mounted to both /work in the container. This should be modified as desired.
docker run --rm -it --runtime=nvidia -v /tmp/.X11-unix:/tmp/.X11-unix -v /
tmp/.docker.xauth:/tmp/.docker.xauth -e XAUTHORITY=/tmp/.docker.xauth -e DISPLAY=:0 -v
 $(pwd):/work:rw nvcr.io/nvidia-hpcvis/paraview-optix-glx-beta:17.11.10 sh -c paraview

10.4.5.2. Server Container With EGL
Launching a ParaView server on GPU HPC resources often requires EGL support,
requiring a separate build of ParaView for which we have a separate container.

 1. Pull the container:
docker pull nvcr.io/nvidia-hpcvis/paraview-optix:egl-17.11.13-beta

 2. Specify the connection port and launch the container as follows (in this example, we
listen on the default port 11111):
docker run --runtime=nvidia -p 11111:11111 --rm -it \
nvcr.io/nvidia-hpcvis/paraview-optix:egl-17.11.13-beta sh -c pvserver

 3. For users who wish to run the server on a GLX-capable workstation, it is equally
possible to use the GLX image with the pvserver argument.

10.4.5.3. Running The GLX Client And Attaching To The
Server

With the server launched, it is then straightforward to use the GLX image to run a client,
and connect to the server as follows. Here we assume the server is listening on port
11111, addressable at your.server.address.
docker pull nvcr.io/nvidia-hpcvis/paraview-optix:glx-17.11.13-beta

XSOCK=/tmp/.X11-unix; XAUTH=/tmp/.docker.xauth
touch /tmp/.docker.xauth
xauth nlist :0 | sed -e 's/^..../ffff/' \
| xauth -f /tmp/.docker.xauth nmerge -

docker run --rm -it --runtime=nvidia \
-v /tmp/.X11-unix:/tmp/.X11-unix -v /tmp/.docker.xauth:/tmp/.docker.xauth \

https://www.paraview.org/paraview-guide/
https://developer.nvidia.com/optix
https://developer.nvidia.com/optix

Prerequisites for Using NGC Catalog Container Images

NGC Catalog DA-06762-001_v08 | 40

-e XAUTHORITY=/tmp/.docker.xauth -e DISPLAY=:0 \
nvcr.io/nvidia-hpcvis/paraview-optix:glx-17.11.13-beta \
sh -c paraview\ --server-url=cs://your.server.address:11111

10.4.5.4. Optional: Using The ParaView .config File
It is helpful to reuse ParaView configuration files to maintain settings across ParaView
sessions. To do this, first create a new directory for ParaView to store its settings.
mkdir pvsettings

When issuing the docker run command, add the following command as an argument:
-v $(pwd)/pvsettings:/home/paraview/.config/ParaView

Insert the command before the image URL. For example,
docker run --rm -it --runtime=nvidia \
 -v /tmp/.X11-unix:/tmp/.X11-unix -v /tmp/.docker.xauth:/tmp/.docker.xauth \
 -e XAUTHORITY=/tmp/.docker.xauth -e DISPLAY=:0 \
 nvcr.io/nvidia-hpcvis/paraview-optix:glx-17.11.13-beta \
 -v $(pwd)/pvsettings:/home/paraview/.config/ParaView \
 sh -c paraview\ --server-url=cs://your.server.address:11111

NGC Catalog DA-06762-001_v08 | 41

Chapter 11. Pulling NGC Containers
from NGC Catalog

Before you using a container from the NGC Catalog, review the prerequisites described in
the Prerequisites section.

To become a registered NGC user, follow the steps explained in the Registering and
Activating a New NGC Org to Obtain Authenticated Access.

11.1. Key NGC Container Registry
Terminology

In order to issue the pull and run commands, ensure that you are familiar with the
following concepts.

A pull command looks similar to:
docker pull nvcr.io/nvidia/caffe2:17.10

A run command looks similar to:
docker run --gpus all -it --rm –v local_dir:container_dir nvcr.io/nvidia/caffe2:<xx.xx>

Note: The base command docker run --gpu all assumes that your system has Docker
19.03-CE installed. See the section Enabling GPU Support for NGC Containers for the
command to use for earlier versions of Docker.

The following concepts describe the separate attributes that make up the both
commands.
nvcr.io

The name of the container registry, which for the NGC container registry is nvcr.io.
nvidia

The name of the space within the registry that contains the container. For containers
provided by NVIDIA, the registry space is nvidia. For more information, see NGC
Container Images in NGC Catalog.

-it
You want to run the container in interactive mode.

--rm
You want to delete the container when finished.

Pulling NGC Containers from NGC Catalog

NGC Catalog DA-06762-001_v08 | 42

–v
You want to mount the directory.

local_dir
The directory or file from your host system (absolute path) that you want to access
from inside your container. For example, the local_dir in the following path is /home/
jsmith/data/mnist.
-v /home/jsmith/data/mnist:/data/mnist

If you are inside the container, for example, using the command ls /data/mnist, you
will see the same files as if you issued the ls /home/jsmith/data/mnist command
from outside the container.

container_dir
The target directory when you are inside your container. For example, /data/mnist is
the target directory in the example:
 -v /home/jsmith/data/mnist:/data/mnist

<xx.xx>
The tag. For example, 17.10.

You can access the NGC container registry by running a Docker commands from any
Linux computer with Internet access on which Docker is installed.You can access the
NGC container registry at nvcr.io through the Docker CLI.

Before accessing the NGC container registry, see NGC Getting Started Guide for
instructions on how to access the website and, if you intend to access locked NGC
content, know how to sign up for an NGC account and obtain an API key.

11.2. Accessing And Pulling an NGC
Container Image via the Docker CLI

11.2.1. Logging in to the NGC container registry
Before accessing locked NGC content, you must sign up for an NGC account and obtain
an API key as explained in the section Generating NGC API Keys. Then log in to the NGC
registry from the command line as follows.

 1. Log in to the NGC container registry.
$ docker login nvcr.io

 2. When prompted for your user name, enter the following text:
$oauthtoken

The $oauthtoken username is a special user name that indicates that you will
authenticate with an API key and not a username and password.

 3. When prompted for your password, enter your NGC API key as shown in the following
example.
Username: $oauthtoken

http://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html

Pulling NGC Containers from NGC Catalog

NGC Catalog DA-06762-001_v08 | 43

Password: k7cqFTUvKKdiwGsPnWnyQFYGnlAlsCIRmlP67Qxa

Tip: When you get your API key, copy it to the clipboard so that you can paste the API
key into the command shell when you are prompted for your password.

 4. Confirm "Login Success".

11.2.2. Pulling a Container from NGC Container
Registry Using Docker CLI

You can browse the available containers in the NGC container registry by opening the
NGC website using a web browser

 1. Browse the NGC Catalog, select the image to pull, then copy the pull command.

The following image shows the pull comand on the PyTorch container page.

 2. Click the download icon to copy the pull command to the clipboard.
 3. Log in to nvcr.io, then paste the command in your terminal.

For example, to pull the PyTorch container:
$ docker pull nvcr.io/nvidia/pytorch:20.03-py3

See the NGC Getting Started Guide for details on using the NGC website.
 4. List the Docker images on your system to confirm that the container was pulled.

$ docker images

For more information pertaining to your specific container, refer to the /workspace/
README.md file inside the container.

After pulling a container, you can run jobs in the container to run scientific workloads,
train neural networks, deploy deep learning models, or perform AI analytics.

https://ngc.nvidia.com
https://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html

Pulling NGC Containers from NGC Catalog

NGC Catalog DA-06762-001_v08 | 44

11.3. Accessing and Pulling an NGC
Catalog Container Using NGC CLI

If you will be pulling containers from the registry, you will need Docker installed on your
local machine. To install Docker on your client machine, follow one of these instructions:

‣ For Ubuntu Linux:

https://docs.docker.com/engine/installation/linux/ubuntulinux/

‣ For Windows:

https://docs.docker.com/engine/installation/windows/#/docker-for-windows

‣ For MacOS X:

https://docs.docker.com/engine/installation/mac/

This document provides an introduction to using the NGC Catalog CLI. For a complete list
of commands and options, use the -h option as explained in #unique_56.

11.3.1. Viewing Container Image Information
There are several commands for viewing information about available container images.

To list container images:
C:\>ngc registry image list

Example output

+-----------+----------------+------------+------------+--------------
+------------+
| Name | Repository | Latest Tag | Image Size | Updated Date |
 Permission |
+-----------+----------------+------------+------------+--------------
+------------+
| BigDFTZ | hpv/bigdftfe | cuda10-ubun| 2.37 GB | Oct 18, 2019 | unlocked
 |
| | | tu1804-ompi| | 2019 |
 |
| CANDLE | hpc/candle | 201803263 | 1.52 GB | Oct 18, 2019 | unlocked
 |
 ...|

To view detailed information about a specific image, specify the image and the tag.

Example:

C:\>ngc registry image info nvidia/caffe:19.02-py2
--
 Image Information
 Name: nvidia/caffe:19.02-py2
 Architecture: amd64
 Schema Version: 1
--

https://docs.docker.com/engine/installation/linux/ubuntulinux/
https://docs.docker.com/engine/installation/windows/#/docker-for-windows
https://docs.docker.com/engine/installation/mac/

Pulling NGC Containers from NGC Catalog

NGC Catalog DA-06762-001_v08 | 45

11.3.2. Pulling a Container Image
With the NGC Registry CLI you can pull (download) images to your system.

To pull an image to your registry space, specify the image and, optionally, the tag.
C:\>ngc registry image pull <image-name>[:<tag>]

If a tag is not specified, then the tag 'latest' will be used.

Note: nvcr.io/nvidia, nvcr.io/partners and nvcr.io/hpc is reserved namespace and does
not grant permissions to users to push or delete container images, models, helm and all
artifacts.

NGC Catalog DA-06762-001_v08 | 46

Chapter 12. NGC Container Image
Versions

Each release of an NGC image is identified by a version “tag”. For simpler images this
version tag usually contains the version of the major software package in the image.
More complex images which contain multiple software packages or versions may use
a separate version solely representing the containerized software configuration. One
common scheme is versioning by the year and month of the image release. For example,
the 20.01 release of an image was released in January, 2020.

