Prerequisites and Support Matrix for Evo 2 NIM#

Models#

Model Name

Parameters

Context Length

Publisher

Evo 2

40 Billion

1 Million

Arc Institute

Hardware Support#

Run your Evo 2 NIM on any NVIDIA GPU that meets following minimum hardware requirements:

GPU

GPU Memory (GB)

Precision

# of GPUs

Disk Space (GB)

CPU RAM (GB)

H100

80

Mixed

2

100

16

H200

144

Mixed

1

100

16

The GPU Memory, CPU RAM, and Disk Space values are in GB; Disk Space is for both the container and the model.

If the precision is mixed, it means the model features layers with FP32, BF16, and FP8 floating-point precision tensors.

Supported CPU architectures: x86_64 / amd64.

Software Prerequisites#

docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi

Example output:

+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.90.07              Driver Version: 550.90.07      CUDA Version: 12.8     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA H100 80GB HBM3          On  |   00000000:1B:00.0 Off |                    0 |
| N/A   33C    P0             75W /  700W |       1MiB /  81559MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA H100 80GB HBM3          On  |   00000000:43:00.0 Off |                    0 |
| N/A   36C    P0             70W /  700W |       1MiB /  81559MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|  No running processes found                                                             |
+-----------------------------------------------------------------------------------------+

Note

For more information on enumerating multi-GPU systems, see the NVIDIA Container Toolkit’s GPU Enumeration Docs

NGC (NVIDIA GPU Cloud) Account#

  1. Create an account on NGC

  2. Generate an API Key

  3. Log in to Docker with your NGC API (enter the key as password when prompted.)

docker login nvcr.io --username='$oauthtoken'