Docker Containers

Over the last few years there has been a dramatic rise in the use of software containers for simplifying deployment of data center applications at scale. Containers encapsulate an application along with its libraries and other dependencies to provide reproducible and reliable execution of applications and services without the overhead of a full virtual machine.

Docker® Engine Utility for NVIDIA® GPUs, also known as nvidia-docker, enables GPU-based applications that are portable across multiple machines, in a similar way to how Docker® enables CPU-based applications to be deployed across multiple machines. It accomplishes this through the use of Docker containers.

We will refer to the Docker® Engine Utility for NVIDIA® GPUs simply as nvidia-docker for the remainder of this guide.

Docker container
A Docker container is an instance of a Docker image. A Docker container deploys a single application or service per container.
Docker image
A Docker image is simply the software (including the filesystem and parameters) that you run within a nvidia-docker container.

What Is A Docker Container?

A Docker container is a mechanism for bundling a Linux application with all of its libraries, data files, and environment variables so that the execution environment is always the same, on whatever Linux system it runs and between instances on the same host.

Unlike a VM which has its own isolated kernel, containers use the host system kernel. Therefore, all kernel calls from the container are handled by the host system kernel. DGX™ systems uses Docker containers as the mechanism for deploying deep learning frameworks.

A Docker container is the running instance of a Docker image.

Why Use A Container?

One of the many benefits to using containers is that you can install your application, dependencies and environment variables one time into the container image; rather than on each system you run on. In addition, the key benefits to using containers also include:

  • Install your application, dependencies and environment variables one time into the container image; rather than on each system you run on.
  • There is no risk of conflict with libraries that are installed by others.
  • Containers allow use of multiple different deep learning frameworks, which may have conflicting software dependencies, on the same server.
  • After you build your application into a container, you can run it on lots of other places, especially servers, without having to install any software.
  • Legacy accelerated compute applications can be containerized and deployed on newer systems, on premise, or in the cloud.
  • Specific GPU resources can be allocated to a container for isolation and better performance.
  • You can easily share, collaborate, and test applications across different environments.
  • Multiple instances of a given deep learning framework can be run concurrently with each having one or more specific GPUs assigned.
  • Containers can be used to resolve network-port conflicts between applications by mapping container-ports to specific externally-visible ports when launching the container.