An image name consists of two parts separated by a colon. The first part is the name
of the container in the repository and the second part is the “tag” associated with the
container. These two pieces of information are shown in Figure 2, which is the output
from issuing the docker images command.

Figure 1. Output from docker images command

Figure 2 shows simple examples of image names, such as:

‣ nvidia-cuda:8.0-devel

‣ ubuntu:latest

‣ nvcr.io/nvidia/tensorflow:17.01

If you choose not to add a tag to an image, by default the word “latest ” is added as the
tag, however all NGC containers have an explicit version tag.

In the next sections, you will use these image names for running containers. Later in the
document, there is also a section on creating your own containers or customizing and
extending existing containers.

NGC Catalog DA-06762-001_v08 | 47

Chapter 13. NVIDIA Signed Container
Images in NGC Catalog

Software signing is the standard mechanism for establishing trust when distributing
software, determining which software to trust, and allowing for execution.

Container image signing adds a digital signature to an image. This signature allows users
to validate where an image came from and verify the image was not tampered with.

Starting in July 2023, all NVIDIA container images published on the NGC Catalog will be
signed.

13.1. Checking for Signed Container
Images

There are two ways to determine which containers are signed.

13.1.1. Using the NGC Catalog UI
Click on Catalog > Containers from the left navigation menu. Expand the Signed Images
filter to the left and select Yes. The container images tagged with Signed Images will
display.

NVIDIA Signed Container Images in NGC Catalog

NGC Catalog DA-06762-001_v08 | 48

Select a container image to view the details. On the details page, you will see the Signed
Images badge on the left panel and the Signed badge on the pane in the Tags tab.

NVIDIA Signed Container Images in NGC Catalog

NGC Catalog DA-06762-001_v08 | 49

13.1.2. Using the NGC CLI
To find signed container images using the CLI, issue the following:
 $ ngc registry image list <image_name>

Example: List all images with name containing 'nginx'
$ ngc registry image list '*nginx*'

NVIDIA Signed Container Images in NGC Catalog

NGC Catalog DA-06762-001_v08 | 50

If the image is signed, you can see a value populated in the Latest Tag column.

13.2. Finding NVIDIA's Public Key
The public key associated with the signed image can be used to validate its authenticity.
You can find the public key of the container in the following ways.

13.2.1. Using the NGC Catalog UI
On the container details page, select the Tags tab. Click on “View all public keys” in the
banner.

The public key URL will display in the dialog.

NVIDIA Signed Container Images in NGC Catalog

NGC Catalog DA-06762-001_v08 | 51

13.2.2. Using the NGC CLI
To find NVIDIA’s public key using the CLI, issue the following command:

13.3. Verifying NVIDIA's Signature
The following tools are examples that you can use to verify the signature. There are also
other tools available.

13.3.1. Using Cosign
Cosign is a tool for signing container images. To begin, follow the installation instructions
provided at the URL below to set up Cosign:

https://docs.sigstore.dev/cosign/installation/

https://docs.sigstore.dev/cosign/installation/

NVIDIA Signed Container Images in NGC Catalog

NGC Catalog DA-06762-001_v08 | 52

Once Cosign is set up, issue the following command to verify the signature of the
container image:
$ cosign verify [--key <key path>|<key url>|<kms uri>] <image uri>

Make sure to replace the placeholders within the square brackets with the appropriate
values:

‣ <key path>: Path to the key file (if using a local key).

‣ <key URL>: URL pointing to the key file (if using a remote key).

‣ <KMS URI>: URI for the Key Management Service (if using a KMS for key
management).

‣ <image URI>: URI of the container image you wish to verify.

Cosign 2.x releases introduced a new flag --insecure-ignore-tlog=true for key-
based signing with the cosign verify command. Please include this flag when using
Cosign 2.x versions. Prior to version 2.x, this flag is not required as it is set as the default
behavior.
cosign verify --insecure-ignore-tlog [--key <key path>|<key url>|<kms uri>] <image
 uri>

13.3.2. Using an Admission Controller in
Kubernetes Clusters

Several Open Source Software (OSS) admission controllers offer the capability of
sigstore-based image verification. These powerful tools allow you to verify the integrity
and authenticity of containers deployed within your Kubernetes environment.

For example, Connaisseur is a Kubernetes admission controller that can be used to
integrate container image signature verification and trust pinning into a cluster. It
ensures that only signed images are allowed to run in a cluster.

To set up Connaisseur, follow the steps outlined in the documentation below:

‣ Getting started Guide

‣ Cosign Validator setup

‣ Test Connaisseur

After configuring the Connaisseur validator, you can test it by running a container in the
Kubernetes (K8s) cluster using the following command for a signed image:
kubectl run test --image=${IMAGE}

When you run the container with the command, the request is admitted to the cluster
if the image is signed and passes the verification. Kubernetes will return the following
response:
 pod/test created

https://sse-secure-systems.github.io/connaisseur/v2.8.0/getting_started/
https://sse-secure-systems.github.io/connaisseur/v2.8.0/validators/sigstore_cosign/
https://sse-secure-systems.github.io/connaisseur/v2.8.0/getting_started/#test-connaisseur

NGC Catalog DA-06762-001_v08 | 53

Chapter 14. Running an NGC Container

Before you can run an NGC deep learning framework container, your Docker environment
must support NVIDIA GPUs. To run a container, issue the appropriate command as
explained in this chapter, specifying the registry, repository, and tags.

14.1. Enabling GPU Support for NGC
Containers

To obtain the best performance when running NGC containers, three methods of
providing GPU support for Docker containers have been developed:

‣ Native GPU support (included with Docker-ce 19.03 or later)

‣ NVIDIA Container Runtime for Docker (nvidia-docker2 package)

‣ Docker Engine Utility for NVIDIA GPUs (nvidia-docker package)

The method implemented in your system depends on the DGX OS version installed (for
DGX systems), the specific NGC Cloud Image provided by a Cloud Service Provider, or the
software that you have installed in preparation for running NGC containers on TITAN PCs,
Quadro PCs, or vGPUs.

Refer to the following table to assist in determining which method is implemented in
your system.

GPU Support Method When Used How to Determine

Native GPU Support Included with Docker-ce 19.03
or later

Run docker version to
determine the installed Docker
version.

NVIDIA Container Runtime for
Docker

If the nvidia-docker2 package
is installed

Run nvidia-docker version
and check for NVIDIA Docker
version 2.0 or later

Docker Engine Utility for
NVIDIA GPUs

If the nvidia-docker package is
installed

Run nvidia-docker version
and check for NVIDIA Docker
version 1.x

Each method is invoked by using specific Docker commands, described as follows.

Running an NGC Container

NGC Catalog DA-06762-001_v08 | 54

Using Native GPU support

Note: If Docker is updated to 19.03 on a system which already has nvidia-docker or nvidia-
docker2 installed, then the corresponding methods can still be used.

‣ To use the native support on a new installation of Docker, first enable the new GPU
support in Docker.
$ sudo apt-get install -y docker nvidia-container-toolkit

This step is not needed if you have updated Docker to 19.03 on a system with nvidia-
docker2 installed. The native support will be enabled automatically.

‣ Use docker run --gpus to run GPU-enabled containers.

‣ Example using all GPUs
$ sudo docker run --gpus all ...

‣ Example using two GPUs
$ sudo docker run --gpus 2 ...

‣ Examples using specific GPUs
$ sudo docker run --gpus "device=1,2" ...

$ sudo docker run --gpus "device=UUID-ABCDEF,1" ...

Using the NVIDIA Container Runtime for Docker

With the NVIDIA Container Runtime for Docker installed (nvidia-docker2), you can run
GPU-accelerated containers in one of the following ways.

‣ Use docker run and specify runtime=nvidia.
$ sudo docker run --runtime=nvidia ...

‣ Use nvidia-docker run.
$ sudo nvidia-docker run ...

The new package provides backward compatibility, so you can still run GPU-
accelerated containers by using this command, and the new runtime will be used.

Use docker run with nvidia as the default runtime.

You can set nvidia as the default runtime, for example, by adding the following line to
the /etc/docker/daemon.json configuration file as the first entry.
"default-runtime": "nvidia",

The following is an example of how the added line appears in the JSON file. Do not
remove any pre-existing content when making this change.
{
 "default-runtime": "nvidia",
 "runtimes": {
 "nvidia": {
 "path": "/usr/bin/nvidia-container-runtime",
 "runtimeArgs": []
 }
 },
}

You can then use docker run to run GPU-accelerated containers.

Running an NGC Container

NGC Catalog DA-06762-001_v08 | 55

$ sudo docker run ...

CAUTION: If you build Docker images while nvidia is set as the default runtime, make
sure the build scripts executed by the Dockerfile specify the GPU architectures that
the container will need. Failure to do so may result in the container being optimized
only for the GPU architecture on which it was built. Instructions for specifying the GPU
architecture depend on the application and are beyond the scope of this document.
Consult the specific application build process for guidance.

Using the Docker Engine Utility for NVIDIA GPUs

With the Docker Engine Utility for NVIDIA GPUs installed (nvidia-docker), run GPU-
enabled containers as follows.
$ sudo nvidia-docker run ...

14.2. Running NGC Containers with
Runtime Resources

On a system with GPU support for NGC containers, the following occurs when running a
container.

‣ The Docker Engine loads the image into a container which runs the software.

‣ You define the runtime resources of the container by including additional flags and
settings that are used with the command. These flags and settings are described in
the following sections.

‣ The GPUs are explicitly defined for the Docker container (defaults to all GPUs, can be
specified using NV_GPU environment variable).

Note: The base command docker run --gpu all assumes that your system has Docker
19.03-CE installed. See the section Enabling GPU Support for NGC Containers for the
command to use for earlier versions of Docker.

