Advanced Usage
Run Inference with Bash Script
In this example, we create a simple bash
script to launch inference using two local files as input and dump the generated poses in the output
folder.
Create a new blank file in the same folder, name it as
diffdock.sh
and copy the content below into it.
#!/bin/bash # Script: diffdock.sh - Run inference using local files as input # Usage: ./diffdock.sh [receptor].pdb [ligand].sdf protein_file=$1 ligand_file=$2 protein_bytes=`grep -E ^ATOM $protein_file | sed -z 's/\n/\\\n/g'` ligand_bytes=`sed -z 's/\n/\\\n/g' $ligand_file` ligand_format=`basename $ligand_file | awk -F. '{print $NF}'` echo "{ \"ligand\": \"${ligand_bytes}\", \"ligand_file_type\": \"${ligand_format}\", \"protein\": \"${protein_bytes}\", \"num_poses\": 10, \"time_divisions\": 20, \"steps\": 18, \"save_trajectory\": false, \"is_staged\": false }" > diffdock.json curl --header "Content-Type: application/json" \ --request POST \ --data @diffdock.json \ --output output.json \ http://localhost:8000/molecular-docking/diffdock/generate
Make the script executable.
chmod +x diffdock.sh
Download the input files from RCSB database and launch the inference.
curl -o 8G43.pdb https://files.rcsb.org/download/8G43.pdb curl -o ZU6.sdf https://files.rcsb.org/ligands/download/ZU6_ideal.sdf ./diffdock.sh 8G43.pdb ZU6.sdf
Dump the output using the python script created in
Getting Started
.
python3 dump_output.py ls output
Example of output
rank01_confidence_0.57.sdf rank06_confidence_-0.25.sdf rank02_confidence_0.57.sdf rank07_confidence_-0.69.sdf rank03_confidence_0.55.sdf rank08_confidence_-1.31.sdf rank04_confidence_0.41.sdf rank09_confidence_-1.90.sdf rank05_confidence_0.38.sdf rank10_confidence_-2.07.sdf
Run Inference for Batch-Docking
DiffDock NIM allows for a Batch-Docking mode, which docks a group of ligand molecules against the same protein receptor through a single inference request if a multi-molecule SDF file is submitted in this request. Batch-docking mode is much more efficient than running separate inference requests. The example below illustrates batch-docking using a protein PDB file with five molecule SDF files downloaded from RSCB.
Prepare the SDF input file with multiple ligand molecules. Create a new blank file, name it as
make-multiligand.sh
, and copy the content below into it.
#!/bin/bash # Script: make-multiligand.sh # Usage: ./make-multiligand.sh [Ligand1_CCD_ID] [Ligand2_CCD_ID] ... # Example: ./make-multiligand.sh COM Q4H QPK R4W SIN ligan_files="" for lig in $* do ligand_file=${lig}.sdf echo "Download ligand file: ${ligand_file}" curl -o $ligand_file "https://files.rcsb.org/ligands/download/${lig}_ideal.sdf" ligand_files="${ligand_files} ${ligand_file}" done # Combine ligand files into a single SDF file cat $ligand_files > multi_ligands.sdf
Run the commands below to generate the
multi_ligands.sdf
for input.
chmod +x make-multiligand.sh ./make-multiligand.sh COM Q4H QPK R4W SIN
Download the protein PDB file and launch the inference.
curl -o 7RWO.pdb "https://files.rcsb.org/download/7RWO.pdb" ./diffdock.sh 7RWO.pdb multi_ligands.sdf
Dump the result and an example of output is below.
python3 dump_output.py ls output/* diffdock-output/ligand0: rank01_confidence_-0.74.sdf rank05_confidence_-1.15.sdf rank09_confidence_-1.55.sdf rank02_confidence_-0.92.sdf rank06_confidence_-1.25.sdf rank10_confidence_-1.93.sdf rank03_confidence_-0.93.sdf rank07_confidence_-1.46.sdf rank04_confidence_-1.04.sdf rank08_confidence_-1.46.sdf diffdock-output/ligand1: rank01_confidence_-0.25.sdf rank05_confidence_-0.55.sdf rank09_confidence_-0.72.sdf rank02_confidence_-0.28.sdf rank06_confidence_-0.55.sdf rank10_confidence_-0.77.sdf rank03_confidence_-0.34.sdf rank07_confidence_-0.56.sdf rank04_confidence_-0.49.sdf rank08_confidence_-0.57.sdf ...
Batch-Docking using SMILES
Besides the SDF format for ligand molecules, DiffDock also support SMILES text strings as the input. DiffDock uses RDKit to generate random molecular conformers from the SMILES information. A plain text file can be used as the ligand input with multiple lines, each of which is a SMILES formula representing a molecule, to conduct batch-docking.
Create a new blank file, name it as
ligands.txt
and copy the content below into it.
Cc1cc(F)c(NC(=O)NCCC(C)(C)C)cc1Nc1ccc2ncn(C)c(=O)c2c1F COc1cccc(NC(=O)c2ccc(C)c(Nc3nc(-c4cccnc4)nc4c3cnn4C)c2)c1 Cc1nn(C)c(C)c1CCOc1cc(F)ccc1-c1ccc2n[nH]c(CN(C)C)c2c1 Cc1c(C(=O)c2cccc3ccccc23)c2cccc3c2n1[C@H](CN1CCOCC1)CO3
Run the commands below to invoke the DiffDock model. The script generates an input JSON file and returns the inference result in JSON format in the file
output.json
.
./diffdock.sh 8G43.pdb ligands.txt
Dump the result and check the output folder.
$ python3 dump_output.py $ ls output/* diffdock-output/ligand0: rank01_confidence_-0.98.sdf rank05_confidence_-1.30.sdf rank09_confidence_-1.77.sdf rank02_confidence_-1.00.sdf rank06_confidence_-1.36.sdf rank10_confidence_-2.27.sdf rank03_confidence_-1.03.sdf rank07_confidence_-1.58.sdf rank04_confidence_-1.21.sdf rank08_confidence_-1.61.sdf diffdock-output/ligand1: rank01_confidence_-0.15.sdf rank05_confidence_-1.25.sdf rank09_confidence_-1.55.sdf rank02_confidence_-0.54.sdf rank06_confidence_-1.29.sdf rank10_confidence_-1.66.sdf rank03_confidence_-0.91.sdf rank07_confidence_-1.38.sdf rank04_confidence_-1.03.sdf rank08_confidence_-1.39.sdf ...