Fine-Tuned Model Support in NVIDIA NIM for LLMs#
You can easily deploy custom, fine-tuned models on NIM. NIM automatically builds an optimized TensorRT-LLM locally-built engine given the weights in the HuggingFace format.
Usage#
You can deploy the non-optimized model as described in Serving models from local assets.
Launch the NIM container
export CUSTOM_WEIGHTS=/path/to/customized/llama
docker run -it --rm --name=llama3-8b-instruct \
--gpus all \
-e NIM_FT_MODEL=$CUSTOM_WEIGHTS \
-e NIM_SERVED_MODEL_NAME="llama3.1-8b-my-domain" \
-e NIM_CUSTOM_MODEL_NAME=custom_1 \ # set this to cache the model for faster subsequent runs
-v $CUSTOM_WEIGHTS:$CUSTOM_WEIGHTS \
-u $(id -u) \
$NIM_IMAGE
NIM_FT_MODEL
environment variable must be a path to a directory containing HuggingFace checkpoint or a TRTLLM checkpoint. TRTLLM checkpoints will be served with TRTLLM backend as expected.
HuggingFace checkpoint should have the following directory structure:
├── config.json
├── generation_config.json
├── model-00001-of-00004.safetensors
├── model-00002-of-00004.safetensors
├── model-00003-of-00004.safetensors
├── model-00004-of-00004.safetensors
├── ...
├── model.safetensors.index.json
├── runtime_params.json
├── special_tokens_map.json
├── tokenizer.json
└── tokenizer_config.json
TRTLLM checkpoints should have the following directory structure:
/path/to/customized/llama/
├── config.json
├── generation_config.json
├── model.safetensors.index.json
├── special_tokens_map.json
├── tokenizer.json
├── tokenizer_config.json
├── ....
└── trtllm_ckpt
├── config.json
└── rank0.safetensors
├── ...
Note: TRTLLM checkpoint root directory should have HF tokenizer and configuration files. The sub-folder called trtllm_ckpt
in this example should have TRTLLM checkpoint configuration file and weight tensors.
Optimal build configuration#
For building an optimal TRTLLM engine, NIM allows users to provide a complete engine configuration from a previously built engine. NIM will pick build options from this configuration file instead of setting model and runtime defaults. The configuration file should have following fields:
build_config
pretrained_config
version
Users can structure the NIM_FT_MODEL
path to specify optimal engine configuration file. Following order of precedence will apply:
trtllm_engine/config.json
trtllm_ckpt/config.json
Note: Typically, TRTLLM checkpoints constructed using TRTLLM conversion scripts will result in a partial engine configuration with just the pretrained configuration options. Users can either provide a partial engine configuration or a complete engine configuration. In case a partial engine configuration is specified, NIM will pick model and runtime defaults as the build options.
Optimal runtime configuration#
Users can optionally provide a runtime_params.json
with following TRTLLM runtime configuration keys for a HuggingFace checkpoint or a TRTLLM checkpoint. Users can structure the NIM_FT_MODEL
path to specify optimal runtime configuration file. Following order of precedence will apply:
runtime_params.json
trtllm_ckpt/runtime_params.json
trtllm_engine/runtime_params.json
Following runtime overrides are supported. If not specified, appropriate defaults are picked in NIM.
medusa_choices: List[List[int]] = None
You can also select an alternative profile by using the output of the list-model-profiles
command, which lists the profiles available within the container.
This command should produce output similar to the following.
SYSTEM INFO
- Free GPUs:
- [26b3:10de] (0) NVIDIA RTX 5880 Ada Generation (RTX A6000 Ada) [current utilization: 0%]
- [26b3:10de] (1) NVIDIA RTX 5880 Ada Generation (RTX A6000 Ada) [current utilization: 0%]
MODEL PROFILES
- Compatible with system and runnable:
- 771c17ba45c566b400c5823af6188d479e3703e5b25f56260713afcc377bcfa5 (custom_1)
- 19031a45cf096b683c4d66fff2a072c0e164a24f19728a58771ebfc4c9ade44f (vllm-fp16-tp2)
- 8835c31752fbc67ef658b20a9f78e056914fdef0660206d82f252d62fd96064d (vllm-fp16-tp1)
- With LoRA support:
- c5ffce8f82de1ce607df62a4b983e29347908fb9274a0b7a24537d6ff8390eb9 (vllm-fp16-tp2-lora)
- 8d3824f766182a754159e88ad5a0bd465b1b4cf69ecf80bd6d6833753e945740 (vllm-fp16-tp1-lora)
- Compilable to TRT-LLM using just-in-time compilation of HF models to TRTLLM engines:
- 375dc0ff86133c2a423fbe9ef46d8fdf12d6403b3caa3b8e70d7851a89fc90dd (tensorrt_llm-trtllm_buildable-bf16-tp2)
- 54946b08b79ecf9e7f2d5c000234bf2cce19c8fee21b243c1a084b03897e8c95 (tensorrt_llm-trtllm_buildable-bf16-tp1)
- With LoRA support:
- 7b8458eb682edb0d2a48b4019b098ba0bfbc4377aadeeaa11b346c63c7adf724 (tensorrt_llm-trtllm_buildable-bf16-tp2-lora)
- 00172c81416075181f203532da34b88e371b8081d2ad801d9d30110ea88cbf95 (tensorrt_llm-trtllm_buildable-bf16-tp1-lora)
- Incompatible with system:
- dcd85d5e877e954f26c4a7248cd3b98c489fbde5f1cf68b4af11d665fa55778e (tensorrt_llm-h100-fp8-tp2-latency)
- f59d52b0715ee1ecf01e6759dea23655b93ed26b12e57126d9ec43b397ea2b87 (tensorrt_llm-l40s-fp8-tp2-latency)
- 30b562864b5b1e3b236f7b6d6a0998efbed491e4917323d04590f715aa9897dc (tensorrt_llm-h100-fp8-tp1-throughput)
- 09e2f8e68f78ce94bf79d15b40a21333cea5d09dbe01ede63f6c957f4fcfab7b (tensorrt_llm-l40s-fp8-tp1-throughput)
Select a compatible tensorrt_llm
or a tensorrt_llm-trtllm_buildable
profile. Then run the previous command with the additional option e NIM_MODEL_PROFILE=profile_name
, where profile_name
is the name of a profile.
Setting NIM_CUSTOM_MODEL_NAME
will cache the locally-built engine (with the same name) before serving it.
If cached by setting NIM_CUSTOM_MODEL_NAME
environment variable, the cached engine profile will take precedence over all other profiles, like - 771c17ba45c566b400c5823af6188d479e3703e5b25f56260713afcc377bcfa5 (custom_1)
as above.
If you have multiple locally cached locally-built engines, then other underlying logic is used to find the best profile.
To force LLM NIM to serve a specific cached engine, set -e NIM_MODEL_PROFILE=custom_model_name
, where custom_model_name
is the name of a custom model, to serve that specific cached engine like any other profile.