 1. As a user, run the container interactively.
$ docker run --gpus all -it --rm –v local_dir:container_dir
 nvcr.io/nvidia/<repository>:<xx.xx>

The following example runs the December 2016 release (16.12) of the NVCaffe
container in interactive mode. The container is automatically removed when the user
exits the container.
$ docker run --gpus all --rm -ti nvcr.io/nvidia/caffe:16.12

===========
== Caffe ==
===========

NVIDIA Release 16.12 (build 6217)

Container image Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
Copyright (c) 2014, 2015, The Regents of the University of California (Regents)

Running an NGC Container

NGC Catalog DA-06762-001_v08 | 56

All rights reserved.

Various files include modifications (c) NVIDIA CORPORATION. All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the
 underlying project or file.
root@df57eb8e0100:/workspace#

 2. From within the container, start the job that you want to run.
The precise command to run depends on the deep learning framework in the
container that you are running and the job that you want to run. For details see the /
workspace/README.md file for the container.

The following example runs the caffe time command on one GPU to measure the
execution time of the deploy.prototxt model.
caffe time -model models/bvlc_alexnet/ -solver deploy.prototxt -gpu=0

 3. Optional: Run the December 2016 release (16.12) of the same NVCaffe container but
in non-interactive mode.
% docker run --gpus all --rm nvcr.io/nvidia/caffe:16.12 caffe time -model
 /workspace/models/bvlc_alexnet -solver /workspace/deploy.prototxt -gpu=0

14.2.1. Specifying A User
Unless otherwise specified, the user inside the container is the root user.

When running within the container, files created on the host operating system or
network volumes can be accessed by the root user. This is unacceptable for some users
and they will want to set the ID of the user in the container. For example, to set the user
in the container to be the currently running user, issue the following:
% docker run --gpus all -ti --rm -u $(id -u):$(id -g) nvcr.io/nvidia/<repository>:<tag>

Typically, this results in warnings due to the fact that the specified user and group do not
exist in the container. You might see a message similar to the following:
groups: cannot find name for group ID 1000I have no name! @c177b61e5a93:/workspace$

The warning can usually be ignored.

14.2.2. Setting The Remove Flag
By default, Docker containers remain on the system after being run. Repeated pull or
run operations use up more and more space on the local disk, even after exiting the
container. Therefore, it is important to clean up the nvidia-docker containers after
exiting.

Note: Do not use the --rm flag if you have made changes to the container that you want to
save, or if you want to access job logs after the run finishes.

To automatically remove a container when exiting, add the --rm flag to the run
command.
% docker run --gpus all --rm nvcr.io/nvidia/<repository>:<tag>

14.2.3. Setting The Interactive Flag

Running an NGC Container

NGC Catalog DA-06762-001_v08 | 57

By default, containers run in batch mode; that is, the container is run once and then
exited without any user interaction. Containers can also be run in interactive mode as a
service.

To run in interactive mode, add the -ti flag to the run command.
% docker run --gpus all -ti --rm nvcr.io/nvidia/<repository>:<tag>

14.2.4. Setting The Volumes Flag
There are no data sets included with the containers, therefore, if you want to use data
sets, you need to mount volumes into the container from the host operating system. For
more information, see Manage data in containers.

Typically, you would use either Docker volumes or host data volumes. The primary
difference between host data volumes and Docker volumes is that Docker volumes are
private to Docker and can only be shared amongst Docker containers. Docker volumes
are not visible from the host operating system, and Docker manages the data storage.
Host data volumes are any directory that is available from the host operating system.
This can be your local disk or network volumes.

Example 1
Mount a directory /raid/imagedata on the host operating system as /images in the
container.
% docker run --gpus all -ti --rm -v /raid/imagedata:/images
 nvcr.io/nvidia/<repository>:<tag>

Example 2
Mount a local docker volume named data (must be created if not already present) in
the container as /imagedata.
% docker run --gpus all -ti --rm -v data:/imagedata nvcr.io/nvidia/<repository>:<tag>

14.2.5. Setting The Mapping Ports Flag
Applications such as Deep Learning GPU Training System™ (DIGITS) open a port for
communications. You can control whether that port is open only on the local system or is
available to other computers on the network outside of the local system.

Using DIGITS as an example, in DIGITS 5.0 starting in container image 16.12, by default
the DIGITS server is open on port 5000. However, after the container is started, you may
not easily know the IP address of that container. To know the IP address of the container,
you can choose one of the following ways:

‣ Expose the port using the local system network stack (--net=host) where port 5000
of the container is made available as port 5000 of the local system.

or

‣ Map the port (-p 8080:5000) where port 5000 of the container is made available as
port 8080 of the local system.

In either case, users outside the local system have no visibility that DIGITS is running in
a container. Without publishing the port, the port is still available from the host, however
not from the outside.

https://docs.docker.com/engine/tutorials/dockervolumes/

Running an NGC Container

NGC Catalog DA-06762-001_v08 | 58

14.2.6. Setting The Shared Memory Flag
Certain applications, such as PyTorch™ and the Microsoft® Cognitive Toolkit™ , use shared
memory buffers to communicate between processes. Shared memory can also be
required by single process applications, such as MXNet™ and TensorFlow™ , which use
the NVIDIA® Collective Communications Library ™ (NCCL) (NCCL).

By default, Docker containers are allotted 64MB of shared memory. This can be
insufficient, particularly when using all 8 GPUs. To increase the shared memory limit to
a specified size, for example 1GB, include the --shm-size=1g flag in your docker run
command.

Alternatively, you can specify the --ipc=host flag to re-use the host’s shared memory
space inside the container. Though this latter approach has security implications as any
data in shared memory buffers could be visible to other containers.

14.2.7. Setting The Restricting Exposure Of GPUs
Flag

From inside the container, the scripts and software are written to take advantage of all
available GPUs. To coordinate the usage of GPUs at a higher level, you can use this flag
to restrict the exposure of GPUs from the host to the container. For example, if you only
want GPU 0 and GPU 1 to be seen in the container, you would issue the following:

Using native GPU support
$ docker run --gpus "device=0,1" ...

Using nvidia-docker2
$ NV_GPU=0,1 docker run --runtime=nvidia ...

Using nvidia-docker
$ NV_GPU=0,1 nvidia-docker run ...

This flag creates a temporary environment variable that restricts which GPUs are used.

Specified GPUs are defined per container using the Docker device-mapping feature,
which is currently based on Linux cgroups.

14.2.8. Container Lifetime
The state of an exited container is preserved indefinitely if you do not pass the --rm flag
to the docker run command. You can list all of the saved exited containers and their size
on the disk with the following command:
$ docker ps --all --size --filter Status=exited

The container size on the disk depends on the files created during the container
execution, therefore the exited containers take only a small amount of disk space.

You can permanently remove a exited container by issuing:
docker rm [CONTAINER ID]

Running an NGC Container

NGC Catalog DA-06762-001_v08 | 59

By saving the state of containers after they have exited, you can still interact with them
using the standard Docker commands. For example:

‣ You can examine logs from a past execution by issuing the docker logs command.
$ docker logs 9489d47a054e

‣ You can extract files using the docker cp command.
$ docker cp 9489d47a054e:/log.txt .

‣ You can restart a stopped container using the docker restart command.
$ docker restart <container name>

For the NVCaffe™ container, issue this command:
$ docker restart caffe

‣ You can save your changes by creating a new image using the docker commit
command. For more information, see Example 3: Customizing a Container using .

Note: Use care when committing Docker container changes, as data files created
during use of the container will be added to the resulting image. In particular, core
dump files and logs can dramatically increase the size of the resulting image.

NGC Catalog DA-06762-001_v08 | 60

Chapter 15. Multi-Architecture
Support for NGC
Container Images

The NGC Container Registry allows users to leverage docker multi-architecture. It can
support multiple architectures, which means that a single image may contain variants
for different CPU architectures like ARM, x86, IBM POWER and others ; and sometimes
for different operating systems, such as Windows. When running an image, docker will
automatically select an image variant which matches the target deployment OS and
architecture.

Manifest Lists and Tags

The NGC Container Registry supports the manifest list schema application/
vnd.docker.distribution.manifest.list.v2+json providing the ability to assign multiple tags
per image. To inspect the manifest list, please follow the instructions here.

NGC UI allows users to easily identify multi-architecture containers and see the
supported CPU architectures.

Basic Docker Commands for Multi-architecture Images

Inspect Manifest : Display an image manifest or manifest list

$ docker manifest inspect <container_name>:<tag>

https://docs.docker.com/docker-for-mac/multi-arch/
https://docs.docker.com/registry/spec/manifest-v2-2/

Multi-Architecture Support for NGC Container Images

NGC Catalog DA-06762-001_v08 | 61

More help on manifest: link

Pull a specific image for an architecture

In order to pull an image with a specific architecture, first do docker manifest which lists
multiple platforms and then pull with a specific platform name that matches with the
manifest digest.

$ docker pull --platform=<arch>

More help on the above docker command: link

https://docs.docker.com/engine/reference/commandline/manifest/
https://docs.docker.com/engine/reference/commandline/pull/

NGC Catalog DA-06762-001_v08 | 62

Chapter 16. Customizing Containers

NGC images come prepackaged, tuned, and ready to run; however, you may want to
build a new image from scratch or augment an existing image with custom code,
libraries, data, or settings for your corporate infrastructure. This section will guide you
through exercises that will highlight how to create a container from scratch, customize a
container, extend a deep learning framework to add features, develop some code using
that extended framework from the developer environment, then package that code as a
versioned release.

By default, you do not need to build a container. The NGC container registry, nvcr.io, has
a number of containers that can be used immediately. These include containers for deep
learning, scientific computing and visualization, as well as containers with just the CUDA
Toolkit.

One of the great things about containers is that they can be used as starting points
for creating new containers. This can be referred to as “customizing” or “extending” a
container. You can create a container completely from scratch, however, since these
containers are likely to run on a GPU system, it is recommended that you are least start
with a nvcr.io container that contains the OS and CUDA. However, you are not limited
to this and can create a container that runs on the CPUs in the system which does not
use the GPUs. In this case, you can start with a bare OS container from Docker. However,
to make development easier, you can still start with a container with CUDA - it is just not
used when the container is used.

In the case of the DGX-1 and the DGX Station, you can push or save your modified/
extended containers to the NVIDIA DGX container registry, nvcr.io. They can also be
shared with other users of the DGX system but this requires some administrator help.

Currently, you cannot save customized containers from the NGC container registry (cloud
based) solution to nvcr.io. The customized or extended containers can be saved to a
user’s private container repository. The customized or extended containers can be saved
to a user’s private container repository.

It is important to note that all NGC deep learning framework images include the source
to build the framework itself as well as all of the prerequisites.

ATTENTION: Do not install an NVIDIA driver into the Docker® image at Docker build time.
nvidia-docker is essentially a wrapper around Docker that transparently provisions a
container with the necessary components to execute code on the GPU.

Customizing Containers

NGC Catalog DA-06762-001_v08 | 63

NVIDIA provides a large set of images in the NGC container registry that are already
tested, tuned, and are ready to run. You can pull any one of these images to create a
container and add software or data of your choosing.

A best-practice is to avoid docker commit usage for developing new docker images,
and to use Dockerfiles instead. The Dockerfile method provides visibility and capability
to efficiently version-control changes made during development of a docker image.
The docker commit method is appropriate for short-lived, disposable images only (see
Example 3: Customizing A Container Using docker commit for an example).

For more information on writing a Docker file, see the best practices documentation.

16.1. Benefits And Limitations To
Customizing A Container

You can customize a container to fit your specific needs for numerous reasons; for
example, you depend upon specific software that is not included in the container that
NVIDIA provides. No matter your reasons, you can customize a container.

The container images do not contain sample data-sets or sample model definitions
unless they are included with the framework source. Be sure to check the container for
sample data-sets or models.

16.2. Example 1: Building A Container
From Scratch

Docker uses Dockerfiles to create or build a Docker image. Dockerfiles are scripts that
contain commands that Docker uses successively to create a new Docker image. Simply
put, a Dockerfile is the source code for the container image. Dockerfiles always start
with a base image to inherit from.

For more information, see Best practices for writing Dockerfiles.

 1. Create a working directory on your local hard-drive.
 2. In that directory, open a text editor and create a file called Dockerfile. Save the file

to your working directory.
 3. Open your Dockerfile and include the following:

FROM ubuntu:14.04
RUN apt-get update && apt-get install -y curl
CMD echo "hello from inside a container"

Where the last line CMD, executes the indicated command when creating the
container. This is a way to check that the container was built correctly.

For this example, we are also pulling the container from the Docker repository and
not the DGX™ system repository. There will be subsequent examples using the
NVIDIA® repository.

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/

Customizing Containers

NGC Catalog DA-06762-001_v08 | 64

 4. Save and close your Dockerfile.
 5. Build the image. Issue the following command to build the image and create a tag.

$ docker build -t <new_image_name>:<new_tag> .

Note: This command was issued in the same directory where the Dockerfile is located.

The output from the docker build process lists “Steps”; one for each line in the
Dockerfile.

For example, let us name the container test1 and tag it with latest. Also, for
illustrative purposes, let us assume our private DGX system repository is called
nvidian_sas. The command below builds the container. Some of the output is shown
below so you know what to expect.
$ docker build -t test1:latest .
Sending build context to Docker daemon 3.072 kB
Step 1/3 : FROM ubuntu:14.04
14.04: Pulling from library/ubuntu
...
Step 2/3 : RUN apt-get update && apt-get install -y curl
...
Step 3/3 : CMD echo "hello from inside a container"
 ---> Running in 1f491b9235d8
 ---> 934785072daf
Removing intermediate container 1f491b9235d8
Successfully built 934785072daf

For information about building your image, see docker build. For information about
tagging your image, see docker tag.

 6. Verify that the build was successful. You should see a message similar to the
following:
Successfully built 934785072daf

This message indicates that the build was successful. Any other message and the
build was not successful.

Note: The number, 934785072daf, is assigned when the image is built and is random.

 7. Confirm you can view your image by issuing the following command and view your
container.
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
test1 latest 934785072daf 19 minutes ago 222 MB

The new container is now available to be used.

Note: The container is local to this DGX system. If you want to store the container in
your private repository, follow the next step.

 8. Store the container in your private Docker repository by pushing it.

Note: This applies if you have a private registry account associated with the DGX
system purchased by your organization.

 a). The first step in pushing it, is to tag it.
$ docker tag test1 nvcr.io/nvidian_sas/test1:latest

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/tag/

Customizing Containers

NGC Catalog DA-06762-001_v08 | 65

 b). Now that the image has been tagged, you can push it to, for example, a private
project on nvcr.io named nvidian_sas.
$ docker push nvcr.io/nvidian_sas/test1:latest
The push refers to a repository [nvcr.io/nvidian_sas/test1]
…

 c). Verify that the container appears in the nvidian_sas repository.

16.3. Example 2: Customizing A
Container Using Dockerfile

This example uses a Dockerfile to customize the NVCaffe container in nvcr.io. Before
customizing the container, you should ensure the NVCaffe 17.03 container has been
loaded into the registry using the docker pull command before proceeding.
$ docker pull nvcr.io/nvidia/caffe:17.03

As mentioned earlier in this document, the Docker containers on nvcr.io also provide a
sample Dockerfile that explains how to patch a framework and rebuild the Docker image.
In the directory /workspace/docker-examples, there are two sample Dockerfiles. For this
example, we will use the Dockerfile.customcaffe file as a template for customizing a
container.

 1. Create a working directory called my_docker_images on your local hard drive.
 2. Open a text editor and create a file called Dockerfile. Save the file to your working

directory.
 3. Open your Dockerfile again and include the following lines in the file:

FROM nvcr.io/nvidia/caffe:17.03
APPLY CUSTOMER PATCHES TO CAFFE
Bring in changes from outside container to /tmp
(assumes my-caffe-modifications.patch is in same directory as
Dockerfile)
#COPY my-caffe-modifications.patch /tmp

Change working directory to NVCaffe source path
WORKDIR /opt/caffe

Apply modifications
#RUN patch -p1 < /tmp/my-caffe-modifications.patch

Note that the default workspace for caffe is /workspace
RUN mkdir build && cd build && \
 cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr/local -DUSE_NCCL=ON
-DUSE_CUDNN=ON -DCUDA_ARCH_NAME=Manual -DCUDA_ARCH_BIN="35 52 60 61"
-DCUDA_ARCH_PTX="61" .. && \
 make -j"$(nproc)" install && \
 make clean && \
 cd .. && rm -rf build

Reset default working directory
WORKDIR /workspace

Save the file.

Customizing Containers

NGC Catalog DA-06762-001_v08 | 66

 4. Build the image using the docker build command and specify the repository name
and tag. In the following example, the repository name is corp/caffe and the tag is
17.03.1PlusChanges. For the case, the command would be the following:
$ docker build -t corp/caffe:17.03.1PlusChanges .

 5. Run the Docker image using the command appropriate to the methoid of GPU
support installed.
$ docker run --gpus all -ti --rm corp/caffe:17.03.1PlusChanges .

Note: The base command docker run --gpu all assumes that your system has
Docker 19.03-CE installed. See the section Enabling GPU Support for NGC Containers
for the command to use for earlier versions of Docker.

16.4. Example 3: Customizing A
Container Using docker commit

This example uses the docker commit command to flush the current state of the
container to a Docker image. This is not a recommended best practice, however, this is
useful when you have a container running to which you have made changes and want
to save them. In this example, we are using the apt-get tag to install packages which
requires that the user run as root.

Note:

‣ The NVCaffe image release 17.04 is used in the example instructions for illustrative
purposes.

‣ Do not use the --rm flag when running the container. If you use the --rm flag when
running the container, your changes will be lost when exiting the container.

 1. Pull the Docker container from the nvcr.io repository to the DGX system. For
example, the following command will pull the NVCaffe container:
$ docker pull nvcr.io/nvidia/caffe:17.04

 2. Run the container on the DGX system.
$ docker run --gpus all -ti nvcr.io/nvidia/caffe:17.04
==================
== NVIDIA Caffe ==
==================

NVIDIA Release 17.04 (build 26740)

Container image Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
Copyright (c) 2014, 2015, The Regents of the University of California (Regents)
All rights reserved.

Various files include modifications (c) NVIDIA CORPORATION. All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying
 project or file.

Customizing Containers

NGC Catalog DA-06762-001_v08 | 67

NOTE: The SHMEM allocation limit is set to the default of 64MB. This may be insufficient
 for NVIDIA Caffe. NVIDIA recommends the use of the following flags:
 nvidia-docker run --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 ...

root@1fe228556a97:/workspace#

Note: The base command docker run --gpu all assumes that your system has
Docker 19.03-CE installed. See the section Enabling GPU Support for NGC Containers
for the command to use for earlier versions of Docker.

 3. You should now be the root user in the container (notice the prompt). You can use the
command apt to pull down a package and put it in the container.

Note: The NVIDIA containers are built using Ubuntu which uses the apt-get package
manager. Check the container release notes Deep Learning Documentation for details
on the specific container you are using.

In this example, we will install Octave; the GNU clone of MATLAB, into the container.
apt-get update
apt install octave

Note: You have to first issue apt-get update before you install Octave using apt.

 4. Exit the workspace.
exit

 5. Display the list of containers using docker ps -a. As an example, here is some of the
output from the docker ps -a command:
$ docker ps -a
CONTAINER ID IMAGE CREATED ...
1fe228556a97 nvcr.io/nvidia/caffe:17.04 3 minutes ago ...

 6. Now you can create a new image from the container that is running where you have
installed Octave. You can commit the container with the following command.
$ docker commit 1fe228556a97 nvcr.io/nvidian_sas/caffe_octave:17.04
sha256:0248470f46e22af7e6cd90b65fdee6b4c6362d08779a0bc84f45de53a6ce9294

 7. Display the list of images.
$ docker images
REPOSITORY TAG IMAGE ID ...
nvidian_sas/caffe_octave 17.04 75211f8ec225 ...

 8. To verify, let's run the container again and see if Octave is actually there.

Note: This only works for the DGX-1 and the DGX Station.

$ docker run --gpus all -ti nvidian_sas/caffe_octave:17.04
==================
== NVIDIA Caffe ==
==================

NVIDIA Release 17.04 (build 26740)

Container image Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. Copyright
 (c) 2014, 2015, The Regents of the University of California (Regents) All rights
 reserved.

http://docs.nvidia.com/deeplearning/dgx/

Customizing Containers

NGC Catalog DA-06762-001_v08 | 68

Various files include modifications (c) NVIDIA CORPORATION. All rights reserved. NVIDIA
 modifications are covered by the license terms that apply to the underlying project or
 file.

NOTE: The SHMEM allocation limit is set to the default of 64MB. This may be insufficient
 for NVIDIA Caffe. NVIDIA recommends the use of the following flags:
 nvidia-docker run --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 ...

root@2fc3608ad9d8:/workspace# octave
octave: X11 DISPLAY environment variable not set
octave: disabling GUI features
GNU Octave, version 4.0.0
Copyright (C) 2015 John W. Eaton and others.
This is free software; see the source code for copying conditions.
There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. For details, type 'warranty'.

Octave was configured for "x86_64-pc-linux-gnu".

Additional information about Octave is available at http://www.octave.org.

Please contribute if you find this software useful.
For more information, visit http://www.octave.org/get-involved.html

Read http://www.octave.org/bugs.html to learn how to submit bug reports.
For information about changes from previous versions, type 'news'.

octave:1>

Since the Octave prompt displayed, Octave is installed.
 9. If you want to save the container into your private repository (Docker uses the phrase

“push”), then you can use the command docker push
$ docker push nvcr.io/nvidian_sas/caffe_octave:17.04

The new Docker image is now available for use. You can check your local Docker
repository for it.

16.5. Example 4: Developing A Container
Using Docker

There are two primary use cases for a developer to extend a container:

 1. Create a development image that contains all of the immutable dependencies for the
project, but not the source code itself.

 2. Create a production or testing image that contains a fixed version of the source and
all of the software dependencies.

The datasets are not packaged in the container image. Ideally, the container image is
designed to expect volume mounts for datasets and results.

In these examples, we mount our local dataset from /raid/datasets on our host to
/dataset as a read-only volume inside the container. We also mount a job specific
directory to capture the output from a current run.

Customizing Containers

NGC Catalog DA-06762-001_v08 | 69

In these examples, we will create a timestamped output directory on each container
launch and map that into the container at /output. Using this method, the output for
each successive container launch is captured and isolated.

Including the source into a container for developing and iterating on a model has many
awkward challenges that can over complicate the entire workflow. For instance, if your
source code is in the container, then your editor, version control software, dotfiles, etc.
also need to be in the container.

However, if you create a development image that contains everything you need to run
your source code, you can map your source code into the container to make use of your
host workstation’s developer environment. For sharing a fixed version of a model, it
is best to package a versioned copy of the source code and trained weights with the
development environment.

As an example, we will work though a development and delivery example for the
open source implementation of the work found in Image-to-Image Translation
with Conditional Adversarial Networks by Isola et. al. and is available at pix2pix.
Pix2Pix is a Torch implementation for learning a mapping from input images to
output images using a Conditional Adversarial Network. Since online projects
can change over time, we will focus our attention on the snapshot version
d7e7b8b557229e75140cbe42b7f5dbf85a67d097 change-set.

In this section, we are using the container as a virtual environment, in that the container
has all the programs and libraries needed for our project.

Note: We have kept the network definition and training script separate from the container
image. This is a useful model for iterative development because the files that are actively
being worked on are persistent on the host and only mapped into the container at
runtime.

The differences to the original project can be found here Comparing changes.

If the machine you are developing on is not the same machine on which you will be
running long training sessions, then you may want to package your current development
state in the container.

 1. Create a working directory on your local hard-drive.
mkdir Projects
$ cd ~/Projects

 2. Git clone the Pix2Pix git repository.
$ git clone https://github.com/phillipi/pix2pix.git
$ cd pix2pix

 3. Run the git checkout command.
$ git checkout -b devel d7e7b8b557229e75140cbe42b7f5dbf85a67d097

 4. Download the dataset:
bash ./datasets/download_dataset.sh facades

I want to put the dataset on my fast /raid storage.

https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1611.07004
https://github.com/phillipi/pix2pix
https://github.com/ryanolson/pix2pix/compare/master...ryanolson:devel

Customizing Containers

NGC Catalog DA-06762-001_v08 | 70

$ mkdir -p /raid/datasets
$ mv ./datasets/facades /raid/datasets

 5. Create a file called Dockerfile, and add the following lines:
FROM nvcr.io/nvidia/torch:17.03
RUN luarocks install nngraph
RUN luarocks install
https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
WORKDIR /source

 6. Build the development Docker container image (build-devel.sh).
docker build -t nv/pix2pix-torch:devel .

 7. Create the following train.sh script:
#!/bin/bash -x
ROOT="${ROOT:-/source}"
DATASET="${DATASET:-facades}"
DATA_ROOT="${DATA_ROOT:-/datasets/$DATASET}"
DATA_ROOT=$DATA_ROOT name="${DATASET}_generation"
which_direction=BtoA th train.lua

If you were actually developing this model, you would be iterating by making changes
to the files on the host and running the training script which executes inside the
container.

 8. Optional: Edit the files and execute the next step after each change.
 9. Run the training script (run-devel.sh).

docker run --gpus all --rm -ti -v $PWD:/source -v
/raid/datasets:/datasets nv/pix2pix-torch:devel ./train.sh

Note: The base command docker run --gpu all assumes that your system has
Docker 19.03-CE installed. See the section Enabling GPU Support for NGC Containers
for the command to use for earlier versions of Docker.

16.5.1. Example 4.1: Package The Source Into The
Container

Packaging the model definition and script into the container is very simple. We simply
add a COPY step to the Dockerfile.

We’ve updated the run script to simply drop the volume mounting and use the source
packaged in the container. The packaged container is now much more portable than
our devel container image because the internal code is fixed. It would be good practice
to version control this container image with a specific tag and store it in a container
registry.

The updates to run the container are equally subtle. We simply drop the volume
mounting of our local source into the container.

NGC Catalog DA-06762-001_v08 | 71

Chapter 17. Models

A discussion of NGC models and how to download them from the NGC Catalog.

17.1. What are Models
Many AI applications have common needs: classification, object detection, language
translation, text-to-speech, recommender engines, sentiment analysis, and more. When
developing applications with these capabilities, it is much faster to start with a model
that is pre-trained and then tune it for a specific use case.

NGC offers pre-trained models for a large number of AI tasks that are optimized for
NVIDIA Tensor Core GPUs, and can be easily re-trained by updating just a few layers,
saving valuable time.

So whether you’re looking for content you can simply retrain for your specific use case or
a complete model you can grab and deploy right away, NGC has you covered.

17.2. Searching and Filtering Models
To view NGC models, navigate to Catalog > Models in the left menu. Use the search bar
at the top of the page to filter the types of models or sort the list using the criteria
from the dropdown menu. You can refine your search by utilizing the filters under Use
Case, NVIDIA Platform, NVIDIA AI Enterprise, and many others. The descriptions for the
filtering options are as follows:

‣ Use Case: Choose from the available common use cases.

‣ NVIDIA AI Enterprise Support: Select this option to find publicly available models
supported by NVAIE.

‣ NVIDIA Platform: Choose from Clara, DeepStream, TensorFlow, and many others.

‣ NVIDIA AI Enterprise Exclusive: Choose products under this to see entitled entities.

‣ Framework: Filter by framework such as TAO Toolkit, PyTorch, and Riva.

‣ Industry: Select by available industries.

‣ Solution: Select the solution that closely matches your use case.

‣ Publisher: Filter by publisher.

Models

NGC Catalog DA-06762-001_v08 | 72

‣ Language: Select by language.

‣ Other: Miscellaneous options.

The following example page shows the available models when searching on 'deep
learning':

The filters will contain the results for the matching search criteria or "No results found"
if there aren't any matches.

17.3. Downloading Models via NGC CLI
A discussion of NGC models and how to download them from the NGC Catalog.

To download a model from the registry to your local disk, specify the model name and
version.
$ ngc registry model download-version <org-name>/<model-name:version>

Example
$ ngc registry model download-version nvidia/ngcdocsmodel:1

Models

NGC Catalog DA-06762-001_v08 | 73

The following is an example showing the output confirming completion of the download:
Downloaded 230.92 MB in 38s, Download speed: 6.07 MB/s
--
Transfer id: trt_onnx_vgg16_v100_16g_int8_v1 Download status: Completed.
Downloaded local path: C:\ngcdocsmodel
Total files downloaded: 3
Total downloaded size: 230.92 MB
Started at: 2019-03-18 14:09:31.664000
Completed at: 2019-03-18 14:10:09.712000
Duration taken: 38s seconds
--

The model is downloaded to a folder that corresponds to the model name in the current
directory. You can specify another path using the -d . option.

Example: Downloading a model to a specific directory (/models).
$ ngc registry model download-version nvidia/ngcdocsmodel:1 -d ./models
Downloaded 230.92 MB in 38s, Download speed: 6.07 MB/s
--
Transfer id: trt_onnx_vgg16_v100_16g_int8_v1 Download status: Completed.
Downloaded local path: C:\ngcdocsmodel
Total files downloaded: 3
Total downloaded size: 230.92 MB
Started at: 2019-03-18 14:09:31.664000
Completed at: 2019-03-18 14:10:09.712000
Duration taken: 38s seconds
--

17.4. Downloading Models via WGET/
cURL

17.4.1. Downloading Guest Access Models via
WGET/cURL

How to download guest access models via WGET/cURL.

To get a copy of a single file from an NGC Model via wget/curl you can use the URL
provided in the NGC UI.

 1. Open the NGC UI, click Models from the left navigation menu and then locate and
click the model you want to download.

Models

NGC Catalog DA-06762-001_v08 | 74

 2. Click the Download button on the top right or navigate to the File Browser tab.

 3. Select the Copy curl cmd or Copy wget cmd to copy the relevant code to the

clipboard.

Models

NGC Catalog DA-06762-001_v08 | 75

The following will then be added to your clipboard:

$ wget https://api.ngc.nvidia.com/v2/models/nvidia/<model-name>/versions/

<version>/files/<filename>

17.4.2. Downloading Authenticated Access Models
via WGET/cURL

How to download authenticated access models via WGET/cURL.

 1. Obtain an NGC API Key. See Generating NGC API Keys. This will be referred to as <API-
key> below.

 2. Find orgs and teams scope and model name, model version.

In the example below the <org> is nvidia and <team> is riva, <model-name> is
speechtotext_en_us_conformer_xl, <version> is trainable_v4.0, <file-name> is
Conformer-CTC-XL_spe-128_en-US_Riva-ASR-SET-4.0.nemo

Models

NGC Catalog DA-06762-001_v08 | 76

Note: Not all models are within a team. In this case, the model name follows directly
after the org name.

 3. Generate a Bearer token.

Note: The token is valid for 15 minutes. If the model is not in a team context, /<team>
is ommitted.
API_KEY=<API-key>
TOKEN=$(curl -s -u "\$oauthtoken":"$API_KEY" -H 'Accept:application/json'
 'https://authn.nvidia.com/token?service=ngc&scope=group/ngc:<org>&group/
ngc:<org>/<team>' | jq -r '.token')

 4. Download the model using curl.
 a). Download the model ZIP using curl.

Note: If the model is not in a team context, team/<team>/ is omitted.
echo "Download Model ZIP"

curl -LO 'https://api.ngc.nvidia.com/v2/org/<org>/team/<team>/models/<model-
name>/versions/<version>/zip' -H "Authorization: Bearer ${TOKEN}" -H "Content-
Type: application/json"

Example model zip download:
echo "Download Model ZIP"

curl -LO 'https://api.ngc.nvidia.com/v2/org/nvidia/team/riva/models/
speechtotext_en_us_conformer_xl/versions/trainable_v4.0/zip' -H
 "Authorization: Bearer ${TOKEN}" -H "Content-Type: application/json"

 b). Download a model file using curl

Note: If the model is not in a team context, team/<team>/ is omitted.
echo "Download Model file"

curl -LO --request GET 'https://api.ngc.nvidia.com/v2/org/<org>/team/<team>/
models/<model-name>/versions/<version>/files/<file-name>' -H "Authorization:
 Bearer ${TOKEN}" -H "Content-Type: application/json"

Example model file download:

Models

NGC Catalog DA-06762-001_v08 | 77

echo "Download Model file"
curl -LO --request GET 'https://api.ngc.nvidia.com/v2/org/nvidia/team/
riva/models/speechtotext_en_us_conformer_xl/versions/trainable_v4.0/files/
Conformer-CTC-XL_spe-128_en-US_Riva-ASR-SET-4.0.nemo' -H "Authorization:
 Bearer ${TOKEN}" -H "Content-Type: application/json"

 5. Download the model using wget.
 a). Download the model ZIP using wget.

Note: If the model is not in a team context, team/<team>/ is omitted.
echo "Download Model ZIP"
wget --header="Authorization: Bearer $TOKEN" \
--header="Content-Type: application/json" \
'https://api.ngc.nvidia.com/v2/org/<org>/team/<team>/models/<model-name>/
versions/<version>/zip' \
2>&1 \
| awk '/Location:/ {print $2}' \
| xargs wget --content-disposition

Example model zip download:
echo "Download Model ZIP"

wget --header="Authorization: Bearer $TOKEN" \
--header="Content-Type: application/json" \
'https://api.ngc.nvidia.com/v2/org/nvidia/team/riva/models/
speechtotext_en_us_conformer_xl/versions/trainable_v4.0/zip' \
2>&1 \
| awk '/Location:/ {print $2}' \
| xargs wget --content-disposition

 b). Download a model file using wget

Note: If the model is not in a team context, team/<team>/ is omitted.
echo "Download Model file"

wget --header="Authorization: Bearer $TOKEN" \
--header="Content-Type: application/json" \
'https://api.ngc.nvidia.com/v2/org/<org>/team/<team>/models/<model-name>/
versions/<version>/files/<file-name>' \
2>&1 \
| awk '/Location:/ {print $2}' \
| xargs wget --content-disposition

Example model file download:
echo "Download Model file"

wget --header="Authorization: Bearer $TOKEN" \
--header="Content-Type: application/json" \
'https://api.ngc.nvidia.com/v2/org/nvidia/team/riva/models/
speechtotext_en_us_conformer_xl/versions/trainable_v4.0/files/Conformer-CTC-
XL_spe-128_en-US_Riva-ASR-SET-4.0.nemo' \
2>&1 \
| awk '/Location:/ {print $2}' \
| xargs wget --content-disposition

17.5. Downloading Models via Web UI
How to download NGC models via the Web UI.

Models

NGC Catalog DA-06762-001_v08 | 78

Downloading the Latest Version of a Model

To download the latest version of a model to your local machine, performing the
following.

 1. Open the NGC UI, click Models from the top content type ribbon and then locate and
click the model you want to download.

 2. Click the actions menu from the top right corner of the model detail page and then
click Download <version>.

Example

Downloading a Specific Version of a Model

To download a specific version of a model, performing the following.

 1. Open the NGC UI, click Models from the top content type ribbon and then locate and
click the model you want to download.

 2. Click the Version History tab, then click the actions icon for the version to download
and then click Download .

The following diagram illustrates the steps.

Models

NGC Catalog DA-06762-001_v08 | 79

NGC Catalog DA-06762-001_v08 | 80

Chapter 18. Resources

Description of NGC resources, their purpose, and how to use them.

18.1. What are Resources?
NGC resources offer documentation, code samples, and many other assets such as
Jupyter Notebooks, deployment pipelines, and step-by-step instructions and scripts for
creating deep learning models. These scripts have sample performance and accuracy
metrics that allow you to compare your results. These scripts provide expert guidance
on building DL models for image classification, language translation, text-to-speech,
and more. Data scientists can quickly build performance-optimized models by easily
adjusting the hyperparameters.

18.2. Searching and Filtering Resources
To view NGC resources, navigate to Catalog > Resources in the left menu. Use the
search bar at the top of the page to filter on resources or sort the list using the criteria
from the dropdown menu. You can refine your search by utilizing the filters under Use
Case, NVIDIA Platform, NVIDIA AI Enterprise, and many others. The descriptions for the
filtering options are as follows:

‣ Use Case: Choose from the available common use cases.

‣ NVIDIA Platform: Choose from Clara, DeepStream, TensorFlow, and many others.

‣ NVIDIA AI Enterprise Support: Select this option to find publicly available resources
supported by NVAIE.

‣ NVIDIA AI Enterprise: Choose products under this to see entitled entities.

‣ Quick Deploy: Select this option to find containers to quickly deploy your artifacts in
a Jupyter environment.

‣ Framework: Filter by framework such as MXNet or NeMo.

‣ Industry: Select by available industries.

‣ Solution: Select the solution that closely matches your use case.

‣ Publisher: Filter by publisher.

Resources

NGC Catalog DA-06762-001_v08 | 81

‣ Type: Filter by type.

‣ Language: Select by language.

‣ Other: Miscellaneous options.

The following example page shows the search and filtering options available when
logging in as a guest user:

18.3. Downloading Resources via the
NGC CLI

To download a resource from the registry to your local disk, specify the resource name
and version.
$ ngc registry resource download-version nvidia/<resource-name:version>

Example: Downloading a resource to the current directory.
$ ngc registry resource download-version nvidia/gnmt_v2_for_tensorflow:1

The following is an example showing the output confirming completion of the download:

Resources

NGC Catalog DA-06762-001_v08 | 82

Downloaded 130.6 KB in 1s, Download speed: 130.6 KB/s
--
Transfer id: gnmt_v2_for_tensorflow_v1 Download status: Completed.
Downloaded local path: C:\gnmt_v2_for_tensorflow_v1
Total files downloaded: 35
Total downloaded size: 130.6 KB
Started at: 2019-03-20 11:24:00.168000
Completed at: 2019-03-20 11:24:01.176000
Duration taken: 1s seconds
--

The model is downloaded to a folder that corresponds to the model name in the current
directory. You can specify another path using the -d option.

Example: Downloading a resource to a specific directory (/resources).
$ ngc registry resource download-version nvidia/gnmt_v2_for_tensorflow:1 -d ./resources
Downloaded 130.6 KB in 1s, Download speed: 130.6 KB/s
--
Transfer id: gnmt_v2_for_tensorflow_v1 Download status: Completed.
Downloaded local path: C:\resources\gnmt_v2_for_tensorflow_v1
Total files downloaded: 35
Total downloaded size: 130.6 KB
Started at: 2019-03-20 11:24:00.168000
Completed at: 2019-03-20 11:24:01.176000
Duration taken: 1s seconds
--

18.4. Downloading Resources via WGET/
cURL

18.4.1. Downloading Guest Access Resources via
WGET/cURL

How to download guest access resources via WGET/cURL.

To get a copy of a single file from an NGC Resource via wget/curl you can use the URL
provided in the NGC UI.

 1. Open the NGC UI, click Resources from the left navigation menu and then locate and
click the resource you want to download.

Resources

NGC Catalog DA-06762-001_v08 | 83

 2. Click the Download button on the top right or navigate to the File Browser tab.

Resources

NGC Catalog DA-06762-001_v08 | 84

 3. Select the Copy curl cmd or Copy wget cmd to copy the relevant code to the
clipboard.

The following will then be added to your clipboard:

wget --content-disposition https://api.ngc.nvidia.com/v2/resources/nvidia/
tao_classification/versions/1/zip -O tao_classification_1.zip

curl -LO 'https://api.ngc.nvidia.com/v2/resources/nvidia/tao_classification/
versions/1/files/classification/classification.ipynb'

18.4.2. Downloading Authenticated Access
Resources via WGET/cURL

How to download authenticated access resources via WGET/cURL.

 1. Obtain an NGC API Key. See Generating NGC API Keys. This will be referred to as <API-
key> below.

 2. Find orgs and teams scope and resource name, resource version.

In the example below, the <org> is nvidia and <team> is riva, <resource-name> is
riva_quickstart, <version> is 2.9.0, <file-name> is riva_init.sh

Resources

NGC Catalog DA-06762-001_v08 | 85

 3. Generate a Bearer token.

Note: The token is valid for 15 minutes. If the resource is not in a team context, /
<team> is ommitted.
API_KEY=<API-key>
TOKEN=$(curl -s -u "\$oauthtoken":"$API_KEY" -H 'Accept:application/json'
 'https://authn.nvidia.com/token?service=ngc&scope=group/ngc:<org>&group/
ngc:<org>/<team>' | jq -r '.token')

 4. Download the resource using curl.
 a). Download the resource ZIP using curl.

Note: If the resource is not in a team context, team/<team>/ is omitted.
echo "Download Resource ZIP"
curl -LO 'https://api.ngc.nvidia.com/v2/org/<org>/team/<team>/resources/
<resource-name>/versions/<version>/zip' -H "Authorization: Bearer ${TOKEN}" -H
 "Content-Type: application/json"

Example resource zip download:
echo "Download Resource ZIP"
curl -LO 'https://api.ngc.nvidia.com/v2/org/nvidia/team/riva/resources/
riva_quickstart/versions/2.9.0/zip' -H "Authorization: Bearer ${TOKEN}" -H
 "Content-Type: application/json"

 b). Download a resource file using curl.

Note: If the resource is not in a team context, team/<team>/ is omitted.
echo "Download Resource file"
curl -LO --request GET 'https://api.ngc.nvidia.com/v2/org/<org>/team/
<team>/reources/<resource-name>/versions/<version>/files/<file-name>' -H
 "Authorization: Bearer ${TOKEN}" -H "Content-Type: application/json"

Resources

NGC Catalog DA-06762-001_v08 | 86

Example resource file download:
echo "Download Resource file"
curl -LO --request GET 'https://api.ngc.nvidia.com/v2/org/nvidia/team/
riva/resources/riva_quickstart/versions/2.9.0/files/riva_init.sh' -H
 "Authorization: Bearer ${TOKEN}" -H "Content-Type: application/json"

 5. Download the resource using wget.
 a). Download the resource ZIP using wget.

Note: If the resource is not in a team context, team/<team>/ is omitted.
echo "Download Resource ZIP"

wget --header="Authorization: Bearer $TOKEN" \
--header="Content-Type: application/json" \
'https://api.ngc.nvidia.com/v2/org/<org>/team/<team>/resources/<resource-
name>/versions/<version>/zip' \
2>&1 \
| awk '/Location:/ {print $2}' \
| xargs wget --content-disposition

Example resource zip download:
echo "Download Resource ZIP"

wget --header="Authorization: Bearer $TOKEN" \
--header="Content-Type: application/json" \
'https://api.ngc.nvidia.com/v2/org/nvidia/team/riva/resources/riva_quickstart/
versions/2.9.0/zip' \
2>&1 \
| awk '/Location:/ {print $2}' \
| xargs wget --content-disposition

 b). Download a resource file using wget

Note: If the resource is not in a team context, team/<team>/ is omitted.
echo "Download Resource file"

wget --header="Authorization: Bearer $TOKEN" \
--header="Content-Type: application/json" \
'https://api.ngc.nvidia.com/v2/org/<org>/team/<team>/resources/<resource-
name>/versions/<version>/files/<file-name>' \
2>&1 \
| awk '/Location:/ {print $2}' \
| xargs wget --content-disposition

Example resource file download:
echo "Download Resource file"

wget --header="Authorization: Bearer $TOKEN" \
--header="Content-Type: application/json" \
'https://api.ngc.nvidia.com/v2/org/nvidia/team/riva/resources/riva_quickstart/
versions/2.9.0/files/riva_quickstart.sh' \
2>&1 \
| awk '/Location:/ {print $2}' \
| xargs wget --content-disposition

18.5. Downloading Resources via Web UI
 1. From a browser, go to the NGC Catalog website.
 2. Sign in. Refer to Registering and Activating Your NGC Account.

https://catalog.ngc.nvidia.com
https://docs.nvidia.com/ngc/ngc-catalog-user-guide/index.html#registering-activating-ngc-account

Resources

NGC Catalog DA-06762-001_v08 | 87

 3. Click Resources from the left navigation menu.

You will see a page with available Resources.

 4. Select one of the Resource cards.

The details page provides additional information for each Resource.

Resources

NGC Catalog DA-06762-001_v08 | 88

The Download menu on the upper right corner offers three different ways to
download the Resource.

Click either Browser (Direct Download) to start the download, or WGET or CLI to copy
the download commands to the clipboard.

The File Browser tab lets you see the file content of the Resources.

Resources

NGC Catalog DA-06762-001_v08 | 89

18.6. Deploying Jupyter Notebooks to
Google Cloud Vertex AI Workbench
using Quick Deploy

NGC provides a Quick Deploy feature that allows you to deploy content to Google Cloud
Vertex AI Workbench service directly from the NGC Catalog, making it easier to start
building with NVIDIA AI. With just a click of a button, the NGC quick deploy feature
takes care of end-to-end setup requirements such as fetching the Jupyter notebooks,
configuring the GPU instance, installing dependencies, and running a JupyterLab
interface to get started with the development quickly.

To use NGC’s quick deploy feature, you’ll need to be signed in to NGC. Refer to
Registering and Activating Your NGC Account for instructions on registering for a free
account and logging in.

 1. Sign in to NGC with your user account at https://ngc.nvidia.com/signin. The NGC
Catalog appears with curated content. You may need to click Explore Catalog from
the left navigation menu.

All Jupyter notebooks on NGC are hosted under the Resources tab on the left
navigation menu.

 2. Click Resources and then select a resource that has the Quick Deploy functionality
enabled.

https://docs.nvidia.com/ngc/ngc-catalog-user-guide/index.html#registering-activating-ngc-account
https://ngc.nvidia.com/signin

Resources

NGC Catalog DA-06762-001_v08 | 90

The following example shows the TAO Image Classification Jupyter Notebook. This
page contains a wealth of information on the TAO Toolkit, the model architecture, and
the procedure to run a sample Jupyter notebook.

 3. Click Deploy from the upper right corner. A window with information about the

resource, AI platform and an option for Deploy pops up.

https://catalog.ngc.nvidia.com/orgs/nvidia/resources/tao_classification

Resources

NGC Catalog DA-06762-001_v08 | 91

 4. Click Deploy at the pop-up to open the Google Cloud Vertex AI Workbench.

The following information is pre-configured (but mutable):

Resources

NGC Catalog DA-06762-001_v08 | 92

‣ Name of the notebook

‣ Region

‣ Docker container environment

‣ Machine type, GPU type, Number of GPUs

‣ Disk type and Data size

You can keep the recommended configuration as is or change it as required.
 5. Scroll down to Advanced Settings and select Install NVIDIA GPU Driver automatically

for me.

 6. Click Create at the bottom of the page.

Resources

NGC Catalog DA-06762-001_v08 | 93

Resources

NGC Catalog DA-06762-001_v08 | 94

 7. Creating the GPU compute instance and setting up the JupyterLab environment

takes about a couple of minutes.

 8. Start up the interface by clicking Open.

 9. Authenticate your managed notebook.

Resources

NGC Catalog DA-06762-001_v08 | 95

 10.Confirm deployment to notebook server.

 11.The instance loads up with the resources (Jupyter notebooks) pulled and an

environment set up as a kernel in the JupyterLab, as shown below. If prompted to
select a kernel for the notebook, select the custom kernel.

Resources

NGC Catalog DA-06762-001_v08 | 96

 12.Double click on the Jupyter Notebook file in the file browser on the left-hand side to

open the Notebook.

Resources

NGC Catalog DA-06762-001_v08 | 97

18.7. Viewing Jupyter Notebooks using
the NGC Catalog Website

You can preview a Jupyter notebook contained within a Resource within the NGC
Website.

 1. Search for a Resource with the Jupyter Notebook label.
 2. Go to the File Browser tab.
 3. Expand the folders until you find the Jupyter Notebook (.ipynb file) you are looking

for.
 4. Now click on View Notebook.

Resources

NGC Catalog DA-06762-001_v08 | 98

NGC Catalog DA-06762-001_v08 | 99

Chapter 19. Helm Charts

Helm is an application package manager running on top of Kubernetes. This section
describes how to use access Helm charts from the NGC Catalog.

Prerequisites

These instructions assume the following prerequisites are met.

‣ Helm v 2.16.1 installed

The helm push plugin does not support Helm v3 yet - make sure you are using
v2.16.x.

See https://github.com/helm/helm/releases/tag/v2.16.1 for the Helm download and
installation instructions.

‣ NGC organization account

See Setting Up and Activating Your NGC Account for instructions.

19.1. Setting Up an NGC Helm
Repository

 1. Obtain an NGC API Key.

See Generating Your NGC API Key for instructions.
 2. Export the API Key for use in commands.

$ export NGC_API_KEY=<your-api-key>

 3. Add the NGC org to your Helm repository.
$ helm repo add <repo-name> https://helm.ngc.nvidia.com/<org-name> --username=\
$oauthtoken --password=$NGC_API_KEY

Where <repo-name> is a name of your choosing by which you will reference the
repository.

https://github.com/helm/helm/releases/tag/v2.16.1
https://docs.nvidia.com/dgx/ngc-registry-for-dgx-user-guide/index.html#setting-up-ngc-registry
https://docs.nvidia.com/dgx/ngc-registry-for-dgx-user-guide/index.html#generating-api-key

Helm Charts

NGC Catalog DA-06762-001_v08 | 100

19.2. Searching for Available Helm Charts
in the NGC Catalog

To view a list of available Chart packages in your org, issue the following.
$ helm search <repo-name>

Example
$ helm search nvidian

19.3. Fetching Helm Charts
To download (or ”fetch”) a Helm chart package from the repo, issue the following.
$ helm fetch <repo-name>/<chart-name>

19.4. Using the NGC Website to View the
List of Helm Charts and Get Fetch
Commands

From the NGC website you can

‣ View the contents of the Helm chart repository.

‣ Get the push command for a specific Helm chart in the repository.

 1. From a browser, log in to https://ngc.nvidia.com.
 2. If you are a member of more than one org, select the one that contains the Helm

charts that you are interested in, then click Sign In.
 3. Click Helm Charts from the left-side navigation pane.

Helm Charts

NGC Catalog DA-06762-001_v08 | 101

The page presents cards for each available Helm chart.

 4. Select one of the Helm chart cards.

The page for each Helm chart provides information about the chart.

Helm Charts

NGC Catalog DA-06762-001_v08 | 102

The Fetch Command section shows the command to use for downloading the Helm
chart package.
Click either the Fetch download button from the upper right corner or the copy icon
next to the fetch command to copy the fetch command to the clipboard.

The File Browser tab lets you see the file content of the Helm chart package.

NGC Catalog DA-06762-001_v08 | 103

Chapter 20. SDK and AI Toolkits

NVIDIA AI toolkits provide libraries and tools to train, fine-tune, optimize and deploy pre-
trained NGC models across a broad domain of industries and AI applications.

These include

‣ An AI-assisted annotation tool to help users label their datasets for training.

‣ A transfer learning toolkit to fine-tune pre-trained models with user data, saving the
cost of training from scratch.

‣ Federated learning that preserves privacy by allowing users to collaborate and train AI
models without sharing private data between clients.

‣ The NeMo toolkit to quickly build state-of-the-art models for speech recognition and
natural language processing.

‣ The Service Maker toolkit that exposes trained models as a gRPC service that can be
scaled and easily deployed on a Kubernetes service.

‣ Models built using the toolkits can be integrated inside client applications and
deployed in production with the software development kits offered by NVIDIA. These
SDKs leverage TensorRT and the Triton Inference Server as foundational building
blocks.

NVIDIA provides AI toolkits and application frameworks targeted towards industries or
specific use cases. These are listed in the table below.

Industry or AI Application AI Toolkits

Healthcare and Life Sciences NVIDIA Clara

Streaming video analytics NVIDIA Metropolis

NVIDIA DeepStream

Robotics NVIDIA Isaac Sim

5G acceleration NVIDIA Aerial

Recommender Systems NVIDIA Merlin

Conversational AI NVIDIA Riva

https://ngc.nvidia.com/catalog/containers/nvidia:clara-train-sdk
https://ngc.nvidia.com/catalog/containers/nvidia:tlt-streamanalytics
https://ngc.nvidia.com/catalog/containers/nvidia:clara-train-sdk
https://ngc.nvidia.com/catalog/containers/nvidia:nemo
https://ngc.nvidia.com/catalog/containers/nvidia:tensorrt
https://ngc.nvidia.com/catalog/containers/nvidia:tritonserver
https://developer.nvidia.com/clara
https://www.nvidia.com/en-us/autonomous-machines/intelligent-video-analytics-platform/
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/aerial-sdk
https://developer.nvidia.com/nvidia-merlin
https://developer.nvidia.com/riva

NGC Catalog DA-06762-001_v08 | 104

Chapter 21. Deep Learning
Frameworks

Deep learning frameworks offer building blocks for designing, training and validating
deep neural networks, through a high level programming interface. Widely used deep
learning frameworks such as MXNet, PyTorch, TensorFlow and others rely on GPU-
accelerated libraries such as cuDNN, NCCL and DALI to deliver high-performance multi-
GPU accelerated training.

Developers, researchers and data scientists can get easy access to NVIDIA optimized
deep learning framework containers with deep learning examples, that are performance
tuned and tested for NVIDIA GPUs. This eliminates the need to manage packages and
dependencies or build deep learning frameworks from source

21.1. GPU Operator
The Operator Framework within Kubernetes takes operational business logic and
allows the creation of an automated framework for the deployment of applications
within Kubernetes using standard Kubernetes APIs and kubectl. The NVIDIA GPU
Operator automates the management of all NVIDIA software components needed
to provision GPUs within Kubernetes. NVIDIA, Red Hat, and others in the community
have collaborated on creating the GPU Operator. The GPU Operator is an important
component of the NVIDIA EGX software-defined platform that is designed to make
large-scale hybrid-cloud and edge operations possible and efficient.

https://www.nvidia.com/en-us/data-center/products/egx-edge-computing/

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other

countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2020-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	What is the NGC Catalog?
	Terms and Concepts
	Why NGC Software
	Accessing NGC Software
	Registering and Activating a New NGC Org to Obtain Authenticated Access
	5.1. Signing Up for an NVIDIA Account and Activating a New NGC Org
	5.2. Generating NGC API Keys

	Introduction to the NGC Catalog and NGC CLIs
	6.1. Installing NGC Catalog CLI
	6.2. Installing NGC Registry CLI

	AI Foundation Models
	Docker Containers
	8.1. What Is a Docker Container?
	8.2. Why Use A Container?
	8.3. Searching and Filtering Containers

	NGC Container Images in NGC Catalog
	9.1. Why NGC Container Images?
	9.1.1. NGC Container Security Policy
	9.1.2. NVIDIA Security Risk Scale
	9.1.3. GPU-performance tests for NGC Catalog Container Images

	9.2. NVIDIA Container Toolkit
	9.3. NVIDIA CUDA Toolkit
	9.4. Running Singularity Containers
	9.4.1. Prerequisites
	9.4.2. Converting to Singularity Image
	9.4.3. Running the Singularity Container
	9.4.3.1. Directory Access
	9.4.3.2. Command Line Execution with Singularity
	9.4.3.3. Interactive Shell with Singularity

	Prerequisites for Using NGC Catalog Container Images
	10.1. Prerequisites for Using NGC Containers on DGX Systems
	10.2. Prerequisites for Using NGC Containers on Cloud Platforms
	10.3. Prerequisites for Using NGC Containers on Other NVIDIA GPUs
	10.4. HPC Visualization Containers
	10.4.1. Prerequisites For HPC Visualization Containers
	10.4.2. Installing NVIDIA Docker 2.0
	10.4.3. ParaView With NVIDIA Holodeck
	10.4.4. ParaView With NVIDIA IndeX
	10.4.4.1. Single-Machine With GLX
	10.4.4.2. Server Container With EGL
	10.4.4.3. GLX Client Connecting To A Server

	10.4.5. ParaView With NVIDIA OptiX
	10.4.5.1. Single-Machine Container With GLX
	10.4.5.2. Server Container With EGL
	10.4.5.3. Running The GLX Client And Attaching To The Server
	10.4.5.4. Optional: Using The ParaView .config File

	Pulling NGC Containers from NGC Catalog
	11.1. Key NGC Container Registry Terminology
	11.2. Accessing And Pulling an NGC Container Image via the Docker CLI
	11.2.1. Logging in to the NGC container registry
	11.2.2. Pulling a Container from NGC Container Registry Using Docker CLI

	11.3. Accessing and Pulling an NGC Catalog Container Using NGC CLI
	11.3.1. Viewing Container Image Information
	11.3.2. Pulling a Container Image

	NGC Container Image Versions
	NVIDIA Signed Container Images in NGC Catalog
	13.1. Checking for Signed Container Images
	13.1.1. Using the NGC Catalog UI
	13.1.2. Using the NGC CLI

	13.2. Finding NVIDIA's Public Key
	13.2.1. Using the NGC Catalog UI
	13.2.2. Using the NGC CLI

	13.3. Verifying NVIDIA's Signature
	13.3.1. Using Cosign
	13.3.2. Using an Admission Controller in Kubernetes Clusters

	Running an NGC Container
	14.1. Enabling GPU Support for NGC Containers
	14.2. Running NGC Containers with Runtime Resources
	14.2.1. Specifying A User
	14.2.2. Setting The Remove Flag
	14.2.3. Setting The Interactive Flag
	14.2.4. Setting The Volumes Flag
	14.2.5. Setting The Mapping Ports Flag
	14.2.6. Setting The Shared Memory Flag
	14.2.7. Setting The Restricting Exposure Of GPUs Flag
	14.2.8. Container Lifetime

	Multi-Architecture Support for NGC Container Images
	Customizing Containers
	16.1. Benefits And Limitations To Customizing A Container
	16.2. Example 1: Building A Container From Scratch
	16.3. Example 2: Customizing A Container Using Dockerfile
	16.4. Example 3: Customizing A Container Using docker commit
	16.5. Example 4: Developing A Container Using Docker
	16.5.1. Example 4.1: Package The Source Into The Container

	Models
	17.1. What are Models
	17.2. Searching and Filtering Models
	17.3. Downloading Models via NGC CLI
	17.4. Downloading Models via WGET/cURL
	17.4.1. Downloading Guest Access Models via WGET/cURL
	17.4.2. Downloading Authenticated Access Models via WGET/cURL

	17.5. Downloading Models via Web UI

	Resources
	18.1. What are Resources?
	18.2. Searching and Filtering Resources
	18.3. Downloading Resources via the NGC CLI
	18.4. Downloading Resources via WGET/cURL
	18.4.1. Downloading Guest Access Resources via WGET/cURL
	18.4.2. Downloading Authenticated Access Resources via WGET/cURL

	18.5. Downloading Resources via Web UI
	18.6. Deploying Jupyter Notebooks to Google Cloud Vertex AI Workbench using Quick Deploy
	18.7. Viewing Jupyter Notebooks using the NGC Catalog Website

	Helm Charts
	19.1. Setting Up an NGC Helm Repository
	19.2. Searching for Available Helm Charts in the NGC Catalog
	19.3. Fetching Helm Charts
	19.4. Using the NGC Website to View the List of Helm Charts and Get Fetch Commands

	SDK and AI Toolkits
	Deep Learning Frameworks
	21.1. GPU Operator

